
Bindarit Inhibits Human Coronary Artery Smooth Muscle
Cell Proliferation, Migration and Phenotypic Switching
Marcella Maddaluno1., Gianluca Grassia1., Maria Vittoria Di Lauro1, Antonio Parisi1, Francesco Maione1,

Carla Cicala1, Daniele De Filippis1, Teresa Iuvone1, Angelo Guglielmotti2, Pasquale Maffia1,3,

Nicola Mascolo1*, Armando Ialenti1*

1 Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy, 2 Angelini, ACRAF, S.Palomba-Pomezia, Rome, Italy, 3 Institute of Infection,

Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom

Abstract

Bindarit, a selective inhibitor of monocyte chemotactic proteins (MCPs) synthesis, reduces neointimal formation in animal
models of vascular injury and recently has been shown to inhibit in-stent late loss in a placebo-controlled phase II clinical
trial. However, the mechanisms underlying the efficacy of bindarit in controlling neointimal formation/restenosis have not
been fully elucidated. Therefore, we investigated the effect of bindarit on human coronary smooth muscle cells activation,
drawing attention to the phenotypic modulation process, focusing on contractile proteins expression as well as proliferation
and migration. The expression of contractile proteins was evaluated by western blot analysis on cultured human coronary
smooth muscle cells stimulated with TNF-a (30 ng/mL) or fetal bovine serum (5%). Bindarit (100–300 mM) reduced the
embryonic form of smooth muscle myosin heavy chain while increased smooth muscle a-actin and calponin in both TNF-a-
and fetal bovine serum-stimulated cells. These effects were associated with the inhibition of human coronary smooth
muscle cell proliferation/migration and both MCP-1 and MCP-3 production. The effect of bindarit on smooth muscle cells
phenotypic switching was confirmed in vivo in the rat balloon angioplasty model. Bindarit (200 mg/Kg/day) significantly
reduced the expression of the embryonic form of smooth muscle myosin heavy chain, and increased smooth muscle a-actin
and calponin in the rat carodid arteries subjected to endothelial denudation. Our results demonstrate that bindarit induces
the differentiated state of human coronary smooth muscle cells, suggesting a novel underlying mechanisms by which this
drug inhibits neointimal formation.
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Introduction

Vascular smooth muscle cell (VSMC) proliferation and migra-

tion are key events in intimal hyperplasia occurring in vascular

restenosis [1]. After vascular injury, VSMCs exhibit marked

differences in morphology, migration, and proliferation rate

compared with normal medial cells. Additionally, the highly

proliferative VSMCs undergo a shift from a differentiated

(contractile) to a dedifferentiated (synthetic, noncontractile) state.

This process, called phenotypic modulation, is characterized by

the loss of expression of the VSMC-specific genes, such as smooth

muscle a-actin (a-SMA) and calponin, as well as a selective

upregulation of the embryonic form of smooth muscle myosin

heavy chain (SMemb) [2,3]. The phenotypic switching is

accompanied by increased expression of extracellular matrix

proteins, cytokines and chemokines [2,4,5].

The pro-inflammatory CC chemokine, monocyte chemoattrac-

tant protein 1 (MCP-1)/CCL2, plays a pivotal role in intimal

hyperplasia via macrophages recruitment and VSMC activation

[5,6]. It has been demonstrated that MCP-1 induces human

VSMC proliferation [7], migration [8], and regulates the

functional switch of these cells from the contractile to the synthetic

phenotype [9].

Bindarit is an anti-inflammatory agent that inhibits MCP-1/

CCL2, MCP-3/CCL7 and MCP-2/CCL8 synthesis [10], acting

through the down-regulation of NF-kB pathway [11], that shows

potent anti-inflammatory activity in animal models of both acute

and chronic inflammation [12–15]. We have previously demon-

strated that oral administration of bindarit inhibits neointimal

formation in rodent models of vascular injury by reducing both

VSMC proliferation/migration and neointimal macrophage

content, effects associated with the inhibition of MCP-1/CCL2

production [16]. Recently, we also demonstrated the efficacy of

bindarit on in-stent stenosis in the preclinical porcine coronary

stent model [17]. Importantly, a double-blind, randomized,

placebo-controlled phase II clinical trial, with the aim of

investigating the effect of bindarit in human coronary restenosis,

showed that bindarit induced a significant reduction of in-stent late
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loss [18]. However, the mechanisms underlying the efficacy of

bindarit in controlling neointimal formation/restenosis have not

been fully elucidated. Therefore, we investigated the effect of

bindarit on human coronary VSMC activation, drawing attention

to the phenotypic modulation process, focusing on contractile

proteins expression as well as proliferation and migration. In

addition, we also investigated the effect of bindarit in vivo on

phenotypic modulation of VSMCs in rat carotid arteries subjected

to vascular injury.

