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Abstract

As one of the most widespread protein post-translational modifications, phosphorylation is involved in many biological
processes such as cell cycle, apoptosis. Identification of phosphorylated substrates and their corresponding sites will
facilitate the understanding of the molecular mechanism of phosphorylation. Comparing with the labor-intensive and time-
consuming experiment approaches, computational prediction of phosphorylation sites is much desirable due to their
convenience and fast speed. In this paper, a new bioinformatics tool named CKSAAP_PhSite was developed that ignored
the kinase information and only used the primary sequence information to predict protein phosphorylation sites. The
highlight of CKSAAP_PhSite was to utilize the composition of k-spaced amino acid pairs as the encoding scheme, and then
the support vector machine was used as the predictor. The performance of CKSAAP_PhSite was measured with a sensitivity
of 84.81%, a specificity of 86.07% and an accuracy of 85.43% for serine, a sensitivity of 78.59%, a specificity of 82.26% and an
accuracy of 80.31% for threonine as well as a sensitivity of 74.44%, a specificity of 78.03% and an accuracy of 76.21% for
tyrosine. Experimental results obtained from cross validation and independent benchmark suggested that our method was
very promising to predict phosphorylation sites and can be served as a useful supplement tool to the community. For public
access, CKSAAP_PhSite is available at http://59.73.198.144/cksaap_phsite/.
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Introduction

Representing one of the most common protein post-transla-

tional modifications (PTMs) in eukaryotes, phosphorylation plays

significant roles in a wide range of cellular processes, such as

regulation of transcription [1], DNA repair [2], metabolism [3],

immune response [4], environmental stress response [5], and

cellular motility [6]. Phosphorylation process is catalyzed by a

group of enzymes called kinases, which affect certain acceptor

residues (serine, threonine and tyrosine) in the substrate sequences.

It has been estimated that 30–50% of the proteome undergone

phosphorylation [7]. Therefore, accurate recognition of the

phosphorylation substrates and the corresponding phosphoryla-

tion sites may help fully decipher the molecular mechanisms of

phosphorylation related biological processes.

Conventional experimental identification of phosphorylation

sites with a site-directed mutagenesis strategy is laborious,

expensive, and low-throughput [8]. Recently, the appearance of

high-throughput mass spectrometry technique [9] has greatly

accelerated the identification of novel phosphorylation sites.

Accordingly, several phosphorylation site databases have been

established, such as ‘Phospho.ELM’ [10], ‘Phosphorylation Site

Database’ [11], ‘PhosPhAT’ [12], and ‘Phosphosite’ [13]. How-

ever, some limitations of this technique [14] make the exact

prediction of phosphorylation sites difficult, and it always requires

very expensive instruments and specialized expertise that are

usually not available in general laboratories. With the increasing

availability of protein sequence data, there is an urgent need for

computational tools that can rapidly and reliably identify

phosphorylation sites.

In recent years, many computational predictors have been

developed and applied with varying success to predict phosphor-

ylation sites [15]. Most of phosphorylation site prediction tools are

kinase-specific, since they need the kinase information of the target

proteins as input, such as KinasePhos [16], PPSP [17], NetphosK

[18] and GPS [19]. In the establishment of these predictors,

proteins collected from the phosphorylation site databases without

kinase information were not considered and filtered out. However,

it can be found that the majority of experimentally validated

phosphorylation sites from the present update of Phospho.ELM

dataset did not contain kinase annotations, this part of dataset

were thus omitted in the training process of the existing kinase-

specific prediction tools. Hence the prediction tools that use the

information of kinase annotated proteins can not be regarded as

completely perfect for predicting the non-kinase annotated

proteins. In other words, these tools are certainly not generalized.

In addition, the limitations of kinase-specific prediction tools

definitely ignore some important properties of the phosphorylation

sites. Therefore, several generalized prediction tools were

proposed which ignored the kinase information and only used

the primary sequence information for classifying phosphorylation

sites, such as DISPHOS [20], Scansite [21], PPRED [22],

NetPhos [23], PHOSIDA [11], and AutoMotif Server AMS
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[24]. More details about these predictors can be found in two

recent reviews [25,26].

