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Abstract

In most bird species timing of breeding affects reproductive success whereby early breeding is favoured. In migratory
species migration time, especially arrival at the breeding grounds, and breeding time are expected to be correlated.
Consequently, migration time should also have fitness consequences. However, in contrast to breeding time, evidence for
fitness consequences of migration time is much more limited. Climate change has been shown to negatively affect the
synchrony between trophic levels thereby leading to directional selection on timing but again direct evidence in avian
migration time is scarce. We here analysed fitness consequences of migration and breeding time in great cormorants and
tested whether climate change has led to increased selection on timing using a long-term data set from a breeding colony
on the island of Vorsø (Denmark). Reproductive success, measured as number of fledglings, correlated with breeding time
and arrival time at the colony and declined during the season. This seasonal decline became steeper during the study
period for both migration and breeding time and was positively correlated to winter/spring climate, i.e. selection was
stronger after warmer winters/springs. However, the increasing selection pressure on timing seems to be unrelated to
climate change as the climatic variables that were related to selection strength did not increase during the study period.
There is indirect evidence that phenology or abundances of preferred prey species have changed which could have altered
selection on timing of migration and breeding.
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Introduction

In seasonal environments the timing of life-cycle events

generally has strong consequences for reproductive success or

survival as environmental conditions (e.g. food supply), are

favourable only for a limited period. For example, on the one

hand migrating birds should not arrive too early at their breeding

grounds because harsh environmental conditions, such as cold

spells, may pose a mortality risk [1]. On the other hand,

individuals that arrive later at the breeding grounds may face

stronger competition by conspecifics and may have difficulties

finding a suitable mate or breeding territory [2–4].

While a number of studies reported a relationship between

breeding time and reproductive success in birds, e.g.[5,6–8], the

evidence in migration time is more limited. Bety et al. [9]

tracked radio-tagged snow geese and found that reproductive

success increased and then declined with arrival time in females

with an optimal arrival time of three days before median

arrival. A similar relationship has been found between departure

date from the last staging area and reproductive success in

barnacle geese [10]. In black kites early arriving individuals had

higher reproductive success, partly because they were able to

settle in high quality territories [3]. Evidence is also mounting in

songbirds that earlier arriving individuals have a higher re-

produce success [4,11]. The fact that there are much fewer

studies on avian migration time than breeding time is likely due

to methodological limitations. Monitoring breeding attempts and

their timing is simple in many species, especially in cavity

breeders accepting nest boxes, because it only requires locating

the nest and monitoring breeding phenology and success. To

quantify fitness consequences of migration time it is however

necessary to record individual migration time and link it to the

following breeding attempt. Furthermore, accurately recording

individual migration time has been difficult in many species, e.g.

woodland living passerines.

Climate change has disrupted the synchrony between predator-

prey relationships in a number of ecological networks. For

example, rising spring temperatures have advanced the phenology

of caterpillars, an important prey items for insectivorous birds,

more strongly than the breeding phenology of the birds, which has

led to strong selection for earlier breeding [12,13]. Similar

temporal mismatches through non-linear or temporally heteroge-

neous climate change have been reported for other predator-prey

systems, e.g. in plankton species [14], shellfish and shrimp [15] or

seabirds and fish [16]. While it has been inferred that such

selection on breeding time has also led to selection on migration

time in flycatchers [17] so far no study has reported direct

evidence for climate change induced selection on migration time.

It has however been shown that migratory bird species did not

seem to fully track temperature changes in their breeding areas –

possibly indicating a mismatch with food phenology – and that
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species that were able to better track temperature trends showed

less population declines [18,19].

Cormorants are short-distance migrants and nest colonially,

often in trees. Individuals generally appear in the colony shortly

after arrival on the breeding grounds [20]. Colour-ringing of

chicks and subsequent daily resighting of adults in the Vorsø

colony (Denmark) made it possible to record individual arrival

dates at the colony and reproductive success. Here we here use this

data set to analyse the relationship between arrival time at the

colony and breeding time, fitness consequences of arrival and

breeding time and changes in these relationships over the last two

decades.

