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Abstract

To address a variety of questions pertaining to the interactions between physical activity, musculoskeletal loading and
musculoskeletal health/injury/adaptation, simple methods are needed to quantify, outside a laboratory setting, the forces
acting on the human body during daily activities. The purpose of this study was to develop a statistically based model to
estimate peak vertical ground reaction force (pVGRF) during youth gait. 20 girls (10.960.9 years) and 15 boys
(12.560.6 years) wore a Biotrainer AM over their right hip. Six walking and six running trials were completed after a
standard warm-up. Average AM intensity (g) and pVGRF (N) during stance were determined. Repeated measures mixed
effects regression models to estimate pVGRF from Biotrainer activity monitor acceleration in youth (girls 10–12, boys 12–
14 years) while walking and running were developed. Log transformed pVGRF had a statistically significant relationship with
activity monitor acceleration, centered mass, sex (girl), type of locomotion (run), and locomotion type-acceleration
interaction controlling for subject as a random effect. A generalized regression model without subject specific random
effects was also developed. The average absolute differences between the actual and predicted pVGRF were 5.2% (1.6%
standard deviation) and 9% (4.2% standard deviation) using the mixed and generalized models, respectively. The results of
this study support the use of estimating pVGRF from hip acceleration using a mixed model regression equation.
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Introduction

For many studies, quantifying the forces acting on and within

the body during daily living is of great interest. This allows further

understanding of the relationships between loading of musculo-

skeletal structures and structure development, injury, and adap-

tation (e.g. bone development and physical activity correlates [1],

post surgical weight bearing asymmetry [2]). To facilitate such

studies, simple methods are needed that can be employed outside a

laboratory setting to quantify various forces acting on and within

the human body during daily activities. Accelerometer-based

activity monitors (referred to as AMs throughout), pedometer-

sized devices worn on the hip, wrist or ankle, have been used to

quantify metabolic expenditure [3–8], but a less explored and

potentially useful application for AMs is to estimate forces acting

on the body. A few investigators explored the use of AMs to

estimate ground reaction forces and obtained results warranting

further investigation [9–11].

Knowledge of the ground reaction forces (GRFs) acting on the

foot during locomotion is essential for investigations into the

interaction between the loading of lower extremity structures

during gait and the development, injury and adaptation of these

structures. GRFs can be quantified in the laboratory using force

plates, but quantification during daily activities outside of the

laboratory is not practical using force plates. Methods to calculate

GRFs using pressure insoles have been investigated to quantify

GRFs outside of a laboratory but result in attenuated peak forces

compared to those measured with a force plate [12–13].

Additionally, data collection over multiple days outside of the

laboratory is not currently possible with pressure insoles. AMs may

provide a means to estimate peak vertical GRFs (pVGRFs) over

multiple days of daily activities. pVGRF is the component of

ground reaction forces with the largest magnitude during the

stance phase of gait. While previous reports of the link between

pVGRF and injury have been mixed [14], assessment of the

pVGRF along with the frequency of its occurrence would provide

a ‘snapshot’ of a subject’s pVGRF loading profile over a period of

time, possibly providing more insight into the interaction between

musculoskeletal structural/material changes and loading, as well

as overuse injury development.

Studies by Janz, et al. [11], Garcia, et al. [10], and Rowlands

and Stiles [15] established the correlation between average peak

ground reaction forces (GRF) during the stance phase of gait and

AM counts, but did not determine if AM data could predict GRF

during various walking and running speeds. Janz, et al. [11]
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concluded the Computer Science and Applications (CSA) AM was

useful for measuring ambulation in youth; however, they also state

that the CSA was designed for accelerations between 0.05 to 2 g.

Accelerations sustained while running have been reported as high

as 5–6 g [16]. Garcia, et al. [10] demonstrated through simple

regression a linear relationship between average vertical GRF and

Biotrainer AM activity counts. In this study however, Biotrainer

AM activity counts were determined from 10 minute epochs, and

only one walking and one jogging speed were used. Exercise bouts

of interest may last less than 10 minutes, such as high intensity,

short duration efforts, and therefore it is unclear how accurate the

approach by Garcia, et al. [10] would be for estimating average

vertical GRF during variable speed activities. Additionally, a

leveling off of AM counts with increasing running speeds that does

not occur with walking has previously been shown [9]. The

differing relationship when walking compared with running

between AM counts and speed challenges the validity of using

only one walking and one running speed. Testing at multiple

walking and running speeds as well as accounting for the differing

responses of pVGRF with increasing AM acceleration for walking

and running would better characterize the relationship between

pVGRF and AM acceleration while walking and running.