In this study, the prediction performance of phosphorylation

sites was improved by utilizing a new encoding scheme, k-spaced

amino acid pairs (CKSAAP), which has been widely used to deal

with diverse prediction topics in the field of bioinformatics [27–

29]. The proposed predictor CKSAAP_PhSite could overcome

the limitation by incorporating only sequence information rather

than using any kinase specific information. By comparison, the

performance of the CKSAAP_PhSite predictor was very promis-

ing to predict phosphorylation sites, with a sensitivity of 84.81%, a

specificity of 86.07% and an accuracy of 85.43% for serine, a

sensitivity of 78.59%, a specificity of 82.26% and an accuracy of

80.31% for threonine as well as a sensitivity of 74.44%, a

specificity of 78.03% and an accuracy of 76.21% for tyrosine.

CKSAAP_PhSite is a novel phosphorylation site online tool and

can provide probability information for prediction results. The

online service is freely available at http://59.73.198.144/

cksaap_phsite/.

Methods

Datasets
The datasets used in this paper were divided into two parts:

training dataset and independent testing dataset. The training

dataset came from Ashis and co-workers [22]. Experimentally

validated phosphorylation sites were extracted from the Phos-

pho.ELM database (version 8.1 released on August 12, 2008) [10],

which contained 5725 proteins covering 12373 phosphorylated

serine (S) sites, 2525 phosphorylated threonine sites (T) and 1826

phosphorylated tyrosine (Y) sites, these sites were regarded as

positive sites (see Text S1). All the remaining S/T/Y residues

which were not in a distance of 50 amino acids from any

phosphorylated sites of a protein sequence were regarded as

negative sites, as done by [22]. The phosphorylated histidine sites

were not taken into account in this paper, since the objective of

this work was to classify only the most frequently occurred

phosphorylated residues. Since the number of phosphorylated sites

and the non-phosphorylated sites were highly imbalanced, we

repeatedly selected the equal number of negative sites (non-

phosphorylated fragments) to match the positive ones (phosphor-

ylated fragments) ten times for each kind of sites (S/T/Y) in the

training dataset (see Text S2).

In order to evaluate the prediction performance among

different predictors, we collected a new independent testing

dataset by extracting the experimentally verified phosphorylated

sites from Phospho.ELM which were added after August 12, 2008.

Then the redundancy reduction using CD-HIT [30] was

performed to ensure that none of the protein sequences showed

a sequence similarity of more than 40% within the independent

testing dataset and also in the training dataset. Therefore, the

independent dataset contained 837 proteins covering 1450

phosphorylated serine sites, 835 phosphorylated threonine sites

and 286 phosphorylated tyrosine sites (see Supporting Information

Text S3). The negative sites in the independent testing dataset

were generated in the same way as in the training dataset.

Similar to the development of other PTM site predictors [31–

33], the sliding window strategy was utilized to extract positive and

negative samples. After a preliminary evaluation, the optimal

window size was 27 in this paper, with 13 residues located

upstream and 13 residues located downstream of the phosphor-

ylation sites in the protein sequences. In order to ensure a

sequence fragment with a unified length, a non-existing amino

acid O was used to fill the corresponding positions.

Construction of feature vectors
In this study, the composition of k-spaced amino acid pairs

(CKSAAP) based encoding scheme was used. CKSAAP could

reflect the characteristics of the residues surrounding phosphor-

ylation sites, and it has been successfully used for predicting

palmitoylation sites [34] and mucin-type O-glycosylation sites [35]

to represent the sequence fragment. The detailed procedures are

described as follows. For a sequence fragment of 2n+1 amino

acids, it may contain 441 types (AA, AC, AD, …, OO) of k-spaced

amino acid pairs (i.e. the pairs separated by k other amino acids).

Then, a feature vector can be described as:

(NAA,NAC ,NAD, . . . ,NOO)441 ð1Þ

The value of each component is the composition of the

corresponding amino acid pairs in the sequence fragment. For

example, when there are m AC pairs in the sequence fragment, the

value of corresponding component NAC is m. After a preliminary

evaluation, we found that when the value of k increased, the

prediction accuracy and the sensitivity would increase, but the

computational complexity and the required time for training the

models would also increase. So that in this paper, we consider the

CKSAAP encoding scheme with k = 0, 1, 2, 3, 4 and 5, and the

total dimension of the 5-spaced feature vector is 2646. An example

of the CKSAAP encoding scheme with k = 0, 1, 2, 3 for sequence

fragment AAACD can be found from Table 1.

The binary encoding scheme is also carried out here to compare

with the CKSAAP encoding. As mentioned above, there are 21

types of amino acids in our setting, which are given as

ACDEFGHIKLMNPQRSTVWYO. Therefore, each amino acid

is represented by a 21-dimensional binary vector, that is, A

corresponds to (100000000000000000000), C corresponds to

(010000000000000000000), and O corresponds to

(000000000000000000001). For each sequence fragment, the

central amino acid is always S/T/Y, which is not necessary to

be considered. Consequently, the total dimension of the binary

feature vector is 2162n.