Methods

Study Species
The great cormorant (Phalacrocorax carbo) is a large, long lived,

fish eating colonial waterbird. The largest of the two subspecies

occurring in Europe mainly breeds along exposed coasts in UK

and Norway, whereas the other subspecies (P. c. sinensis) mainly

breeds on the continent near to more sheltered coasts or near to

lagoons and lakes. The largest breeding populations in Europe are

found around the Baltic Sea and the Black Sea but other countries

rich in coasts and/or lakes, like The Netherlands, also constitutes

important breeding areas [21]. The populations on the continent

were very small until they became protected during the 1970s,

after which numbers increased by a factor of 30 within 30 years

[22,23]. The sinensis subspecies which this study concerns breeds in

small or large colonies holding up to 13,000 pairs [21]. The birds

start to breed at the age of 2–4 years usually with a new partner

each year, and up to 2–4 chicks are raised to fledging when food

conditions are favourable near to the colony [24–26]. Breeders

tend to forage within 20 km of the colony but they fly up to 60 km

during periods and years with reduced food availability [27]. The

length of the foraging trips has a direct influence on the number of

daily feedings for chicks and thereby on fledgling production. The

vast majority of cormorants breeding in the Baltic Sea region

migrate south and southwest in autumn with individuals from the

same colony widely dispersing over Europe south to the coast of

North Africa for the winter [20]. Individuals tend to return to the

same wintering areas each year [28], but birds wintering in the

central and more northern parts of Europe move further south and

west in cold winters. The distance that adults in the present study

colony have to migrate in spring range from less than 200 km up

to 2500 km [29].

Study Area and Long-term Monitoring
The study was carried out in a tree-nesting great cormorant (P.

c. sinensis) colony located in the nature reserve on the island of

Vorsø (Denmark, 55.87u N, 10.17uE). The first cormorants bred

on Vorsø in 1944. Until 1970 cormorant numbers were regulated

by shooting. After hunting control stopped the number of breeding

pairs increased from around 250 pairs to 5000 pairs in the early

1990s and then decreased to 530 in 2011.

From 1977 onwards 440 chicks per year were ringed on average

in the colony with uniquely coded colour-rings to facilitate

monitoring of individuals in the colony. From 1983 the colony

was visited daily to read rings and record breeding attempts. From

1984 onwards observations were made from an 8 m high tower

located at the rim of the colony. Access to the tower was possible

through a covered walkway which allowed the observers to enter

and leave the tower without disturbing the birds. Observations of

colour-ringed birds were made one to three times for a total of one

to four hours per day. Since monitoring took place throughout the

period when birds were present in the colony, i.e. from January (in

mild winters) until October, the total number of observation hours

amounted to 500–800 hours per year. Based on the daily searches

for colour-ringed birds and records of breeding activity, it was

possible to monitor time of arrival at the colony, the laying date of

the first egg of a clutch (‘laying date’), and reproductive success.

Regular monitoring of the colony, including daily observations

and ringing of chicks, ended in 2004.

Between 1981 and 2004 the date of the first egg and annual

reproductive success (ARS), measured as the number of fledged

chicks, were recorded for a total of 5775 breeding attempts.

However, the identity of individuals was not known in all cases

since not all adult cormorants in the colony had colour-rings. The

number of monitored breeding attempts per year varied between

17 in 2003 and 367 in 2000 with an average of about 250.

Since detection probability and accuracy of arrival dates

increased after the construction of the observation tower, the

analysis of arrival time was restricted to years from 1984 onwards.

In this period, in total 17531 arrival dates and 5775 laying dates

were recorded. Reproductive success was recorded for all these

5775 laying dates but for only 4310 out of these 17531 arrival

dates. However, arrival date, laying date and annual reproductive

success were recorded for only 569 colour-ringed males and 581

colour-ringed females totalling 1525 and 1385 observations,

respectively.

Permission to work at the Vorsø nature reserve was provided by

the Danish Ministry of Environment. Permission to ring the chicks

was granted by the Ringing Centre at the Zoological Museum of

Copenhagen.

Analysis of Prey Use
Cormorants regurgitate indigestible food items when roosting.