Methods

Treatments
Bindarit, 2-methyl-2-[[1-(phenylmethyl)-1H-indazol-3-yl]-

methoxy] propanoic acid (MW 324.38) was synthesised by

Angelini (Angelini Research Center - ACRAF, Italy). Pharmaco-

kinetic studies in rodents show that bindarit is well absorbed when

administered by oral route and it has a mean half-life of about 9 h

(Product data sheet, Angelini Research Center).

Animals were treated with bindarit, suspended in 0.5%

methylcellulose aqueous solution, at the dose of 100 mg/Kg given

orally, by gastric gavage, twice a day [16]. Rats were treated with

bindarit from 2 days before angioplasty up to 28 days after. In

each experiment control animals received an equal volume of

methylcellulose (0.5 mL/100 g). The concentrations of bindarit

used for in vitro experiments have previously been found to be

effective in inhibiting MCP-1 production in rat VSMCs as well as

cell proliferation and migration [16].

Figure 1. Effect of bindarit on contractile proteins expression in CASMCs. Representative Western blots and relative densitometric analysis
showing the effects of bindarit (100 and 300 mM) on contractile proteins expression levels modulated by (A) TNF-a (30 ng/mL) or (B) FBS (5%). Results
are expressed as mean 6 SEM of three separate experiments run in triplicate. uuP,0.01 vs unstimulated cells; *P,0.05, **P,0.01 vs untreated cells.
doi:10.1371/journal.pone.0047464.g001

Bindarit Inhibits VSMC Phenotipic Switching

PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e47464



Cell Culture
Human coronary artery smooth muscle cells (CASMCs) were

purchased from Lonza (lot numb: 6F4008 and 16737) [19],

grown in Smooth Muscle Basal Medium (SmBM; Lonza)

supplemented with 0.5 mg/mL hEGF, 5 mg/mL insulin,

1 mg/mL hFGF, 50 mg/mL gentamicin/amphotericin-B, 5%

fetal bovine serum (FBS, Lonza) and used between passages 3–8

for all experiments. Before initiation of the assays, to achieve

cell quiescence, CASMCs in exponential growth were switched

into SmBM supplemented with 0.1% FBS in the absence of

growth factors for 48 hours.

Total Cellular Extracts
CASMCs were cultured in 24 multi-well plates until 90%

confluence; after the induction of quiescence, cells were

stimulated with tumor necrosis factor-a (TNF-a, 30 ng/mL) or

FBS (5%) in presence or absence of bindarit (100–300 mM).

After 48 hours cells were washed two times with ice cold PBS

and 30 mL/well of lysis buffer (50 mM Tris-HCl, 1% Triton,

1 mM Na3VO4, 1 mM EDTA, 0.2 mM PMSF, 25 mg/mL

Leupeptin, 10 mg/mL Aprotinin, 10 mM NaF, 150 mM NaCl,

10 mM b-glycerophosphate, 5 mM pyrophosphate, H2O) were

added. Protein concentration was determined by the Bio-Rad

protein assay kit (Bio-Rad).

Western Blot Analysis on CASMCs
CASMCs lysates (20 mg) were separated by Sodium Dodecyl

Sulphate - PolyAcrylamide Gel Electrophoresis (SDS-PAGE),

transferred onto nitrocellulose membranes (Millipore) and probed

with a primary antibody against human a-SMA (1:5000, Sigma-

Aldrich), calponin (1:5000, Sigma-Aldrich) or MYH9/10

(SMemb, 1:2000, Santa Cruz). The membranes were washed

three times with 0.5% Triton in PBS and incubated with anti-

mouse immunoglobulins coupled to peroxidase (1:1000; DAKO).

The immunocomplexes were visualised by the enhanced chemi-

luminescence (ECL) method, results were analyzed by ImageJ

densitometry software and normalized to b-actin.

