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Abstract

Many studies of offspring size focus on differences in maternal investment that arise from ecological factors such as
predation or competition. Classic theory predicts that these ecological factors will select for an optimal offspring size, and
therefore that variation in a given environment will be minimized. Yet recent evidence suggests maternal traits such as size
or age could also drive meaningful variation in offspring size. The generality of this pattern is unclear, as some studies
suggest that it may represent non-adaptive variation or be an artifact of temporal or spatial differences in maternal
environments. To clarify this pattern, we asked how maternal size, age and condition are related to each other in several
populations of the swordtail Xiphophorus birchmanni. We then determined how these traits are related to offspring size, and
whether they could resolve unexplained intra-population variation in this trait. We found that female size, age, and
condition are correlated within populations; at some of these sites, older, larger females produce larger offspring than do
younger females. The pattern was robust to differences among most, but not all, sites. Our results document a pattern that
is consistent with recent theory predicting adaptive age- and size-dependence in maternal investment. Further work is
needed to rule out non-adaptive explanations for this variation. Our results suggest that female size and age could play an
under-appreciated role in population growth and evolution.
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Introduction

Smith and Fretwell [1] predicted that maternal fitness is

maximized at a single intermediate level of effort (usually size)

per offspring, and that females with additional resources will

invest in fecundity, rather than making larger offspring [1–3]. A

remarkable body of research rooted in this perspective has

demonstrated that offspring sizes vary predictably among

populations that differ in ecological factors such as predation,

density, or acidity [4–6]. As a result, ecological factors are viewed

as the principle drivers of offspring size [2–3]. However, recent

empirical evidence has suggested that offspring size can vary with

female characteristics as well, leading to potentially meaningful

intra-population variation in this trait [7–9]. Although intriguing,

the importance of these female effects on offspring size is

currently debated. Until recently, there was scant theory that

could generally explain why selection would favor size- or age-

dependent maternal investment [10–15]. In addition, size- and

age-dependence in maternal investment is difficult to clearly

demonstrate without potential confounds because of covariation

among multiple life-history traits [13].

Maternal size and age have been related to offspring size in

a broad variety of taxa, including aquatic and marine

invertebrates [16–19], fish [9] [20–26], and birds [27–28].

Initially, theory addressing this pattern suggested that sibling

competition [29] or physiological constraints on offspring

investment [30] were needed to explain the correlation between

maternal traits and offspring size. Although they are promising

explanations for some taxa, these mechanisms are limited to

species with density-dependent sibling competition, or specific

physiology that links maternal size and offspring size, such as

size-dependence in nutrient transfer rate (a mechanism proposed

for plants [30]). Two alternative mechanisms for the de-

pendence of offspring size on maternal age and size have been

proposed [14–15]. First, offspring size is predicted to depend on

maternal age when reproductive effort is costly to maternal

survival [14]. If young females reduce reproductive effort to

maximize survival, selection can also favor smaller offspring

depending on the differential fitness benefits of investing in size

or number [14]. Second, maternal size is predicted to affect

offspring size of livebearers when mortality is greater for small

females than for juveniles [15]. Small, livebearing females in this

scenario are predicted to produce small offspring, given that

they will develop more quickly, and thus be born sooner, than

large offspring. By producing small offspring, these females

minimize the amount of time the developing offspring are

exposed to the maternal risk of mortality.

Although these theoretical advances are encouraging, clearly

demonstrating maternal size or age effects on offspring size

remains difficult. One problem is that female size and age are

themselves often strongly correlated, making their individual

effects difficult to distinguish [13], especially as age is often not

measured directly. Furthermore, the effect of maternal traits on
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offspring size may be obscured by variation in maternal condition

[31–34]. Finally, in natural populations, removing temporal or

spatial variation in the maternal environment has proven difficult

[13]. Despite these problems, there is some evidence that size-

dependence in maternal investment is robust to ecological

differences [9].