The purpose of this study was to develop a statistically based

model to estimate pVGRF from Biotrainer AM acceleration in

girls 10–12 and boys 12–14 years of age (These age ranges

represent the average age ranges during which peak height

velocity occurs for girls and boys [17–20]) for walking and running

and to evaluate the accuracy of the pVGRF estimates. The

Biotrainer AM, a pedometer-sized biaxial accelerometer, was

selected for investigation due to five distinct characteristics of this

AM compared with other commercially available AMs at the start

of this study (first monitors purchased in 2009): (1) relatively low

cost, (2) short epoch duration (15 seconds), (3) storage capacity

(five days using the shortest epoch duration), (4) capacity to

measure accelerations as high as 7 g, and (5) fastest sampling rate

(40 Hz) in a monitor that also provided output in acceleration.

The goals of the study were achieved by developing a repeated

measures mixed effects regression model that included subject

specific random effects. A more general repeated measures

regression model that did not include subject specific random

effects was also developed.

Methods

Ethics
The study was approved by the University of California, Davis

Institutional Review Board and prior to testing, written informed

parental consent and subject assent (12 years of age or older) were

obtained.

Participants
20 girls between 10 and 12 years of age and 15 boys between 12

and 14 years of age were recruited. These age ranges represent the

average age ranges during which peak height velocity occurs for

girls and boys [17–20] and are of interest for various studies being

conducted in our laboratory [21]. All testing was conducted in the

Human Performance Laboratory at UC Davis.

Description of Procedures
After informed consent and assent were obtained, the subject’s

height and mass were determined to the nearest 0.5 cm and

0.1 kg, respectively. Body mass index (BMI) was calculated for all

subjects (mass (kg) divided by height squared (m)). Centered mass

(cmass) for each subject was calculated. Cmass was defined as the

difference between the subject’s mass and a reference average

mass. The reference masses used were determined from the 50th

percentile mass for boys (45 kg) and girls (37 kg) of the study

population mean age for boys and girls based on Centers for

Disease Control clinical growth charts [22]. A boy with a cmass of

0.0 kg has a mass of 45.0 kg, for example. Similarly, a girl with a

cmass of 27.0 kg had a mass of 30 kg. Cmass created an

independent variable to be used in the regression models that

allowed both prediction for a standard reference child, typical in

mass by sex for this age group, and estimation of the modifying

effect for children of lighter or heavier mass than average.

Subjects wore a randomly assigned (assignments made prior to

the start of the study) Biotrainer AM (567.5 cm weighing 0.055 kg

with the battery, using Biotrainer Pro 6.130 software; IM Systems,

Baltimore, MD, USA) secured on their waistband over the most

lateral aspect of the iliac crest of their right hip. Ten different

monitors were used for this study. The monitor was initialized to

record 15 second epochs using a 40 Hz sampling rate and a gain

of 40. The Biotrainer AM outputs the average peak resultant

(vertical and anteroposterior axes) acceleration (g; 1 g = 9.807 m/

s2) during the specified epoch length (15 seconds for this study).

Subjects were oriented to the protocol and allowed to practice

until both the subject and investigator were confident in the

subject’s ability to successfully complete trials. Subjects completed

walking trials and running trials along a 90 m path that included a

force plate (Kistler Corporation, Model 9281B (40660 cm),

Amherst, NY, USA) about 6 m from the starting point and four

turns along two hallways. Force plate data were collected using a

custom Labview data acquisition program, sampled at 1000 Hz.

The AM and data collection computer were synchronized with an

atomic clock that was used to identify the start time of each trial.