Feature selection
Because of the high dimensionality of the CKSAAP encoding

scheme, a well established filter feature selection method,

Information Gain (IG) [36] was employed in this paper.

Information Gain is a measure of dependence between the

feature and the class label. It is one of the most popular feature

selection techniques as it is easy to compute and simple to

interpret. Information Gain of a feature X and the class label Y is

calculated as follows:

Table 1. An example of the CKSAAP encoding scheme with
k = 0, 1, 2, 3 for sequence fragment AAACD.

K k-space amino acid pairs
The corresponding feature
vectors

0 (AA, AC, AD,…,OO)441 (2, 1, 0,…,0)441

1 (AXA, AXC, AXD,…,OXO)441 (1, 1, 1,…,0)441

2 (AXXA, AXXC, AXXD,…,OXXO)441 (0, 1, 1,…,0)441

3 (AXXXA, AXXXC, AXXXD,…,OXXXO)441 (0, 0, 1,…,0)441

doi:10.1371/journal.pone.0046302.t001
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IG(X=Y )~H(X ){H(X=Y ) ð2Þ

Information entropy H(X) is a measure of the uncertainty

associated with a random variable (feature) X, which is calculated

as follows:

H(X )~{
X

i

P(xi) log2(P(xi)) ð3Þ

where {xi} denotes a set of values occurred in X, and P(xi)

represents the prior probability of xi. The entropy H(X/Y) of X

after observing Y is calculated as follows:

H(X=Y )~{
X

j

P(yj)
X

i

P(xi=yj) log2(P(xi=yj)) ð4Þ

where P(xi/yj) is the posterior probability of xi given the value of yj

of Y.

For any two features X1 and X2 from the CKSAAP encoding

scheme, Y is regarded as more correlated with X1 than X2 if IG(X1/

Y).IG(X2/Y). A feature that gives higher value of IG receives

higher rank.

SVM learning
Support vector machine (SVM) is a popular machine learning

algorithm mainly used in dealing with binary classification

problems. SVM looks for a rule that best maps each member of

training set to the correct classification [37], and it has been widely

used in bioinformatics community. Formally, given a training

vector xi M Rn and yi M {21, +1} be the corresponding class labels,

i = 1, …, N, SVM solves the following optimization problem:

Minimiz
1

2
wT :wzC

XN

i~1

ji ð5Þ

Subject to yi(w
T :xizb)§1{ji and ji§0 ð6Þ

where w is a normal vector perpendicular to the hyperplane, the

regularization parameter C controls the trade-off between the

margin and the training error, and ji are slake variables for

allowing misclassifications [38]. In this paper, LIBSVM package

[39] with radial basis kernels (RBF) was used as

K(xi,xj)~exp({c xi{xj

�� ��2
) where the kernel width parameter

c represents how the samples are transformed to a high

dimensional space. In this paper, grid search strategy based on

5-fold cross-validation was utilized to find the optimal parameters

C and c M {227, 226, …, 28}, so that a total number of 256 grids

were evaluated.

Performance assessment of CKSAAP_PhSite
Three cross validation methods are often used to examine a

predictor for its effectiveness: independent dataset test, subsam-

pling test (e.g. 5-fold or 7-fold cross validation), and jackknife test

[40]. Of these three test methods, the jackknife test is deemed as

the most objective one [41], since the outcome obtained by it is

always unique for a given benchmark dataset. However, to reduce

the computational time, 5-fold cross validation test is commonly

used instead of jackknife test. In the 5-fold cross validation, the

dataset is divided into 5 equal subsets, out of which 4 subsets are

used for training and the remaining one for testing. This

procedure is repeated 5 times and the final prediction result is

the average accuracy of the 5 testing subsets. In this study, 5-fold

cross validation and independent dataset test are chosen for

evaluating the proposed predictor.

In order to evaluate our predictor CKSAAP_PhSite, four

measurements are used: sensitivity (Sn), specificity (Sp), accuracy

(Ac) and Matthew correlation coefficient (MCC). They are defined

by the following formulas:

Sn~
TP

TPzFN

Sp~
TN

TNzFP

Ac~
TPzTN

TPzTNzFPzFN

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)
p

where TP, TN, FP and FN stand for the number of true positive,

true negative, false positive and false negative, respectively. In

addition, the receiver operating characteristic (ROC) curves [42]

and the area under the curve (AUC) are also carried out.