Here, we examine how maternal size, age, and condition affect

offspring size in wild populations. We first ask how maternal traits

covary within and among populations. We then determine how

offspring size and number were related to these traits, and if

differences in ecological context affected the relationship between

reproductive traits and maternal traits. According to the theory

described above, livebearing fish that experience survival costs of

reproduction are likely to show age- or size-dependence [14–15].

We therefore chose to study these traits in wild populations of the

livebearing swordtail Xiphophorus birchmanni. This species is ideal for

our aim of examining the relationship between maternal traits and

offspring size and number because costs of reproduction that

decrease female swimming performance (and presumably survival)

have been shown in related species [35]. Furthermore, re-

productive investment of X. birchmanni can be quantified prior to

parturition in gravid females, as embryo dry mass has been found

to be strongly related to offspring size at birth in poeciliids [36].

Thus, we expect that female size, age, or condition will be

associated with egg size in these fish in a variety of ecological

settings.

Methods

Ethics Statement
Our methods were vetted and approved by the Yale In-

stitutional Animal Care and Use Committee (protocol number

2007–10908; renewed for 2008 and 2010).

Field Methods
We studied multiple populations of X. birchmanni in the

Mexican state of Hidalgo. Animals were collected with

permission from the Mexican government (Permiso de Pesca

de Fomento No. DGOPA.07311.130709.2261). Female sizes

and ages, and corresponding offspring sizes and numbers, were

measured at sites where X. birchmanni is abundant; X. birchmanni

is not endangered or threatened. Our sites were all in public

waterways. We initially chose two sites (a main channel and

a tributary site) with large differences in the size ranges of

mature fish. Despite observed differences in size, previous work

found these sites were genetically similar at neutral markers

[37]. In 2008 and 2010, fish were collected from these sites: the

main river channel at San Pedro (20.950N, 98.523W), and

a second population in a tributary more than two km upstream

(Cocalaco, 20.958N, 98.521W). In 2010, a third population in

a different river with an intermediate size distribution

(Coacuilco, 21.098N, 98.586W) was added. Fish at this site

are genetically distinct from the first two sites (Culumber ZW,

unpublished data). We selected these sites to make sure that size

distributions overlapped among sites, but also to ensure that

a large range of female sizes was present in our sample.

At each site, we caught females in minnow traps and euthanized

them using a solution of MS-222 within two hours of capture. We

then measured mature females and removed their gonads. These

females were preserved for later aging (described below) or for

lipid content analysis (described below). In 2010, all females were

preserved for both aging and lipid content analysis. If a female had

fertilized embryos in her gonads, they were counted, and the

developmental stages of offspring noted (following Stearns, SC,

unpublished data; [38]). We excluded females with unfertilized

embryos from further analysis, as these females could be in the

process of yolking eggs. Embryos from a given brood were all the

same stage (i.e., females do not superfetate [39]). Three embryos

from each female were then weighed individually to obtain a wet

weight. These three embryos were then dried at 60̊ C for more

than 48 h and weighed to the nearest 0.0001 g. The mean of the

three dry weights was used to estimate maternal investment per

offspring, i.e., offspring size.

Female Age
In order to measure female age, female carcasses were first

preserved in ethanol to aid later otolith extraction. After

extraction, otoliths were mounted on slides using thermoplastic

glue, polished, and photographed; age in days was estimated from

daily growth rings. Otoliths were prepared and aged by the Fish

Ageing Service (Portarlington, Victoria, Australia).

Female Condition
Elemental analysis of C:N ratios in female body tissue to

quantify variation in female condition. This method has been

used to measure condition in aquatic organisms [40]. A pilot

study in 2008 showed that lipid estimates from samples of

headless females were strongly correlated with lipid estimates

from female bodies with intact heads (Pearson’s correla-

tion = 0.97, t = 10.1525, d.f. = 7, P,0.001). Based on these data,

in 2010 headless female carcasses were dried and processed, and

female condition measured [40]. This allowed the simultaneous

preservation of the female’s head in ethanol for otolith removal.