Walking and running trials were performed in a randomly

assigned order following a standard warm-up that consisted of

three full-length practice trials. Trials were initiated on a

15 second increment in order to identify the epochs for each

trial, and lasted at least 45 seconds (minimum of three epochs per

trial). Subjects were informed of the force plate location, but

encouraged to look at a sight target located at eye level in front of

them. Locomotion speed was determined using electronic timing

gates located two meters around the force plate and synchronized

with force plate data acquisition. Speed was measured as the

subject crossed the force plate, but was not measured throughout

the trial. To help ensure a consistent speed during the trial, a

trained research assistant walked/ran along side the subject

throughout the trial. Trials in which the subject appeared to alter

their gait in any way to successfully contact the plate (defined as

full right foot contact with the plate) were not included in the

analysis.

For each trial, the average acceleration (g) of 2 epochs

(30 seconds total) and pVGRF (N) during the support phase on

the force plate were determined. Trials with an AM acceleration

difference greater than 10% between the two epochs were

assumed to be indicative of varied speed or gait during the trial

and were therefore not included in the analysis. A total of 12 trials

from each subject (6 walk, and 6 run) were used for statistical

analysis.

Statistical methods
Means and standard deviations were determined for subject

demographics and differences between sexes assessed using t-tests

with significance defined at p,0.05. Differences in pVGRF,

speed, and AM acceleration between sex and type of locomotion

(walk and run) were determined using repeated measures ANOVA

with subject as a random effect and fixed effects of sex (between-
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subject factor) and type of locomotion (walk or run, within-subjects

factor). A prediction model was developed for pVGRF using

repeated measures mixed effects regression [23]. Core hypothe-

sized predictors were sex and cmass, (between-child predictor),

and type of locomotion (walking or running), AM acceleration,

and the interaction of AM acceleration and type of locomotion

(within-child factors). We also checked to determine whether the

relationship might be confounded by height or by the specific AM

worn. Random effects allowed for between-subject differences in

overall level and in rate of increase of pVGRF with AM

acceleration and within-subject variation from an overall error

term. Significance was defined at p,0.05 (R, R Foundation for

Statistical Computing, Austria). Once non-significant confounding

effects were eliminated from the model, significance of the random

effects was determined by hierarchical fitting with and without

random effects. Significant results (p,0.05) indicated the subject-

specific slope and intercept were both needed. The model was

powered at b= 0.80 [24].

Additionally, a more generalized model was developed that did

not include subject specific random effects. The generalized model

was developed to be applicable to studies where a subject’s

random effects could not be determined. For larger, population

based studies, the ability to conduct a laboratory calibration

session for every subject may not be feasible, precluding the use of

subject-specific effects in a regression model. The fixed effects for

the generalized model included between- and within-subjects

factors that could be easily known or measured on subjects in a

larger population study: sex, mass, height (between-subjects) and

AM acceleration, type of locomotion, and an interaction between

AM acceleration and type of locomotion (within subjects). A final

model eliminated non-significant predictors.

Based on the final mixed effects and generalized regression

models, predicted pVGRFs were compared with the actual

pVGRFs for each subject. Results were summarized to assess

both the factors predicting the overall population mean pVGRFs

and the accuracy of those predictions for individual subjects,

reflected in individual variation from the means. Model assump-

tions (linearity of relationships, normality and homoscedasticity of

residuals) were checked via residual analysis (Bland-Altman plots,

Q-Q plots, and summary diagnostics) to ensure that both the

prediction equation and the single-number summaries of accuracy

of prediction gave accurate representations of the full dataset.

Results

Age, height, and mass all significantly differed between boys and

girls (Table 1). BMI and cmass did not differ significantly between

boys and girls. In general, AM acceleration increased with

increasing speed and pVGRF increased with increasing AM

acceleration. pVGRF (N) differed (p,0.05) between boys and girls

during both walking and running trials. Speed and AM

acceleration did not differ between sexes for walking (p = 0.455

and p = 0.433, respectively) or for running (p = 0.206 and

p = 0.738, respectively) (Table 2).