Results and Discussion

Performance of CKSAAP_PhSite
For each training dataset, the sequence fragments were firstly

encoded as numerical vectors by using the CKSAAP encoding

scheme, then the CKSAAP_PhSite predictor was established with

the assistance of SVM algorithm. In our experiment, the optimal

parameters (C, c) for training S, T, and Y prediction model were

(22, 227), (2, 227) and (2, 227), respectively. CKSAAP_PhSite was

trained and tested through 5-fold cross-validation, and all of the

results were calculated based on the threshold value 0.5. The

average performance of CKSAAP_PhSite on the training dataset

was summarized in Table 2. The average prediction accuracy (Ac)

reached 85.43% for S (Sn = 84.81%, Sp = 86.07%, MCC = 0.709),

80.31% for T (Sn = 78.59%, Sp = 82.26%, MCC = 0.599) and

76.21% for Y (Sn = 74.44%, Sp = 78.03%, MCC = 0.524). Since the

proposed CKSAAP_PhSite predictor is a discrete classifier, the

ROC curves for each of the three residues (S, T and Y) have been

plotted, as can be seen in Figure 1, Figure 2 and Figure 3.

Due to the high dimensionality of the CKSAAP encoding

scheme, the well established filter feature selection method IG was

used to reduce the dimensionality and to find the most relevant

features (amino acid pairs). After several rounds of experiments, it

was found that the feature selection method resulted in little

performance improvement, so that feature selection was not used

in the final prediction model. This phenomenon was probably

because SVM has a good tolerance to high dimensional data.

The top ranked features
Though the feature selection method brought no significant

performance improvement, this method could find out the most

‘‘important’’ features (amino acid pairs) generated by the

CKSAAP encoding scheme. In order to give some instruments

Prediction of Protein Phosphorylation Sites
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for predicting phosphorylation sites, the top 20 features of

phosphorylated S/T/Y sites were listed in Table 3. The

importance of these features was also clearly and intuitively

characterized in Figure 4. For example, the feature S6S of

phosphorylated serine (S) site prediction, which represents the SS

residue pair spaced by any amino acid (that is to say, 1-spaced

residue pair), is enriched in position pairs surrounding the

phosphorylated sites. As can be seen in Table 3, S, T and Y

frequently appeared in the top 20 amino acid pairs, which in

accord with the observation from Figure 4 that S, T and Y

Figure 1. ROC curves of CKSAAP_PhSite and the binary encoding scheme in terms of serine (S) site prediction based on the training
dataset.
doi:10.1371/journal.pone.0046302.g001

Figure 2. ROC curves of CKSAAP_PhSite and the binary encoding scheme in terms of threonine (T) site prediction based on the
training dataset.
doi:10.1371/journal.pone.0046302.g002
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frequently occurred in the vicinity of phosphorylated sites. Table 3

also showed the sequence patterns around the phosphorylated

sites, that is, a new sequence fragment including these amino acid

pairs in rich would more likely have phosphorylated sites.

Comparison with the binary encoding scheme
When compared with the binary encoding scheme on the

training dataset, the CKSAAP encoding scheme revealed about

3%, 5%, and 3% higher accuracies for predicting S, T, and Y sites

respectively (Table 2). The comparisons were further illustrated by

the ROC curves. As can be seen in Figure 1, 2 and 3, CKSAAP

encoding was better than the conventional binary encoding. The

AUC value resulted from CKSAAP encoding was about 0.03–0.05

higher than that of the binary encoding in all three types of

phosphorylation site prediction. When compared with the binary

encoding scheme on the independent testing dataset, the AUC

value resulted from CKSAAP encoding was about 0.09–0.16

higher than that of the binary encoding in all three types of

phosphorylation site prediction.

We also carried out the comparison of CKSAAP and binary

encoding based merely on sites containing no ‘O’ residues, the

average performance between CKSAAP and the binary encoding

was summarized in Table 4. Experimental results showed that the

usage of ‘O’ residue could result in slightly different performance.

These results also revealed that the using of ‘O’ residue was

necessary to make the prediction of the predictor more accurate.