Figure 2. Effect of bindarit on morphological changes induced by FBS in CASMCs. Phase-contrast photomicrographs of CASMCs cultured
in medium with 5% FBS for 48 hours with or without bindarit (300 mM).
doi:10.1371/journal.pone.0047464.g002
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Evaluation of CASMC Morphological Changes
CASMCs were used after the induction of quiescence in 48-well

plastic culture plates at the density of 16104 cells/well. Cells were

stimulated with FBS (5%) in presence or absence of bindarit

(300 mM). After 48 hours cells were photographed at a magnifi-

cation of6200 and the images were stored in the image analysis

system (LAS, Leica).

Cell Proliferation Study
The cell proliferation assay was carried out using the MTT

method. CASMCs were plated on 24-well plastic culture plates at

the density of 1.56104 cells/well. After the induction of

quiescence, cells were stimulated with TNF-a (30 ng/mL,

Provitro) or FBS (5%) for 48 hours in the presence or absence of

bindarit (10–300 mM). 0.5 mg/ml of MTT in Phosphate Buffered

Saline (PBS) were added and, after 3 hours, a solution containing

50% N,N9-dirnethylformamide and 20% SDS (pH 4.8) was used

for the solubilisation of the formazan dye. Absorbance values at

570 nm were determined the next day with an Enzyme-linked

immunosorbent assay (ELISA) assay reader (Bio-Rad), using

630 nm as the reference wavelength.

CASMC proliferation was also evaluated as cell duplication by

directly counting the cell number. Briefly, 16104 cells were seeded

onto 24-well plastic culture plates and allowed to adhere

overnight. After the induction of quiescence, the cells were

stimulated with TNF-a (30 ng/mL) or FBS (5%) in presence or

absence of bindarit (10–300 mM). After 72 hours, medium was

removed, cells were fixed with methanol and stained with 49,6-

diamidino-2-phenylindole (DAPI). Proliferation was evaluated as

cell duplication by counting the number of cells in 8 random fields

of each well at6100 magnification.

Chemotactic Migration and Invasion
CASMC migration was evaluated using a modified Boyden

chamber (Corning 24 mm Transwell with 8.0 mm pore polycar-

bonate membrane insert) coated with rat-tail collagen I (Sigma-

Aldrich). Biocoat Matrigel invasion chambers (with 8.0 mm pore)

were used according to the manufacturer’s instructions for

invasion studies (Becton-Dickinson). Briefly, starved CASMCs

were trypsinized and pre-treated or not with bindarit (10–300 mM)

for 2 hours. Three6104 cells were plated in the upper chamber in

500 mL of 0.1% FBS medium with or without bindarit. The lower

chamber was filled with 600 mL of 0.1% FBS medium in the

absence (unstimulated cells) or presence of TNF-a (30 ng/mL).

After 24 hours the migrated cells were fixed and stained with

haematoxylin. Cell migration was quantified by counting the

number of cells (magnification6200) per insert.

Gelatin Zymography
CASMCs were cultured in 96-well culture plates in 10% FBS

medium until 90% confluence. After the induction of quiescence,

cells were stimulated with TNF-a (30 ng/mL) in the presence or

absence of bindarit (300 mM). After 24 hours the media were

collected, clarified by centrifugation and subjected to electropho-

resis in 8% SDS-PAGE containing 1 mg/mL gelatin. After

electrophoresis the gels were re-natured by washing with 2.5%

Triton X-100, to remove SDS, and by incubation for 24 h at 37uC
in 50 mM Tris buffer containing 200 mM NaCl and 20 mM

CaCl2, pH 7.4. The gels were stained with 0.5% Coomassie

brilliant blue R-250 (Sigma) in 10% acetic acid and 45% methanol

and destained with 10% acetic acid and 45% methanol. Bands of

gelatinase activity appeared as transparent areas against a blue

Figure 3. Effect of bindarit on CASMC proliferation, migration and invasion. CASMC proliferation assessed by MTT assay (A) and by cell
counting expressed as number of cells per field (B). Effect of bindarit on CASMC migration (C) and invasion (D). Results are expressed as mean 6 SEM
of three separate experiments run in triplicate. 66P,0.01, 666P,0.001 vs unstimulated cells; **P,0.01 vs TNF-a-stimulated cells; #P,0.05,
###P,0.001 vs FBS-stimulated cells.
doi:10.1371/journal.pone.0047464.g003
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background. Gelatinase activity was then evaluated by quantitative

densitometry.

