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Abstract

The statistical predictions of Newtonian and special-relativistic mechanics, which are calculated from an initially Gaussian
ensemble of trajectories, are compared for a low-speed scattering system. The comparisons are focused on the mean dwell
time, transmission and reflection coefficients, and the position and momentum means and standard deviations. We find
that the statistical predictions of the two theories do not always agree as conventionally expected. The predictions are close
if the scattering is non-chaotic but they are radically different if the scattering is chaotic and the initial ensemble is well
localized in phase space. Our result indicates that for low-speed chaotic scattering, special-relativistic mechanics must be
used, instead of the standard practice of using Newtonian mechanics, to obtain empirically-correct statistical predictions
from an initially well-localized Gaussian ensemble.
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Introduction

The standard practice in dynamics is to use Newtonian

mechanics to study the motion of low-speed (i.e., much smaller

than the speed of light) particles, instead of using the special-

relativistic theory. This practice is rooted in the conventional belief

[1–3] that the dynamics predicted by special-relativistic mechanics

for a low-speed system is always well-approximated by the

dynamics predicted by Newtonian mechanics from the same

parameters and initial conditions. Special-relativistic dynamics of

nonlinear systems have been studied in the past – examples

include the relativistic kicked harmonic oscillator [4–7], the

relativistic kicked rotor [8] and the relativistic hydrogen-like atom

[9]. However, the conventional belief about the relationship

between Newtonian and special-relativistic dynamics at low speed

has not been critically scrutinized until recently.

In a numerical study of a low-speed model Hamiltonian system

[10,11], one of us found that the Newtonian trajectory does not

always remain close to the special-relativistic trajectory as expected

– the two trajectories eventually become completely different

regardless of whether the trajectories are chaotic or non-chaotic.

The breakdown of agreement between the Newtonian and special-

relativistic trajectories is, however, much faster in the chaotic case

compared to the non-chaotic, since the difference between the two

trajectories grows exponentially in the former case but linearly in

the latter case. Similar rapid breakdown of agreement was found

numerically in other low-speed systems, in particular, a model

dissipative system [12] and a model scattering system [13]. For the

scattering system in [13], the rapid breakdown of agreement was

found to be due to a sufficiently-long exponential growth of the

difference between the two trajectories in the scattering region

when the scattering is chaotic.

In this paper, we extend the comparison of the Newtonian and

special-relativistic single-trajectory predictions for the low-speed

model scattering system presented in Ref. [13] to a comparison of

statistical quantities which are calculated from the same param-

eters and initial ensemble of trajectories. The statistical quantities

we will focus on are the mean dwell time, transmission and

reflection coefficients, and the position and momentum means and

standard deviations. The dwell time is, for each trajectory in the

ensemble, defined as (tout – tin) where tin is the time when the

particle first enters the scattering region and tout is the time when

the particle subsequently first exits the scattering region. The

transmission coefficient (reflection coefficient) is defined as the

ratio of the number of transmitted (reflected) particles to the total

number of particles in the ensemble. A comparison of the

Newtonian and special-relativistic statistical predictions for a low-

speed scattering system has not yet been done. In the recent

numerical study [14] by two of us where the statistical predictions

of the two theories were compared for the low-speed model

Hamiltonian system studied in [10], it was not possible to compare

the mean dwell time and also the transmission and reflection

coefficients because the system is spatially bounded, not a

scattering system which is spatially unbounded.

The model scattering system we have chosen to study allows

sufficiently-accurate calculation of the statistical quantities because

the time-evolution of each trajectory in the ensemble is described

by an exact analytical map in both the Newtonian and special-

relativistic frameworks. Details of the model scattering system and

calculations are given next, followed by the presentation and

discussion of the results, and, finally, our concluding remarks.
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Methods

The scattering system consists of a particle of rest mass m0

moving in the one-dimensional potential well introduced by

Beeker and Eckelt [15]:

V xð Þ~{
V0

b
1zx2
� �{b=2

, ð1Þ

which is periodically turned on only for an instant of time. The

potential well is characterized by two parameters V0 and b, where

V0/b determines the depth of the well and b determines its

asymptotic behavior.

The Newtonian equations of motion for this periodically-delta-

kicked scattering system are easily integrated exactly [15] to yield a

mapping for the position x and momentum p from just before the

nth kick to just before the (n+1)th kick:

pnz1~pn{V0Txn 1zx2
n

� �{ bz2ð Þ=2
, ð2Þ

xnz1~xnz
T

m0
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where T is the kicking period.

The corresponding special-relativistic equations of motion are

also easily integrated exactly [13] to produce a mapping for the

position x and momentum p from just before the nth kick to just

before the (n+1)th kick:

pnz1~pn{V0Txn 1zx2
n

� �{ bz2ð Þ=2
, ð4Þ

xnz1~xnz
Tpnz1

m0
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For both theories, we consider an initially Gaussian ensemble of

trajectories centered at the mean values ,x. and ,p., and with

standard deviations sx and sp:

1
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:

Each trajectory in the Newtonian (special-relativistic) ensemble

is time-evolved using the map given by Eqs. (2) and (3) [Eqs. (4)

and (5)]. For both theories, each statistical quantity is calculated by

averaging over the ensemble of trajectories. We ensured that the

statistical quantity from each theory is numerically accurate in the

following way. First, the statistical quantity is calculated using 106

trajectories, where its accuracy is determined by comparing the

less accurate 30-significant-figure calculation with the more

accurate quadruple-precision (35 significant figures) calculation.