The distribution of residuals was initially noted to be non-

Gaussian, so natural log transformation of pVGRF was used as the

outcome in all regression models. Model diagnostics from the

transformed data showed no deviations from assumptions and no

pattern of systematic error in the residuals (Bland-Altman plot (for

the mixed effects model) showed upper and lower 95% agreement

limits of 125.43 and 2130.98 N, respectively, with a bias of

24.96 N (115.80 N standard deviation)).

In the mixed effects model (Equation 1), ln(pVGRF) was

significantly lower for girls compared to boys and higher for

running compared to walking (Table 3). Greater AM acceleration

was associated with significantly greater ln(pVGRF), although the

effects were significantly lower for running than for walking, so

that the effect was primarily for walking speeds. In addition,

greater mass was associated with significant increases in pVGRF,

but there was no significant association with height or specific AM

worn by the subject (p = 0.661 and 0.860, respectively). Between-

subject random variation in overall level and in the effects of AM

acceleration was also statistically significant (p,0.001). The 95%

confidence intervals for the variation attributable to random effects

intercept (Ai0) were 0.086 to 0.155, or about 8%–16% variation

from child to child on the original pVGRF scale, and for the slope

(Ai1) were 0.022 to 0.043, or about 2–4%. The final model is given

by Equation 1.

Yij~b0zXij1b1zXi2b2zXij3b3zXij4b4zXi5b5zAi0z

Ai1accelerationzeij

ð1Þ

where: Yij = log-transformed pVGRF (ln(N)) for subject i, trial j.

Xij1 = AM acceleration (g). Xi2 = centered mass (kg). Xij3 = type

of locomotion (walk/run, where walk = 0 and run = 1). Xij4

= AM acceleration*type of locomotion interaction (g). Xi5 = sex

(boy/girl, where boy = 0 and girl = 1). b = coefficient associated

with respective fixed effect. Ai0 = overall tendency for child i to be

different from other subjects. Ai1acceleration = differential

response to increasing acceleration for subject i. eij = error in

trial j for subject i.

A one g increase in AM acceleration was associated with a 19%

increase in pVGRF at a walking gait, holding all other factors

constant. Running gait overall was associated with over a two-fold

increase in pVGRF compared to walking, but increasing the

running AM acceleration by one g was associated with only a 7%

increase in pVGRF, which was significantly less than the effect of

increasing the walking AM acceleration. Each added kg of mass

was associated with a 1.3% increase in pVGRF. The effect of

increased mass was not found to differ at higher walking or

running speeds, or between boys and girls.

Based on the final model, predicted pVGRFs were determined

and compared with actual pVGRFs (Figure 1). For all subjects,

using the mixed effects model, the average absolute difference

between actual and predicted pVGRF (N) was 5.2% of the actual

pVGRF with 1.6% standard deviation. This suggests that the

pVGRF measurements across a range of speeds are well described

by the model, both for boys and girls and for running and walking,

provided that child-specific overall differences are incorporated

into the model.

Table 1. Subject demographics for study population.

Boys Girls

n 15 20

Age (years) 12.560.6 10.960.8 *

Height (m) 1.6560.11 1.5560.09 *

Mass (kg) 54.9611.7 45.6611.5 *

BMI (kg/m2) 20.1462.97 19.1363.40

Centered mass (kg) 8.6611.7 9.9611.5

Mean 6 one standard deviation are reported.
*Significant (p,0.05) difference between boys and girls.
doi:10.1371/journal.pone.0048182.t001
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For all subjects, as walking speed increased, pVGRF and AM

acceleration both increased. For most subjects (28 of 35), as

running speed increased, both AM acceleration and pVGRF

increased as well (representative subject shown in Figure 2, A). For

the remaining 7 subjects (mass 51.065.9 kg, height 1.5860.02 m,

cmass 21.065.9 kg), as running speed increased, pVGRF was

clustered around a small range of AM acceleration (representative

subject shown in Figure 2, B).

The generalized model (e.g. the model that did not include

random effects) assessed variation from the overall prediction and

treated child-specific variation as simply part of the unexplained

error. This model demonstrated similar relationships as found in

the mixed effects model between activity-specific predictors, mass,

and log transformed pVGRF (Equation 2 and Table 3). Sex

(p = 0.501) and height (p = 0.291) were not significant factors.

Yij~a0zXij1a1zXi2a2zXij3a3zXij4a4zeij ð2Þ

where: Yij = log-transformed pVGRF ln((N)) for subject i, trial j.

Xij1 = AM acceleration (g). Xi2 = mass (kg). Xij3 = type of

locomotion (walk/run, where walk = 0 and run = 1). Xij4 = AM

acceleration*type of locomotion interaction (g). a = coefficient

associated with respective fixed effect. eij = error in trial j for

subject i.