These regurgitated pellets were collected in the colony and

manually searched for otoliths. From the otoliths the consumed

fish species were identified. The length and weight of the caught

fish were calculated from the otoliths’ length by using species

specific equations [30,31]. Pellets were collected during a period

Figure 1. Temporal trends in timing of migration and breeding
during the study period. Mean arrival date at the breeding colony
(filled symbols) and mean laying date (open symbols) plotted against
year.
doi:10.1371/journal.pone.0046165.g001

Fitness Consequences of Timing in Cormorants

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e46165



from February until July in 1980–83 (16–136 pellets per month)

and in 1993–94 (29–45 pellets per month).

Climate Data
Monthly mean air temperature for December until May was

calculated from mean daily air temperature recorded at the weather

station of the Danish Meteorological Institute that was closest to the

study area (Billund airport 55.73u N, 9.1uE, distance to study area:

68 km). Monthly mean water temperature was calculated from

mean daily water temperature at two stations of the Danish

Meteorological Institute, Rørvig (55.57u N, 11.46uE, distance to

study area: 85 km, years: 1984, 1989–1995, 1997/8) and Køben-

havn (55.41u N, 12.36uE, distance to study area: 145 km, years:

2000–2004). Unfortunately, we were unable to obtain data sets on

water temperature that covered longer and overlapping periods.

Data on seasonal North Atlantic Oscillation (NAO) [32] indices

were obtained from the website of the National Center for

Atmospheric Research (http://www.cgd.ucar.edu/cas/jhurrell/

indices.html). The following seasonal indices were analysed:

December–February, January–March, February–April and

March–May.

Statistical Analyses
Annual reproductive success (ARS) was analysed using gener-

alised linear mixed models (GLMM) with Poisson-distributions

and log link-functions. In these models individuals with only

a single record (247 males and 284 females) were excluded because

including them would affect the precision with which the

individual variance component could be estimated [33]. When

we found that individual as random effect explained no variation,

generalised linear models (GLM) with Poisson-distributions and

log link-functions were further used. This increased the breeding

time-data set to 5775 records because also unringed individuals

with known laying date and reproductive success could be

included. Since laying date is under female ‘control’ [34] we

included only female identity as a random effect when analysing

fitness consequences of breeding time.

Statistical significance of fixed effects in mixed models was

assessed using t-tests based on parameter estimates and their

standard error. The corresponding denominator df were calculated

using the number of individuals as total df. This is a conservative

approach and sample sizes were so large that alternative calculations

of df would not affect significance levels [33]. Minimum adequate

models were obtained by stepwise deletion of non-significant

variables from full models, starting with interactions.

The correlation between arrival and breeding time was

estimated by fitting a Bayesian bivariate mixed model with both

arrival and breeding time as dependent variables, age as fixed

effect and individual as random effect using an informative prior.

The correlation between arrival and breeding time at the

individual level was then calculated from the covariance and

variances. Statistical significance was assessed by comparing the

Deviance Information Criterion (DIC) of this model to the DIC of

Figure 2. Relationship between breeding time and annual reproductive success. The number of fledged chicks (predicted values from
model) is plotted against egg laying date, separately for each year. Reproductive success declined during the breeding season. This decline differed
among years and became stronger during the study period (see text for statistical details). For illustrative purposes the years were combined into four
periods and displayed separately.
doi:10.1371/journal.pone.0046165.g002
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a model where the covariance between arrival and breeding time

was constrained to zero.

Since climatic variables tend to show high correlations (average

of pairwise correlations of all variables = 0.36) and such high

collinearity in independent variables is problematic, we ran

separate models for each climatic variable and selected the best

model based on model fit. Year and population density, measured

as the number of breeding pairs in the colony, were included as

additional explanatory variables in each separate analyses.

Selection differentials and standardised selection differentials

were calculated following the standard approach [35].

All analyses were carried out in R 2.14.1 [36] using the

packages ‘lme4’ and ‘MCMCglmm’.

Results

Timing of migration, i.e. arrival at the colony, and timing of

breeding did not show significant temporal trends during the study

period (arrival date: b= 0.1260.28, F1,19 = 0.18, p= 0.68; laying

date: b= 0.3360.21, F1,19 = 2.44, p= 0.14) (Fig. 1). The interval

between mean arrival and mean egg laying did not change, either

(b= 0.2160.15, F1,19 = 1.94, p= 0.18).