For example, at a particular kick, if the statistical quantity from the

30-significant-figure calculation is 5.1234567…, and the same

statistical quantity from the quadruple-precision calculation is

5.1234568…, then the accurate value for that statistical quantity,

based on 106 trajectories, is 5.123456. The statistical quantity is

then recalculated using 107 trajectories where its accuracy is

determined in the same manner. Finally, the accuracy of the

statistical quantity is determined by comparing the less accurate

106-trajectories calculation with the more accurate 107-trajectories

calculation. We used m0 = 1, T = 1, and c = 105 in all of our

calculations.

Figure 1. Scattering potential well. Scattering potential well for V0 = 8 and b = 4 (solid line), and V0 = 2 and b = 4 (dotted line).
doi:10.1371/journal.pone.0048447.g001
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Results

In this section we present and discuss four examples to illustrate

the general results. In all cases, the mean speed is low, only

0.001% of the speed of light.

In the first example, the parameters of the scattering potential

well are V0 = 8 and b = 4. The corresponding potential profile is

plotted in Figure 1. For these parameters, the scattering is chaotic,

i.e., the scattering function has intertwining regular and irregular

intervals down to all scales, from both the Newtonian [15] and

special-relativistic [13] perspectives. The means and standard

deviations of the initially Gaussian ensemble are ,x. = 220,

,p. = 1.2497 and sx = sp = 10211. This initially localized ensem-

ble is far from and to the left of the scattering region ranging from

x = 24 to x = 4.

Figure 2 shows that the Newtonian mean trajectory, i.e., mean

position and mean momentum, agrees with the special-relativistic

mean trajectory for the first 35 kicks. The two mean trajectories

are completely different, however, from kick 36 onwards. This

breakdown of agreement can be understood as follows. The

Newtonian (special-relativistic) mean trajectory is, see Figure 2,

well-approximated by the Newtonian (special-relativistic) single

trajectory with the same initial conditions until the Newtonian

(special-relativistic) ensemble is delocalized in phase space at kick

38 (kick 39). In other words, at kick 36, the Newtonian and special-

relativistic mean trajectories are still well-approximated by the

corresponding single trajectories. Since the agreement between the

Newtonian and special-relativistic single trajectories breaks down

at kick 36 (see Figure 2), the agreement between the Newtonian

and special-relativistic mean trajectories therefore also breaks

down at the same kick. Furthermore, the breakdown of agreement

between the Newtonian and special-relativistic mean trajectories is

rapid because the difference between them grows exponentially in

the scattering region, like the growth of the difference between the

Figure 2. Single and mean trajectories for the first example. Newtonian single trajectory (asterisks), Newtonian mean trajectory (squares),
special-relativistic single trajectory (circles) and special-relativistic mean trajectory (diamonds) for the chaotic scattering case in the first example
discussed in the text: positions (top plot) and momentums (bottom plot).
doi:10.1371/journal.pone.0048447.g002
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Newtonian and special-relativistic single trajectories shown previ-

ously in Ref. [13].

Figure 3 shows that the agreement between the Newtonian and

special-relativistic standard deviations also breaks down at kick 36.

Figure 4 shows that this rapid breakdown of agreement is due to

the exponential growth of the difference between the Newtonian

and special-relativistic standard deviations up to kick 38 while the

ensembles are still in the scattering region.

The mean dwell time, transmission coefficient and reflection

coefficient predicted by the two theories are also, remarkably, very

different. Indeed, the Newtonian mean dwell time is 32.9 kicks,

while the corresponding special-relativistic value is only 30.3 kicks.

Even more striking is the difference in the transmission

coefficients, since the Newtonian value of 0.57 is more than two

times the special-relativistic value of 0.24. Similarly, for the

reflection coefficient, the special-relativistic value of 0.75 is about

two times the Newtonian value of 0.42.

In the second example, the scattering is also chaotic. All the

parameters are the same as in the first example except that a

broader initial Gaussian ensemble, both in position and momen-

tum with sx = sp = 1027, is used. In contrast to what happened in

the previous example, there is no breakdown of agreement

between the position and momentum means and standard

deviations predicted by the two theories. In this example, when

the Newtonian and special-relativistic ensembles delocalized in

phase space at kick 32, the Newtonian and special-relativistic

mean trajectories are still close to one another because the

agreement between the Newtonian and special-relativistic single

trajectories with the same initial conditions only breaks down

sometime later at kick 36. The Newtonian and special-relativistic

standard deviations at kick 32 are also still close to one another.