Dried samples were ground with a SPEX Certiprep 6750

freezer mill (SPEX Certiprep, Metuchen, New Jersey, USA).

Elemental analysis was performed with a ThermoFinnigan

DeltaPlus Advantage stable isotope mass spectrometer (Thermo

Scientific, Waltham, Massachusetts, USA) at the Earth Systems

Center for Stable Isotope Studies at the Yale Institute for

Biospheric Studies.

Statistical Analyses
Statistics were done with the R statistical language [41]. We first

used ANCOVA to determine how maternal size, age, and

condition varied among each site. We combined size data for

each year at the sites that were sampled multiply for this analysis.

Next, linear regressions were used to examine within-site effects of

female size, age, condition, and developmental stage on the two

response variables, offspring size and number. As offspring

number is expected to increase geometrically with female length,

fecundity data were log transformed. Data were analyzed

separately by year for the two sites with two years of data. We

chose to analyze the relationships between the predictor variables

(female size, age, and condition) and response variables separately

for each site in each year, as different environmental conditions

between years could generate differences in female investment

patterns.

Results

Covariation of Maternal Traits within and Among Sites
and Years

A major goal of this study was to determine if the relationship

between maternal traits and offspring size was robust among years

and in different populations. Maternal size (the dependent

variable) varied significantly with site and maternal age (data is

shown in Figures 1 and 2). There was no significant site by age

interaction and no significant year effect, so we excluded these
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terms from the final model (ANCOVA: F2, 88 = 53.9; P,0.001).

Female size, age, site, and all interactions were significant

predictors of female condition (ANCOVA: F7, 50 = 7.1;

P,0.001). This initial analysis suggests that the largest females

tended to be the oldest and in the best condition across sites

(Figure S1). The differences in adult female size and age among

sites reflected differences in size and age at maturity of females in

these populations. Figures 1 and 2 show that females matured at

a smaller size and younger age at Cocalaco, and that overall the

ranges of mature female sizes and ages were smaller at Cocalaco

than at San Pedro, suggesting that the ecological factors shaping

swordtail life-history traits differed among sites.

Figure 1. Site and year differences in female sizes (standard length, in mm). Females are mature (i.e., gravid). Top panel: San Pedro. Middle
panel: Cocalaco. Bottom panel: Coacuilco. In 2010 we added Coacuilco as a third site to examine females in a size range intermediate to San Pedro
and Cocalaco.
doi:10.1371/journal.pone.0048473.g001
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The Relationship between Maternal Phenotype,
Offspring Size and Number

Our primary objective was to determine whether maternal size,

age, and condition consistently affected investment in offspring size

despite these ecological differences. We found female size alone

was the best predictor of both offspring size and number at each

site (Tables 1, 2; Figures 3, 4); developmental stage, female age,

and condition were not significant. Female size was positively

Figure 2. Site and year differences in female age (in days). Females are mature (i.e., gravid). Top panel: San Pedro. Middle panel: Cocalaco.
Bottom panel: Coacuilco. In 2010 we added Coacuilco as a third site to examine females in a size range intermediate to San Pedro and Cocalaco.
doi:10.1371/journal.pone.0048473.g002
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correlated with offspring size for both years of data at San Pedro,

and for the single year of data at Coacuilco. Although not

significant, at Cocalaco (the tributary site) the relationship between

female size and offspring size was consistent with the other sites.

Consistent with our understanding of fish life histories, female

fecundity was positively correlated with female size at all three sites

(Table 2; Figure 4).