Enzyme-linked Immunosorbent Assay (ELISA)
CASMCs were used after the induction of quiescence in 48-well

plastic culture plates at the density of 16104 cells/well. Cells were

stimulated with TNF-a (30 ng/mL) in presence or absence of

bindarit (10–300 mM). After 6, 12, 24 and 48 hours media were

collected, centrifuged at 20006g for 10 min at 4uC and

supernatants were immediately frozen at 280uC until used for

MCP-1 (OptEIA, BD) or MCP-3 (Quantikine Human CCL7/

MCP-3 Immunoassay, R&D Systems) measurement by ELISA.

Animals
Male Wistar rats (Harlan Laboratories) weighing 200–300 g

were used for the present study. Animals were maintained on a

12/12 h light/dark cycle with free access to food and water at

the Department of Experimental Pharmacology, University of

Naples Federico II (Permit Number: 064F). All procedures were

performed according to Italian ministerial authorization (DL

116/92) and European regulations on the protection of animals

used for experimental and other scientific purposes.

Rat Carotid Balloon Angioplasty
Rats were anaesthetized with an intraperitoneal injection of

ketamine (100 mg/Kg) (Gellini International) and xylazine (5 mg/

Kg) (Sigma). Endothelial denudation of the left carotid artery was

performed by using a balloon embolectomy catheter (2F, Fogarty,

Edwards Lifesciences) according to the procedure well validated in

our laboratories [20]. Rats were euthanized 7, 14 and 28 days after

angioplasty. Carotid arteries were collected and processed as

described below.

Morphometric Analysis
Carotid arteries from rats were fixed by perfusion with

phosphate-buffered saline (PBS; pH 7.2) followed by PBS

containing 4% formaldehyde through a cannula placed in the

left ventricle. Paraffin-embedded sections were cut (6 mm thick)

from the approximate middle portion of the artery and stained

with haematoxylin and eosin to demarcate cell types. Ten

Figure 4. Effect of bindarit on matrix metalloproteinase-2 and matrix metalloproteinase 9 activity. Representative gel zymography of
conditioned medium from TNF-a (30 ng/mL)-stimulated CASMCs and relative densitometric analysis showing the effect of bindarit (300 mM) on MMP-
9 activated form and both MMP-2 latent (white columns) and activated (black columns) forms. Results are expressed as mean 6 SEM of 3
experiments. uuP,0.01 vs unstimulated cells; uP,0.05 vs TNF-a-stimulated cells.
doi:10.1371/journal.pone.0047464.g004
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sections from each carotid artery were reviewed and scored

under blind conditions. The cross-sectional areas of media and

neointima were determined by a computerized analysis system

(LAS, Leica). The neointimal and medial areas were computed

as follows: neointimal area = internal elastic lamina (IEL) minus

lumen area; medial area = external elastic lamina area minus

IEL area.

Total Extracts from Rat Carotid Arteries
Total extracts were prepared from liquid nitrogen frozen

pooled carotid arteries (n = 2), crushed into powder, in a mortar

with a pestle,and resuspended in 150 ml of lysis buffer (20 mM

HEPES, 0.4 mM NaCl, 1.5 mM MgCl2, 1 mM EGTA, 1 mM

EDTA, 1% Triton X-100, and 20% glycerol) containing

protease inhibitors (1 mM DTT, 0.5 mM PMSF, 15 mg/mL

Try-inhibitor, 3 mg/mL pepstatin-A, 2 mg/mL leupeptin, and

40 mM benzamidine) [20,21]. After centrifugation at 130006g

at 4uC for 30 min, supernatants were collected and stored at

280uC until the assays. Protein concentration was determined

by the Bio-Rad protein assay kit (Bio-Rad). MCP-1 levels were

quantified by ELISA as described in Supplementary methods in

Methods S1.

Western Blot Analysis on Rat Carotid Arteries
The levels of Proliferating Cell Nuclear Antigen (PCNA), a-

SMA, calponin and SMemb were evaluated in total extracts from

rat carotid arteries prepared, separated by SDS-PAGE and

transferred to nitrocellulose membranes as described above. After

incubation with a primary antibody against PCNA (1:2000,

Sigma-Aldrich), a-SMA (1:5000), calponin (1:3000) or SMemb

(1:2000), the membranes were washed and incubated with anti-

mouse immunoglobulins coupled to peroxidase (1:2000). The

immunocomplexes were visualised by the ECL chemilumines-

cence method and results were normalized to glyceraldehyde-3-

phosphate dehydrogenase (GAPDH).