Arrival time at the colony and breeding time, i.e. the date when

the first egg of the clutch was laid, were positively correlated in

both males and females (males: r= 0.85, 95% CI = 0.74–0.96,

DDIC = 104.8; females: r= 0.82, 95% CI = 0.71–0.88,

DDIC = 135.1).

Annual reproductive success (ARS), measured as the number of

chicks fledged, was related to breeding time, year and age

(Table 1a). ARS declined with laying date (Fig. 2) and decreased

during the study period. There was evidence for senescence in

reproductive success, even after controlling for breeding time, as

the quadratic effect of age was negative and statistically significant

(Table 1a).

Since a breeding pair has only one laying date but two arrival

dates, fitness consequences of arrival time were tested separately

for each sex. As expected from the decline in ARS and the

correlation of breeding and arrival time with breeding time ARS

also declined with arrival time in both males and females

(Table 1b). Furthermore, as in the analysis of breeding time,

ARS decreased over the study period and there were significant

negative quadratic relationships with age, for both males and

females (Table 1b). When laying date was included as explanatory

variable, arrival time was rendered non-significant in both females

and males (Table 1c).

Table 1. Analyses of annual reproductive success, measured
as the number of fledged chicks, in relation to breeding (a)
and arrival time (b) and both (c).

Var. b se t df p

a)

female 4.4e221

laying date 20.008 0.001 25.83 319 ,0.001

year 20.056 0.006 29.41 319 ,0.001

age 0.116 0.029 3.96 319 ,0.001

age2 20.007 0.002 23.40 319 ,0.001

b)

female 0

arrival date 20.003 0.001 22.53 292 0.011

year 20.064 0.006 210.2 292 ,0.001

age 0.121 0.030 4.03 292 ,0.001

age2 20.007 0.002 23.25 292 0.001

male 4.1e216

arrival date 20.003 0.001 22.85 317 0.005

year 20.064 0.006 211.08 317 ,0.001

age 0.139 0.032 4.39 317 ,0.001

age2 20.008 0.002 23.75 317 ,0.001

c)

female 0

arrival date 0.0003 0.0012 0.27 291 0.79

laying date 20.008 0.001 25.24 292 ,0.001

year 20.061 0.006 29.61 292 ,0.001

age 0.103 0.030 3.41 292 ,0.001

age2 20.006 0.002 22.85 292 0.005

male 2.8e212

arrival date 0.0007 0.0011 0.68 316 0.50

laying date 20.011 0.001 27.53 317 ,0.001

year 20.062 0.006 210.8 317 ,0.001

age 0.115 0.0318 3.61 317 ,0.001

age2 20.007 0.002 23.17 317 0.002

Results of the GLMM (Poisson-distribution and log link-function) with the
explained variance by the random effect (Var.), the parameter estimate for fixed
effects (b), its standard error (se), t calculated from b and se, denominator
degrees of freedom (df) and significance of t-test (p).
doi:10.1371/journal.pone.0046165.t001

Figure 3. Relationship between arrival time at the colony and
annual reproductive success. The number of fledged chicks
(predicted values from model) is plotted against arrival time. separately
by year. The number of fledged chicks declined with arrival time. This
decline differed among years and became stronger during the study
period (see text for statistical details). For illustrative purposes the years
were combined into four periods and displayed separately. Only data
for males shown.
doi:10.1371/journal.pone.0046165.g003
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In all analyses of fitness consequences of breeding and arrival

time individual identity explained no variation (Table 1a, b, c)

which means analysing ARS with generalised linear models was

valid.

Selection on breeding time, i.e. the seasonal decline in

reproductive success with breeding time, became stronger over

time (interaction laying date*year, b=20.00160.0001, X2 = 79.7,

df = 1, p,0.001, GLM) (Fig. 2). As in breeding time, selection on

arrival time became stronger during the study period (interaction

arrival date*year, females: b=20.000660.0003, X2 = 4.40, df = 1,

p= 0.036, males: b =20.001260.0003, X2 = 20.1, df = 1,

p,0.001, GLM) (Fig. 3). The mean selection differential for

breeding time was 23.6 days (s.e. = 0.43) and for arrival time

23.8 days (s.e. = 0.65), while the respective standardised selection

differentials were 20.27 (s.e. = 0.03) and 20.26 (s.e. = 0.05)

(Table 2).