All the above results explicitly indicated that the CKSAAP

encoding has a significant advantage over the binary encoding in

predicting phosphorylation sites. This is because that the

CKSAAP encoding scheme focuses on the relationship of amino

acids at different positions, which can reflect the composition of

short linear motif. To our knowledge, a number of PTMs are

strongly associated with intrinsic disorder [43–47], and many

PTMs (e.g. lipidation, GPI-anchor) have been experimentally

proved to be correlated with intrinsic disorder regions. Moreover,

the short motifs in which two or three residues are conserved often

resided in disorder regions [48]. This may be the main reason why

the CKSAAP encoding can be better than the binary encoding

phosphorylation sites.

Comparison with the existing predictors
In this section, the proposed CKSAAP_PhSite was bench-

marked against DISPHOS [21], PPRED [20] and NetPhos [23],

three of the best phosphorylation site predictors on the indepen-

dent dataset with 1450, 835 and 286 phosphorylated sites of

serine, threonine and tyrosine respectively. The method DIS-

PHOS (DISorder-enhanced PHOSphorylation predictor) [20]

used position-specific amino acid frequencies and disorder

information to identify phosphorylation sites. PPRED [22] ignored

the kinase information and only used the evolutionary information

of proteins for classifying phosphorylation sites. NetPhos [23] was

Figure 3. ROC curves of CKSAAP_PhSite and the binary encoding scheme in terms of tyrosine (Y) site prediction based on the
training dataset.
doi:10.1371/journal.pone.0046302.g003

Table 2. Comparison of the two encoding schemes on the
training dataset.

Site
Encoding
scheme Sn (%) Sp (%) Ac (%) Mcc

S Binary 80.3760.69 84.8960.73 82.6360.61 0.65360.012

CKSAAP_PhSite 84.8160.52 86.0760.56 85.4360.82 0.70960.005

T Binary 60.0560.95 90.1760.64 75.1260.53 0.52860.008

CKSAAP_PhSite 78.5960.51 82.2660.86 80.3160.62 0.59960.015

Y Binary 65.0761.09 81.3661.06 73.1560.87 0.47160.017

CKSAAP_PhSite 74.4460.74 78.0360.21 76.2160.32 0.52460.006

doi:10.1371/journal.pone.0046302.t002

Prediction of Protein Phosphorylation Sites

PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e46302

in predicting 



a neural network-based method for predicting potential phos-

phorylation sites, and this predictor did not consider any kinase

specific information for prediction.

To conduct a comparison on the independent dataset, all the

proteins were predicted via the web servers of CKSAAP_PhSite,

DISPHOS, and NetPhos. Due to the absence of online server of

the method PPRED, we realized this method using the same ratio

of positive to negative samples (1:1) as PPRED done. For the

CKSAAP_PhSite, the final prediction results were average over

these ten training datasets for each kind of phosphorylation sites.

The performance based on the prediction results were summa-

rized in Table 5, 6 and 7. As shown in Table 5, 6 and 7, the

performance of CKSAAP_PhSite was better than DISPHOS,

PPRED and NetPhos for all three types of phosphorylated sites

prediction on the independent dataset. Each of the comparison

tables underlined the competitive performance of the proposed

predictor, CKSAAP_PhSite, among all three other existing

predictors.

The better prediction performance of CKSAAP_PhSite may be

credited to the appropriate sequence encoding scheme adopted in

this manuscript, even though the dimension of the CKSAAP

encoding is much higher than the encoding schemes used by other

predictors. More importantly, the reasonably good performance of

CKSAAP-PhSite implied that the CKSAAP encoding can

effectively find out the information of enriched and depleted

residue pairs around phosphorylated sites [29].

The proposed predictor (CKSAAP_PhSite) successfully over-

came the limitations of the kinase-specific prediction tools in

predicting protein phosphorylation sites. In designing the predic-

tor, all the remaining serine, threonine, and tyrosine residues that

were reported as phosphorylated sites and which were not located

in a distance of 50 amino acids from any of the positive annotated

Figure 4. Three Two-Sample-Logos of the position-specific residue composition surrounding the phosphorylated site and non-
phosphorylated sites. (A) serine site logo, (B) threonine site logo, (C) tyrosine site logo. These three logos were generated using the web server
http://www.twosamplelogo.org/ and only residues significantly enriched and depleted surrounding phosphorylated sites (t-test, P,0.05) are shown.
doi:10.1371/journal.pone.0046302.g004
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residues were regarded as negative phosphorylated sites. Since

information regarding negative phosphorylated sites is scarce,

some of these remaining residues may be annotated as phosphor-

ylated sites in future experiments. Therefore, as more validated

phosphorylated sites from high throughput proteomic experiments

become available, we should re-train the predictor which will in

turn enhance the prediction performance.