Figure 3. Standard deviations for the first example. Newtonian (squares) and special-relativistic (diamonds) position standard deviations (top
plot) and momentum standard deviations (bottom plot) for the chaotic scattering case in the first example. The Newtonian and special-relativistic
standard deviations are not plotted before kick 33 because they are close to each other.
doi:10.1371/journal.pone.0048447.g003
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Hence, since the Newtonian and special-relativistic delocalized

phase-space distributions are close to one another at kick 32, the

subsequent predictions of the means and standard deviations by

the two theories continue to be close. Furthermore, the other

statistical quantities predicted by the two theories are also close, in

particular, they agree to at least 2 significant figures: the two

theories predict 25 kicks for the mean dwell time, 0.39 for the

transmission coefficient and 0.60 for the reflection coefficient.

These two examples of chaotic scattering illustrate that the

statistical predictions of the two theories are radically different if

the initially Gaussian ensemble is well, i.e., sufficiently, localized in

phase space such that the Newtonian and special-relativistic

ensembles delocalize after the agreement between the Newtonian

and special-relativistic single trajectories, with the same initial

conditions as the Newtonian and special-relativistic mean trajec-

tories, breaks down.

In the third example, the parameters of the scattering potential

well are V0 = 2 and b = 4 – the corresponding potential profile has

also been plotted in Figure 1. For these values of the parameters,

the scattering is non-chaotic, i.e., the scattering function varies

regularly from both the Newtonian [15] and special-relativistic

[13] perspectives. The means and standard deviations of the

initially Gaussian ensemble are ,x. = 220, ,p. = 1.2497 and

sx = sp = 1024. This choice initially localize the ensemble far from

and to the left of the scattering region, which is in the range

x = 23.5 to x = 3.5. In this case, the transmission and reflection

coefficients predicted by the two theories are the same, and equal

to 1 and 0, respectively. Both the Newtonian and special-

Figure 4. Difference between the standard deviations for the first example. Difference between the Newtonian and special-relativistic
standard deviations – for position (top plot), and momentum (bottom plot) – for the chaotic scattering case in the first example. The standard-
deviation differences before kick 33 and at kick 34 are not shown because they cannot be resolved with the accuracy of our calculations. After the
exponential growth, which ends at kick 38, the position-standard-deviation difference grows linearly from kick 50 onwards and the momentum-
standard-deviation difference is essentially constant from kick 60 onwards.
doi:10.1371/journal.pone.0048447.g004
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relativistic ensembles are still localized in phase space when they

are far away from the scattering region on the other side at x&20

at kick 40. Figure 5 shows that when the Newtonian and special-

relativistic ensembles are far away from the scattering region on

the other side, the Newtonian and special-relativistic mean

trajectories are still close to one another – this is because they

are well-approximated by the corresponding single trajectories

(with the same initial conditions) which are still also close to one

another. The Newtonian and special-relativistic standard devia-

tions are also close to one another – see Figure 6. The mean dwell

times from the two theories are also the same: 6 kicks.

In the fourth and final example, the scattering is also non-

chaotic. All the parameters are the same as in the third example

except that the initial Gaussian ensemble is broader in both

position and momentum with sx = sp = 1022. In contrast to the

previous example, the Newtonian and special-relativistic ensem-

bles are already delocalized in phase space at kick 17 in the

scattering region. The two ensembles are still close to one another

when they delocalize, which means that there is no subsequent

breakdown of agreement between the means and the standard

deviations predicted by the two theories for the position and

momentum. Furthermore, the transmission and reflection coeffi-

cients predicted by the two theories are the same, 1 and 0,

respectively. The two predictions for the mean dwell time agree to

at least 3 significant figures, in particular, 5.64 kicks.

The third and fourth examples above illustrate that if the

scattering is non-chaotic, there is no breakdown of agreement

between the statistical predictions of the two theories.

Discussion

We have shown that the Newtonian and special-relativistic

statistical predictions for the mean dwell time, transmission and

reflection coefficients, and the position and momentum means and

standard deviations, which are calculated from an initially

Gaussian ensemble of trajectories, for a low-speed scattering

Figure 5. Mean trajectories for the third example. Newtonian (squares) and special-relativistic (diamonds) mean positions (top plot) and mean
momentums (bottom plot) for the non-chaotic scattering case in the third example discussed in the text.
doi:10.1371/journal.pone.0048447.g005
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system are radically different if the scattering is chaotic and the

initial ensemble is well localized in phase space. In contrast, there

is no breakdown of agreement between the two statistical

predictions if the scattering is non-chaotic.

Our finding raises an important fundamental question in

physics: When the Newtonian and special-relativistic statistical

predictions – particularly the mean dwell time, and transmission

and reflection coefficients – are completely different for a low-

speed scattering system, which of the two predictions is empirically

correct? Since special relativity continues to be successfully tested

[16–18] in recent times, we expect the special-relativistic

predictions to be the correct. This implies that Newtonian

mechanics, which is (for example, see Ref. [19]) the standard

theory used to study the dynamics of low-speed scattering systems,

does not always yield statistical predictions that are empirically

correct. Special-relativistic mechanics must be used instead to

obtain empirically-correct statistical predictions when the low-

speed scattering is chaotic and the initial Gaussian ensemble is well

localized.
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