Discussion

Studies of life-history traits have traditionally focused on

understanding differences in offspring size among populations

[4]. However, recent research has revealed that meaningful

variation in offspring size may exist within populations, and can be

related to maternal size and age (e.g. [9]). We found a positive

relationship between offspring size and maternal size at two of our

sites, and at one of these sites in two years. Our study demonstrates

that larger, older swordtails produce larger offspring. We found

this pattern in females from two populations with varying size and

age ranges. However, we did not detect size- or age-dependence in

maternal investment at our tributary site, Cocalaco. While it is

possible our results could be driven by non-adaptive variation in

maternal investment, our results are a necessary initial step

demonstrating size- and age-dependence in offspring size in some

populations of Xiphophorus birchmanni. Future work is needed to rule

out non-adaptive explanations, and to test whether adaptive

mechanisms could explain this pattern.

Figure 3. Female size and offspring size. Solid points are data from
2008; open points are 2010. Female length is significantly related to
offspring size at San Pedro (top panel) and Coacuilco (bottom panel).
The trend at Cocalaco in each year was not significant. A separate linear
model was estimated for each year of data at Cocalaco and San Pedro
as female size varied significantly with year.
doi:10.1371/journal.pone.0048473.g003

Table 1. Offspring size as a function of female size for each
site in each year.

2008 2010

F-stat P-value F-stat P-value

San Pedro

Female size 19.53 1, 53 ,0.001 18.70 1, 17 ,0.001

Cocalaco

Female size 0.30 1, 15 0.59 0.34 1, 19 0.56

Coacuilco

Female size n/a n/a 5.80 1, 31 0.022

The model of offspring size initially included developmental stage, female age,
condition, and size; backwards stepwise removal of non-significant effects
revealed maternal size was the best predictor of offspring size (as well as
number). Numerator and denominator degrees of freedom are listed as
subscripts for each F-statistic. Bold face font indicates significance at P,0.05.
doi:10.1371/journal.pone.0048473.t001

Table 2. Offspring number as a function of female size for
each site in each year.

2008 2010

F-stat P-value F-stat P-value

San Pedro

Female size 27.44 1, 53 ,0.001 38.05 1, 17 ,0.001

Cocalaco

Female size 21.84 1, 18 ,0.001 64.85 1, 20 ,0.001

Coacuilco

Female size n/a n/a 44.38 1, 44 ,0.001

The model of offspring number initially included female age, condition, and
size; backwards stepwise removal of non-significant effects revealed maternal
size was the best predictor of offspring number. Numerator and denominator
degrees of freedom are listed as subscripts for each F-statistic. Bold face font
indicates significance at P,0.05.
doi:10.1371/journal.pone.0048473.t002
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The differences among our sites in the relationship between

maternal size and offspring size suggest new insights into the

potential constraints on offspring size. First, we note that where the

female size ranges of San Pedro and Cocalaco overlap, the

offspring produced at Cocalaco tended to be larger than the

offspring produced at San Pedro (Figure 4). That is, the largest

females at Cocalaco are producing larger embryos than are

females of the same size at San Pedro (the smallest females in that

population). This suggests the small females at San Pedro could

produce larger offspring, as do their counterparts at Cocalaco.

This supports the idea that the general pattern of size-dependence

is not driven by a physical constraint (e.g. vent length) on offspring

size.

One surprising outcome of our study was that our measure of

female condition did not explain any additional variance in

offspring size (beyond the variance explained by female size and

age). We found that condition varied with female size, age, and

site, and that there were significant interaction terms among these

factors. Despite the fact that these factors are interrelated, our

assay of female lipid stores was not related to offspring size in this

species. It may be that differences in female condition affect other

reproductive traits, such as the interbrood interval [42]. Further

research is needed on the general role of resource availability in

shaping offspring size and number in livebearers [4–6].

Although maternal size is the best predictor of offspring size, we

found that female size and age are strongly related. Therefore, we

are unable to distinguish whether the pattern of increased offspring

size is due to a mechanism associated with maternal size or with

age. It is possible that a size-dependent constraint on maternal

physiology limits the offspring size that can be produced by smaller

females. Although this mechanism was proposed by Sakai and

Harada [30] to explain size-dependence in offspring investment,

their model was inspired by observations of seed size in plants.