Conclusion

Accurate identification of the phosphorylation substrates and

the corresponding phosphorylation sites could help fully decipher

the molecular mechanisms of phosphorylation related biological

processes. Though some researchers have focused on this problem,

the overall accuracy of prediction is still not satisfied. In this paper,

we have developed a competitive phosphorylation site predictor

named as CKSAAP_PhSite from the protein primary sequences.

By comparison, the performance of the CKSAAP_PhSite predic-

tor was better than three existing predictors, with a sensitivity of

84.81%, a specificity of 86.07% and an accuracy of 85.43% for

serine, a sensitivity of 78.59%, a specificity of 82.26% and an

accuracy of 80.31% for threonine as well as a sensitivity of

74.44%, a specificity of 78.03% and an accuracy of 76.21% for

tyrosine. Furthermore, feature selection method was used to find

out the most ‘‘important’’ features (amino acid pairs). The

conclusions derived from this paper might help to understand

more of the phosphorylation mechanism and guide the related

experimental validation.

Since user-friendly and publicly accessible web-servers represent

the future direction for developing practically more useful models,

simulated methods, or predictors, a web-server of CKSAAP_Ph-

Site has been developed, which can be freely accessible at http://

59.73.198.144/cksaap_phsite/.

Table 3. The top 20 features ranked by IG based feature
selection method.

The top 20 features S T Y

1 SP TP Y66P

2 S6S P666P D6Y

3 S666S L66L L6L

4 R66S LL D66Y

5 S66S SP LL

6 S66666S T6666P L66666L

7 S66E P6666S DY

8 S6666S L6666L V66L

9 S6R T6P YE

10 S6666E T666T P666P

11 SS L6L E66Y

12 RS T66666P F666V

13 R6666S P66P L666L

14 S666E PE P66666P

15 R66666S PP L6A

16 S6E L66G L66L

17 L666L S66T D66S

18 R666S P6T L6666L

19 E6E RP P6Y

20 L66L L666L Y666P

doi:10.1371/journal.pone.0046302.t003

Table 4. Comparison of the two encoding schemes on the
training dataset containing no ‘O’ residues.

Site
Encoding
scheme Sn (%) Sp (%) Ac (%) Mcc

S Binary 80.2960.52 84.4360.54 82.3660.45 0.64860.023

CKSAAP_PhSite 84.4160.37 85.4660.48 84.9460.59 0.69960.007

T Binary 62.1360.28 88.6160.72 73.8260.47 0.51260.004

CKSAAP_PhSite 78.3660.67 81.7260.36 79.5960.71 0.56860.028

Y Binary 66.1460.87 75.3660.82 71.0460.49 0.42360.021

CKSAAP_PhSite 72.1560.63 76.1860.51 74.1660.52 0.48460.005

doi:10.1371/journal.pone.0046302.t004

Table 5. Performance of DISPHOS, PPRED, NetPhos, and our
predictors in terms of serine (S) site prediction on the
independent dataset.

Method Performance parameters of the systems

Sn (%) Sp (%) Ac (%) Mcc

DISPHOS 81.03 62.86 70.10 0.432

PPRED 72.62 56.42 62.87 0.286

NetPhos 78.90 55.64 64.91 0.343

CKSAAP_PhSite 79.45 78.03 78.59 0.566

doi:10.1371/journal.pone.0046302.t005

Table 7. Performance of DISPHOS, PPRED, NetPhos, and our
predictors in terms of tyrosine (Y) site prediction on the
independent dataset.

Systems Performance parameters of the systems

Sn (%) Sp (%) Ac (%) Mcc

DISPHOS 55.24 74.19 66.62 0.298

PPRED 43.01 65.35 56.42 0.084

NetPhos 45.80 69.30 59.92 0.154

CKSAAP_PhSite 52.10 79.53 68.58 0.329

doi:10.1371/journal.pone.0046302.t007

Table 6. Performance of DISPHOS, PPRED, NetPhos, and our
predictors in terms of threonine (T) site prediction on the
independent dataset.

Systems Performance parameters of the systems

Sn (%) Sp (%) Ac (%) Mcc

DISPHOS 70.06 73.04 71.93 0.421

PPRED 48.26 70.34 62.12 0.187

NetPhos 47.78 74.75 64.70 0.231

CKSAAP_PhSite 79.16 78.88 78.98 0.567

doi:10.1371/journal.pone.0046302.t006
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