Predictions based on the generalized model (Equation 2) with

no subject specific random effects resulted in larger percent

differences between the actual and predicted pVGRF compared to

the mixed effects model (Figure 2). The average absolute

difference between the actual and predicted pVGRF using the

generalized model was 9% for all subjects (4.2% standard

deviation). The doubling of the error in prediction reflects the

fact that the generalized model does not incorporate the

important, significant differences that exist between children and

that are not explained by measured characteristics such as sex,

height, or mass.

Discussion

A statistically based model was developed to predict pVGRF

from Biotrainer AM acceleration for girls 10 to 12 and boys 12 to

14 years of age for walking and running. While numerous studies

have demonstrated the use of AMs to estimate metabolic

expenditure [25–26], few to date investigated the use of AMs to

predict ground reaction forces [9–11]. AMs provide a potential

portable means to assess skeletal impact loads during daily living

activities over the course of multiple days [15], something that

cannot be done in lab-based studies. However, to use AMs for this

purpose, appropriate algorithms must be developed to convert AM

measures into measures of ground reaction forces and/or

musculoskeletal loading. The goal of this study was to develop

such an algorithm to scale the output data of a Biotrainer AM to

pVGRF for walking and running youth.

Logarithmically transformed pVGRF was well predicted using a

mixed effects model to account for the repeated measures from

each subject. In this study, pVGRF had a positive, increasing

relationship with AM acceleration, similar to previously reported

results [10–11]. Body mass was a significant predictor of pVGRF,

consistent with body weight as a predictor as reported by Janz,

et al. [11]. The average mass for boys and girls in the study was

larger than the CDC reported averages as evidenced by the

positive centered masses. The 50th percentile mass for boys and

Table 2. Summary of walking and running trials.

Walking Trials: Average (Range) Running Trials: Average (Range)

Boys Girls Boys Girls

Speed (m/s) 1.55 (0.90–2.26) 1.59 (0.82–2.29) 2.83 (2.57–3.88) 2.98 (2.17–3.83)

AM Acceleration (g) 1.69 (0.45–3.45) 1.60 (0.50–3.70) 4.58 (2.75–6.05) 4.48 (2.00–6.30)

pVGRF (N) 713.6 (419.0–1185.3) 608.2 * (336.7–1288.9) 1301.1 (804.3–1929.5) 1110.2 * (712.3–1987.2)

Average speed, AM acceleration, and pVGRF for boys and girls in both walking and running trials. Average for all subjects are reported and the range of values in
parentheses. Standard deviations are not reported due to the repeated measures for each subject.
*Significant (p,0.05) difference between boys and girls.
doi:10.1371/journal.pone.0048182.t002

Table 3. Coefficients for the mixed and generalized model.

Mixed Effects Model (Equation 1) Generalized Model (Equation 2)

b SE a SE

Intercept 6.0311 0.035 5.3871 0.032

AM acceleration (g) 0.2101 0.011 0.1591 0.013

Centered mass (kg) 0.0161 0.001 – –

Mass (kg) – – 0.0161 0.001

Type of locomotion (walk/run where walk = 0 and run = 1) 0.6471 0.049 0.7991 0.046

AM acceleration*run interaction 20.1411 0.014 20.1421 0.016

Sex (boy/girl, where boy = 0 and girl = 1) 20.1381 0.033 – –

b and a coefficients (Equation 1 and Equation 2, respectively) along with their standard errors (SE) are reported.
1p,0.001.
doi:10.1371/journal.pone.0048182.t003
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girls of the mean age of the study population is a population

average and therefore some deviation from this can be expected.

Girls in this study were approximately 82nd percentile for mass and

greater than the 95th percentile for height and boys were

approximately 85th percentile for mass and 95th percentile for

height. Sex, though not considered in previous studies, was a

significant predictor when subject specific random effects were

included (Equation 1), with girls having a lower slope than boys.

The specific monitor worn did not lead to differing results.