Immunohistochemistry
Paraffin sections (6 mm) from rat carotid arteries (7, 14 and 28

days after angioplasty, or naı̈ve animals) were deparaffinised and

endogenous peroxidase activity was blocked by incubating with

0.3% H2O2 following antigenic recovery. The sections were

incubated with the primary antibody against a-SMA (1:100),

calponin (1:50) or SMemb (1:200) diluted in blocking buffer/0.3%

Triton X-100 (MP Biomedicals) in PBS overnight before being

washed in TNT wash buffer (Tris–HCl, pH 7.5, 0.15 M NaCl,

and 0.05% Tween 20; Sigma). Sections incubated with isotype

matched antibodies were used as negative controls. Subsequently,

sections were incubated with biotinylated anti-mouse (1:500,

DakoCytomation) diluted in blocking buffer 0.3% Triton X-100,

washed in TNT wash buffer, treated with horseradish peroxidise

labelled streptavidin, and exposed to diaminobenzidine chromo-

gen with haematoxylin counterstain. The sections were photo-

graphed and the images were stored in the image analysis system

(LAS, Leica).

Statistical Analysis
Results are expressed as mean 6 SEM of n animals for in vivo

experiments and mean 6 SEM of multiple experiments for in vitro

assays. The Student t test was used to compare 2 groups or

ANOVA (2-tailed probability value) was used with the Dunnett

post hoc test for multiple groups using GraphPad Instat 3 software

(San Diego, CA). The level of statistical significance was 0.05 per

test.

Results

Effect of Bindarit on Contractile Proteins Expression in
CASMCs

CASMCs were stimulated with TNF-a (30 ng/mL) or FBS (5%)

for 48 hours and the lysates from these cells were subjected to

Western blot analysis. As shown in Figure 1, bindarit significantly

reduced the expression of SMemb in both TNF-a-stimulated cells

(by 29% P,0.05 and 53% P,0.01, at 100 and 300 mM

respectively) and FBS-stimulated cells (by 20% P,0.01 at

300 mM). The differentiated state of CASMCs induced by bindarit

was also confirmed by the significant increased expression of a-

SMA in both TNF-a-stimulated cells (by 87% P,0.05 and 132%

P,0.01, at 100 and 300 mM respectively) and FBS-stimulated cells

(by 69% P,0.01 at 300 mM). Treatment with bindarit at 300 mM

Table 1. Effect of bindarit on MCP-1 production by TNF-a- or
FBS-stimulated CASMCs.

MCP-1 (ng/mL)

6 h 12 h 24 h

unstimulated cells 0.160.01 0.460.04 2.160.02

bindarit 300 mM 0.160.01 0.460.02 2.060.03

TNF-a 30 ng/ml 1.660.07uu 3.061.09uu 13.160.12uu

+ bindarit 10 mM 1.560.01 2.460.04** 11.560.15**

+ bindarit 30 mM 1.460.01* 2.160.02** 10.860.10**

+ bindarit 100 mM 1.360.02** 1.860.05** 10.360.29**

+ bindarit 300 mM 1.160.06** 1.560.05** 8.060.05**

FBS 5% 1.560.22 5.560.26+++ 23.561.89+++

+ bindarit 10 mM 1.560.29 4.760.61 22.561.56

+ bindarit 30 mM 1.460.64 3.460.75 15.862.18#

+ bindarit 100 mM 1.360.74 2.660.55## 10.560.87###

+ bindarit 300 mM 1.060.34 2.560.30## 8.861.32###

Results are expressed as mean 6 SEM of three separate experiments run in
triplicate.
uuP,0.01, +++P,0.001 vs unstimulated cells; *P,0.05, **P,0.01 vs TNF-a-
stimulated cells; #P,0.05, ##P,0.01, ###P,0.001 vs FBS-stimulated cells.
doi:10.1371/journal.pone.0047464.t001

Table 2. Effect of bindarit on MCP-3 production by TNF-a-
stimulated CASMCs.