There is little or no evidence suggesting that such a constraint

exists for fish, although it is theoretically possible; further research

on the physiology of egg provisioning could yield surprising

insights.

Another possibility is that density-dependent sibling competition

explains the correlation between maternal size and offspring size.

As larger females are more fecund, density-dependent competition

or survival is expected to be most important for offspring of larger

females [29]. Although density-dependent egg mortality has been

shown to occur in nests of sand gobies [43], little is known about

possibility of density-dependent survival or competition for space

among siblings in livebearers, as density-dependent processes are

very difficult to study prior to birth. Again, more research is

needed to determine the contribution of within-brood density-

dependence to observed variation in swordtail offspring sizes.

Two recent theories provide alternative adaptive explanations

for size- and age-dependent offspring investment [14–15]. One

predicts that maternal size will be positively related to offspring

size if larger offspring develop more slowly, and smaller females

have a greater risk of mortality. These two factors interact to favor

smaller, faster-developing embryos in smaller females [15]. If

swordtail females experience size-dependent morality, and if

development time is positively associated with egg size (as in other

fish [26]), then this mechanism could explain the positive

relationship between offspring size and maternal size. An

alternative explanation is that older females are favored to

increase both offspring size and number. Theory predicts age-

dependence in offspring size is adaptive in species where total

reproductive effort is costly to maternal survival [14], as long as

resources are not limiting. Although our data cannot directly

differentiate between these theories, and cannot exclude non-

adaptive mechanisms, our results are consistent with both of these

adaptive explanations. Our findings motivate future work testing

the key features of these models to determine if they differ among

our study populations.

While it is somewhat unsatisfying that our data do not allow us

to test the size-dependent investment predictions in Kindsvater

et al. [14] and Jørgensen et al. [15], these theories provide some

general insights into the mechanisms that could explain our data

and guide future research. Specifically, both theories invoke an

indirect effect of female mortality on the optimal maternal

Figure 4. Female size and offspring number are positively
correlated for all sites and years; Solid points are data from
2008; open circles are 2010. Offspring number was log-transformed,
as fecundity is expected to increase geometrically with female size. In all
cases, slopes are significantly different from zero.
doi:10.1371/journal.pone.0048473.g004
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investment strategy. The former theory also points out that both

the degree to which reproduction is costly, and the shape of the

offspring fitness function, will influence age-dependent variation in

offspring size. This suggests that further investigation of the

indirect effects of mortality risk on reproductive traits could be

useful.

The importance of size- or age-dependent investment in

offspring size depends on the contribution of offspring size to

offspring fitness. Increased size at birth is generally thought to

increase survival, competitive ability, or growth in the stages

following independence from the female [5] [44–46]. However,

much is still unknown about the rate at which fitness increases with

size, or why it does so [21] [45]. Although our results suggest that

maternal influences on offspring size can generate meaningful

variation in this trait, it is only a first step towards the loftier goal of

understanding the ecological and evolutionary consequences of

this pattern. A fruitful next step would be to examine whether

female size and age structure affect population growth rate.

Studies of fish population dynamics have shown that, in some

species, populations of older, larger females have a higher

reproductive rate than populations of younger females [9]. While

most research on this pattern focuses on the management

implications for harvested fish stocks [9] [13], this phenomenon

potentially has general consequences for our understanding of

population processes. If we assume that larger swordtail offspring

have increased survival, then it is possible that female age structure

contributes through this pathway to population growth and

evolution in our study populations. Our study shows that the

relationship between maternal size and offspring size is also

sensitive to the overall range of female sizes. This result motivates

further investigation into the specific causes and consequences of

this maternal effect on offspring size and fitness.

Supporting Information

Figure S1 Size, age, and condition of mature females
are positively related. Data are pooled across sites and years;

to indicate depth, the point color shifts from red to black.

(TIF)
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