The theoretical basis that motivated this investigation, to

develop a model to estimate peak ground reaction force from

hip acceleration, is the fundamental equations of motion that

describe gait. Solving the equations of motion for ground reaction

force reveals that GRF is a function of subject mass, moments

about the ankle, knee, and hip, inertial moments about the ankle,

knee, and hip, segmental masses and accelerations of the foot,

shank, and thigh. For a given subject, several variables in this

relationship would remain constant such as subject mass, segment

moments of inertia, and segment center of mass locations. Other

quantities are directly related to locomotion speed, such as

segment linear and angular accelerations. Thus, it is reasonable to

assume that GRF for specific types of movement could be

predicted from hip acceleration data. Additional variables could

be included in the regression model to improve the prediction of

pVGRF, such as locomotion speed, subject specific estimates of

limb mass, angular velocities, or moments about joint centers. For

the purposes of this model, we did not include locomotion speed

because it would not be easily determined outside of a laboratory.

Previous studies have reported the relationship between speed and

ground reaction force [27–28]. Given the small error in predicted

versus actual pVGRF using the models develop here, addition of

these variables would likely not greatly improve the predictive

capabilities of the model during steady state efforts.

Previous studies investigated the use of AMs to predict ground

reaction force, but with a minimal range of walking and running

speeds. Studies by Garcia, et al. and Janz, et al. [10–11] based

their regressions on one walking and one running speed, and two

walking and one running speeds, respectively. Limited locomotion

speeds allow for minimal determination of the relationship of the

AM acceleration with ground reaction force and assume linearity

with a constant slope across the entire range including both

walking and running. Differences for walking and running in the

Figure 1. Comparison of actual pVGRF and predicted pVGRF. Panel A uses the mixed effects model (Equation 1) and Panel B uses the
generalized model (Equation 2). The linearity of the relationship using both the mixed effects (r2 = 0.967, p,0.001) and the generalized model
(r2 = 0.877, p,0.001) illustrates the predictive ability of the models.
doi:10.1371/journal.pone.0048182.g001

Figure 2. Predicted and actual pVGRF for two representative
subjects. Child specific prediction (includes child specific random
effects; using mixed effects model (Equation 1)), generalized prediction
(no random effects; Equation 2), and actual pVGRF for walking and
running are shown. Panel A illustrates a subject with increasing pVGRF
as AM acceleration increases (running speeds ranged from 2.56–3.35 m/
s for this subject) while Panel B illustrates a subject with a more
clustered pVGRF around a similar AM acceleration for the range of
running speeds used (running speeds ranged from 2.55–3.66 m/s for
this subject).
doi:10.1371/journal.pone.0048182.g002
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relationship between AM counts and ambulation speed (activity

counts are a device specific arbitrary unit that relate the frequency

of accelerations incurred during the specific epoch duration) [9]

has been previously reported. The study presented here utilized six

different walking speeds and six different running speeds to allow

separate estimation of the relationship between AM acceleration

and vertical ground reaction force for running and walking gaits.

Analyses demonstrated a difference between slopes for running

and walking. Increased AM acceleration was associated with

higher pVGRF as walking gait varied. For running gait, as AM

acceleration increased, pVGRF had a lower slope than in walking

gait. The differing relationship between AM acceleration and

pVGRF during walking and running gaits confirm the inadequacy

of a combined linear regression model that does not include

sufficient data to account for differences in slopes for walking and

running.

This study not only provided a good predictive model for

pVGRF, but also characterized variations between subjects.

Subjects differed not only in the magnitude of their overall

pVGRF, but also in the amount pVGRF changed as gait speed

increased. For walking, all subjects showed an increase in pVGRF

with higher AM acceleration, with most differences between

predicted and actual pVGRF within 11% of the fitted mean. The

individual differences in slope were more striking in the running

trials. For some subjects (7 of 35), as running speed increased, AM

intensity did not increase for the range of speeds tested, resulting in

a clustered pVGRF pattern. These results are similar to previously

reported leveling off of AM counts (study conducted using CSA

AM) at higher running speeds (running speeds used ranged from

2.2 m/s to 5.5 m/s) [9]. While the speeds used by Brage, et al.

were faster than currently used, the AM counts started leveling off

at approximately 2.8 m/s which is within the range of speeds

currently used (2.3–3.8 m/s). For the seven subjects for whom the

clustering pVGRF was observed, no remarkable differences in

their speeds were observed relative to the other 28 subjects. This

lack of variation in AM acceleration as running speed increased

could be due to the age of the subjects and their still developing

motor patterns or a normal variation in gait mechanics. Brage,

et al. [9] concluded this observation was due to the relatively

constant vertical accelerations that occur during running. Further

investigation of the kinematics and kinetics may help explain the

similar AM accelerations for the running speeds tested in some

subjects.