MCP-3 (pg/mL)

6 h 12 h 24 h

unstimulated cells 70.068.00 164.3640.31 211.3644.49

bindarit 300 mM 90.369.40 178.3653.35 210.3652.61

TNF-a 30 ng/ml 116.9625.71 501.0678.48uu 714.3687.83uuu

+ bindarit 10 mM 113.3616.13 428.0646.46 671.3699.47

+ bindarit 30 mM 114.7618.17 438.0669.79 477.7634.80

+ bindarit 100 mM 110.0620.30 286.0649.00 440.3631.84

+ bindarit 300 mM 104.3621.53 164.7610.81* 151.366.36***

Results are expressed as mean 6 SEM of three separate experiments run in
triplicate.
uuP,0.01, uuuP,0.001 vs unstimulated cells; *P,0.05, **P,0.01, ***P,0.001 vs
TNF-a-stimulated cells.
doi:10.1371/journal.pone.0047464.t002
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also significantly increased calponin expression when compared

with both TNF-a-stimulated cells by 172% (P,0.05) and FBS-

stimulated cells by 100% (P,0.01).

Effect of Bindarit on Morphological Changes Induced by
FBS in CASMCs

In addition to VSMC-specific protein expression we examined

VSMC morphology. After 48 hours of stimulation with FBS (5%)

the CASMCs were characterized by a flattened morphology as

result of the dedifferentiation to a synthetic phenotype (Figure 2).

Bindarit (300 mM) induced an elongated spindle-shaped pheno-

type, typical of a differentiated state (Figure 2).

Effect of Bindarit on CASMC Proliferation
VSMCs plasticity exhibited in response to vascular injury, is

characterized by both loss of VSMC-specific proteins expression

and the increase in the proliferation.

As shown in Figure 3A, bindarit at 10, 30, 100, and 300 mM

significantly (P,0.01) inhibited TNF-a (30 ng/mL)-induced

CASMC proliferation by 24%, 39%, 52% and 54%, respectively.

Similar inhibitory effects of bindarit were observed in FBS (5%)-

stimulated CASMCs (Figure 3A).

We also evaluated CASMC proliferation by directly counting

the cells (Figure 3B). Bindarit, which was ineffective at 10 mM,

significantly (P,0.01) inhibited the TNF-a-induced CASMC

number increase by 24%, 32% and 40%, at 30, 100, and

300 mM respectively. Similar inhibitory effects of bindarit were

observed when FBS was used as stimulant (Figure 3B). Bindarit

alone (300 mM) had no effect on cell proliferation/viability

(Figure 3A and 3B).

Effect of Bindarit on CASMC Migration and Invasion
The higher proliferation rate of dedifferentiated VSMCs is

accompanied by increased mitogen-mediated migration. There-

fore, we evaluated the effect of bindarit (10–300 mM) on TNF-a-

induced VSMC chemotaxis. Bindarit significantly (P,0.01)

inhibited chemotactic migration at 100 and 300 mM by 30%

and 55%, respectively (Figure 3C). Moreover, bindarit (300 mM)

significantly (P,0.01) reduced CASMC invasion by 50% through

the Matrigel barrier which mimics extracellular matrix (Figure 3D).

Bindarit alone (300 mM) had no effect on both migration and

invasion (data not shown).

Effect of Bindarit on Matrix Metalloproteinase-2 and
Matrix Metalloproteinase 9 Activity

Subconfluent cultures of CASMCs were exposed to TNF-a
(30 ng/mL) for 24 hours in the presence or absence of bindarit

(300 mM) to assess gelatinase production. Gelatin zymography of

control supernatants showed the constitutive release of the latent

form of matrix metalloproteinase 2 (MMP-2), visualized as a bands

at 72 kDa and 68 kDa. Neither the stimulation with TNF-a, nor

the treatment with bindarit significantly modified the release of the

active form (62 kDa) (Figure 4). The stimulation with TNF-a
significantly (P,0.01) induced the release of MMP-9 (92 kDa)

which was significantly (P,0.05) inhibited by bindarit (Figure 4).

Effect of Bindarit on MCP-1 and MCP-3 Production
The effect of bindarit on MCP-1 and MCP-3 production by

CASMCs was determined by ELISA. As shown in table 1,

stimulation of CASMCs with TNF-a (30 ng/mL) or FBS (5%)

caused a time-dependent increase of MCP-1 levels compared with

unstimulated cells. Bindarit (10–300 mM) caused a significant

concentration-related inhibition of MCP-1 production. As shown

in table 2, bindarit (30–300 mM) significantly reduced MCP-3

production in TNF-a (30 ng/mL) stimulated CASMCs. FBS (5%)

had no effect on MCP-3 production (data not shown). Bindarit

alone (300 mM) did not significantly affect basal MCP-1 or MCP-3

levels (table 1 and 2).

Effect of Bindarit on Neointimal Formation in Rat Carotid
Arteries

We have previously demonstrated the efficacy of bindarit in

reducing balloon-induced neointimal formation in rats, 2 weeks

after angioplasty [15]. Here we confirm previously results and

extend our observation to the entire time course of neoitimal

development, correlating vascular response to injury to contractile

Figure 5. Effect of bindarit on contractile protein expression in rat carotid arteries. A and B. Representative Western blots and relative
densitometric analysis showing the effect of the oral administration of bindarit (200 mg/Kg/day) on SMemb, calponin, a-SMA and PCNA expression
levels in rat carotid arteries at days 7, 14 and 28 days after injury. Results are expressed as mean 6 SEM, where n = 4 pools. *P,0.05, **P,0.01 and
***P,0.001 vs control group.
doi:10.1371/journal.pone.0047464.g005
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protein expression. The oral administration of bindarit significantly

(P,0.001) inhibited the neointimal growth at 14 and 28 days by

21% and 29% respectively (Supplementary data, Table S1).

Similarly, bindarit reduced neointima/media ratio (see Supple-

mentary results in Methods S1 and Table S1). Moreover bindarit

significantly (P,0.001) induced an increase in lumen area at 14 and

28 days by 26% and 63%, respectively (Supplementary data, Table

S1). These effects were associated with a significant reduction of

MCP-1 levels in injured carotid arteries of rats treated with bindarit

(Supplementary results in Methods S1 and Table S2).

Effect of Bindarit on Contractile Proteins Expression in
Rat Carotid Arteries

As shown in Figure 5A, treatment with bindarit significantly

reduced the expression of SMemb at 14 and 28 days (by 31%,

P,0.001 and 37%P,0.05, respectively) and increased the

expression of calponin at 7 and 14 days (by 19%, P,0.05 and

47%, P,0.001). Bindarit also increased the expression of a-SMA

at 14 and 28 days (by 13%, P,0.05 and 8%, P,0.01, respectively)

and, as previously demonstrated [16], reduced the expression of

PCNA at 7 days (by 44%, P,0.01) (Figure 5B).

Localization of contractile proteins in rat carotid arteries was

performed by immunohistochemistry to determine the temporal

expression and cellular localization. a-SMA resulted highly

expressed in the medial VSMCs of non-injured carotid sections

(data not shown), while negative control IgG showed no signal

(data not shown). At day 7, medial VSMCs, close to the lumen,

started to lose a-SMA staining, as consequence of changes in

phenotype. At day 14, VSMCs in the media and neointima,

although stained with the anti-a-SMA antibody, showed weaker

signal than the medial VSMCs at day 7. At day 28, the a-SMA

resulted highly expressed in the medial VSMCs, instead the

expression in the neointimal cells resulted still weak or absent.

Although bindarit did not modify a-SMA localization, it

determined a higher a-SMA expression in both media and

neointima, at all time points considered (Figure 6A).

Non-injured carotid sections lacked immunoreactive SMemb

(data not shown). In contrast, injured carotid arteries showed a

remarkable number of cells in the media and neointima strongly

positive for SMemb, at all time points considered, while negative

control IgG showed no signal (data not shown). The treatment

with bindarit reduced the number of the SMemb-positive cells at

day 7 and, more interesting, the SMemb-positive cells resulted

absent in the media at day 14 and 28 (Figure 6B).

Immunoreactivity for calponin was visible in the medial VSMCs

of non-injured carotid sections (data not shown), while negative

control IgG showed no signal (data not shown). At all time points

considered, the injured arteries lacked immunoreactive calponin.

Intriguingly, at day 7 and day 14, the vessels from bindarit-treated

rats showed calponin signal in the medial VSMCs (Figure 6C).

Discussion and Conclusions

VSMC dedifferentiation and phenotype change are thought to

be important aspects of vascular wall remodeling during athero-

sclerosis and neointimal hyperplasia. The present study provides

evidence that bindarit induces the differentiated phenotype of

VSMCs both in vitro, on human coronary VSMCs, and in vivo, in

the rat carotid balloon angioplasty model. Bindarit differentiation-

promoting effect is associated to its ability in suppressing cell

proliferation and migration as well as in reducing MCP-1 and

MCP-3 production.