While the study provided insight into the magnitude of between-

child variation (random effects confidence intervals), neither the

source nor the clinical significance of these differences is currently

known. Within-child variation was small, suggesting that some

consistent features either of the child’s physical make-up or

performance are likely to account for differences in musculoskel-

etal loading during exercise. Furthermore, the differences in

musculoskeletal loading may have clinical significance, such as

increased injury risk, that has yet to be explored. The results of this

study in combination with future specific injury risk investigations

could further clarify the significance of the between-child

variations observed.

This model provides practical information for two different

areas of application. For larger, population based studies, the

ability to conduct a laboratory calibration session for every subject

may not be feasible, precluding the use of subject-specific

calibrated estimates. The generalized model provides an overall

prediction of mean pVGRF trajectories for walking and running

gaits, calibrated for subject mass. An extension of the model,

making use of the random effects estimates, provides an estimate of

the likely range of pVGRF for individual subjects. While the

average absolute difference in predicted pVGRF compared with

actual pVGRF was 9% for the generalized model, five subjects

had larger errors in predicted pVGRF (17.5% average absolute

difference). Of possible interest is that four of the five subjects with

the larger errors in predicted pVGRF had clustered running

pVGRFs. As previously mentioned, the clinical significance of

these individual differences is not known. A 17.5% error in

prediction may represent a clinically significant difference in the

skeletal loading for a particular subject whereas for another subject

the larger percent differences may have no implications. Further

investigation into the sources and the implications of the individual

variations would clarify the acceptable differences in predicting

pVGRF. A strength of the mixed models is the quantification of

between- and within-individual variation, which provides key

information for design of future studies to try to understand the

reasons for this variation.

Limitations
While this study provides insight to the use of the AM to

estimate pVGRF, several limitations must be appreciated. First, as

previously demonstrated by other authors, jumping activities are

not accurately represented by the AM. If loads sustained during an

activity that combines walking, running, and jumping, such as a

basketball game, are of interest, further investigation of the effects

of these variable activities on AM acceleration should be

investigated. Secondly, although the shortest available time epochs

were used in this study (15 seconds) youth can change their activity

acceleration in seconds. The results from this study are specific to

steady state efforts. If a subject were to run fast for 5 seconds, run

slow for 5 seconds, and rest for 5 seconds, the average AM

acceleration for that 15 seconds of activity would not be

representative of the three activity levels that actually occurred

within the epoch. While the average acceleration of the 15 second

epoch may be of interest, if the specific loading incurred during the

5 seconds of sprinting is of interest, researchers should choose a

monitor that outputs raw data or smaller epoch durations. With

the recent introduction of monitors that have shorter than

15 second epochs as well as those that output raw acceleration

data, this limitation may be eliminated in the near future. Ground

reaction force was determined once during each 30 second trial.

While more contacts with the force plate would be ideal to provide

an average pVGRF, the AM provided an estimate of the

consistency of effort during the trial. AM epochs that differed by

greater than 10% were not included in the analysis. Future work

that combines varying walking and running speeds using a force

plate instrumented treadmill would provide for further confirma-

tion of the pVGRFs throughout the duration of the trial. Thirdly,

only pVGRF was investigated in this study to demonstrate proof-

of-concept, but current methods could be extended to include the

resultant GRFs or other force components. Lastly, testing of

additional subjects across a wider age range would allow for a

more general youth model to be developed.

Summary
A mixed effects repeated measures regression model to predict

pVGRF from Biotrainer AM acceleration was developed for girls

10 to 12 and boys 12 to 14 years of age for walking and running.

pVGRF can be estimated using a model that includes the fixed

effects of AM acceleration, centered mass, type of gait, and sex,

and random effects of subject specific responses to increasing AM

acceleration. For some subjects, pVGRF minimally increased as

running speed increased. A generalized model was also developed

that is applicable to larger, population based studies where lab

testing to determine subject specific effects is not feasible.
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