In the arterial wall, VSMCs normally exist in a quiescent,

differentiated state, representing the contractile phenotype. During

neointimal formation VSMCs became activated and change

towards the synthetic phenotype characterised by a high rate of

proliferation and chemotactic response, changes in the cytoskel-

eton composition [2] and increased expression of extracellular

matrix proteins, cytokines and chemokines [2,4,5].

It is well known that chemokines mediate VSMC activation

during vascular injury [5,6], with MCP-1 [7] and MCP-3 [19]

shown to directly induce human VSMC proliferation and MCP-

1 shown to induce cell migration [8] and the functional switch

from the contractile to the synthetic phenotype [9]. This process

is characterized by the downregulation of the differentiation

markers such as a-SMA and calponin, concurrent with the

upregulation of SMemb, that typifies immature VSMCs [2].

Importantly, it is now well established that differentiation and

proliferation are not mutually exclusive and that many factors

other than VSMC proliferation status influence the differenti-

ation state. Inhibition of proliferation alone is not sufficient to

promote VSMC differentiation [22]. However, anti proliferative

agents used for inhibition of experimental neointimal formation,

like simvastatin [23], or human restenosis, like rapamycin [24],

are also able to induce VSMC differentiated phenotype [24,25].

Bindarit is a selective inhibitor of MCP-1/CCL2, MCP-3/CCL7,

and MCP-2/CCL8 synthesis [10] acting through the down-regulation

of NF-kB pathway [11]. It is effective in reducing neointimal formation

in both non-hyperlipidemic and hyperlipidemic rodent models of

vascular injury [16] as well as in a model of coronary in-stent stenosis in

the pig [17] having a direct effect on VSMC proliferation/migration

and reducing neointimal macrophage content [16,17]. Recently, a

phase II clinical trial, has demonstrated the efficacy of bindarit in

reducing in-stent late loss [18]. To better understand the effect of

bindarit on human VSMC, here we evaluated the phenotypic

modulation of CASMC analyzing the contractile proteins (a-SMA,

calponin and SMemb) expression. a-SMA is known to be expressed in

a wide variety of non-VSMC cell types, under certain circumstances,

for this reason we also analyzed calponin, that is univocally expressed

by fully differentiated, mature VSMC [2]. We observed that the

expression of contractile proteins in CASMCs changed in response to

stimulation with FBS and the proinflammatory cytokine TNF-a, with a

reduction of a-SMA and calponin, and a concomitant increase of

SMemb. These changes were significantly reversed by bindarit.

CASMCs grown in presence of FBS exhibited a flattened morphology,

feature of the synthetic phenotype. After bindarit treatment cells

acquired the elongated and spindle-shaped morphology, typical feature

of the contractile phenotype. Further bindarit inhibited CASMC

proliferation, migration and invasion through the Matrigel barrier and

reduced metalloproteinase (MMP)-9 activity, which is known to be key

for VSMC migration into the intimal area [26,27]. Bindarit also

reduced the levels of both MCP-1 and MCP-3, data in line with results

observed in other species [16,17].

The effect of bindarit on VSMC phenotypic switching was

confirmed in vivo in the rat carotid arteries subjected to balloon-

induced endothelial denudation, an ideal experimental model for

studying VSMC behaviour [7]. The inhibition of neointimal formation

observed in bindarit treated rats was associated with a modulation of

the contractile proteins expression patterns. Indeed, treatment with

Figure 6. Effect of bindarit on contractile proteins localization in rat carotid arteries. Immohistochemical localization of a-SMA (A),
SMemb (B) and calponin (C) expression in rat carotid arteries 7, 14 and 28 days after angioplasty. Bar = 100 mm.
doi:10.1371/journal.pone.0047464.g006

Bindarit Inhibits VSMC Phenotipic Switching

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e47464



bindarit reduced the expression of SMemb and increased the

expression of a-SMA and calponin after vascular injury.

In conclusion, our study demonstrates that bindarit regulates the

contractile proteins expression and phenotype switching of VSMCs.

Our data suggest a novel underlying mechanisms by which bindarit

can inhibit neointimal formation in human restenosis.
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