Mean ARS declined significantly during the study period

(b=20.06860.010, F1,22 = 50.5, p,0.001). As can be seen in

Fig. 4 reproductive success seemed to be stable until 1990 with on

average 2.2160.05 chicks fledged per breeding pair, from 1991 to

1994 it declined steeply, and after that seemed to level off with

only 1.0260.05 fledged chicks per pair on average. Colony-wide

reproductive success was not related to the number of breeding

pairs at the Vorsø colony (F1,21 = 0.011, p= 0.92). However, when

we tested for effects of delayed density dependence we found that

reproductive success was not affected by breeding density in the

previous year (F1,20 = 0.92, p = 0.35) but with a delay of two

(b =20.000360.0001, F1,19 = 5.73, p = 0.027) and three years

(20.000360.0001, F1,18 = 12.1, p = 0.003), respectively.

The proportion of prey species changed slightly during the

season but more strongly between years (Table 3). In the 1980s

bull rout was the most important prey species during pre-laying

and incubation (Feb–Apr) but was less often caught late during the

chick-rearing period (May–Jul), while the proportions of the other

species changed little. In the 1990s the within-season variation was

also small but much more strikingly the proportion of bull rout and

eelpout taken both early and late in the season dropped from on

average 25% to only 5%.

Monthly mean air temperatures increased by 0.10 to 0.15uC per

year but only significantly so in April (b= 0.1060.03, F1,19 = 11.5,

p= 0.003). Monthly mean water temperatures increased signifi-

cantly by 0.17uC per year in December (F1,13 = 13.0, p= 0.003)

while they changed only very little (20.05 to 0.01uC per year) in

the months January to May.

Table 2. Selection differentials (S) and standardised selection
differentials (i) on breeding and arrival time.

breeding time arrival time

year S i n S i n

1984 22.54 20.12 210 1.14 0.04 209

1985 22.88 20.18 211 21.71 20.09 226

1986 22.54 20.18 334 23.99 20.21 348

1987 23.12 20.20 307 22.70 20.17 344

1988 22.36 20.15 343 22.61 20.12 330

1989 21.16 20,07 255 20,22 20.01 316

1990 22.73 20.14 335 21.78 20.07 339

1991 21.60 20.11 233 22.69 20.10 334

1992 0.14 0.01 137 0.07 0.00 233

1993 23.26 20.23 239 23.20 20.15 251

1994 22.09 20.20 161 24.29 20.30 253

1995 25.17 20.45 209 210.23 20.68 267

1996 24.56 20.45 212 24.62 20.47 140

1997 27.07 20.59 220 28.05 20.61 158

1998 26.72 20.38 232 21.41 20.07 124

1999 25.79 20.36 238 23.22 20.24 77

2000 25.70 20.44 367 27.06 20.47 99

2001 25.08 20.40 252 29.05 20.66 81

2002 25.97 20.42 32 25.32 20.36 60

2003 23.56 20.31 17 22.63 20.29 42

2004 22.04 20.27 278 25.37 20.43 79

mean 23.61 20.27 23.76 20.26

n gives the sample size, i.e. number of breeding pairs (‘breeding time’) and
number of individuals (‘arrival time’) for which reproductive success was
recorded.
doi:10.1371/journal.pone.0046165.t002

Figure 4. Changes in reproductive success and population
numbers during the study period. Mean 6 se of annual
reproductive success at the Vorsø colony (filled circles), and number
of breeding pairs (solid line) for the period 1981 until 2004.
doi:10.1371/journal.pone.0046165.g004

Table 3. Prey choice of cormorants at the Vorsø colony.

February–April May–July

1980–83 1993–94 1980–83 1993–94

bull rout
(Myoxocephalus scorpius)

39 (31–57) 5 (0–13) 17 (10–28) 2 (0–8)

eelpout
(Zoarces viviparous)

15 (0–29) 8 (0–16) 24 (7–45) 4 (0–18)

dab
(Limanda limanda)

21 (0–39) 47 (23–74) 29 (7–55) 53 (48–57)

other saltwater species1 25 (10–40) 38 (28–49) 30 (20–40) 36 (23–52)

freshwater species 0 4 (0–9) 2 (0–8) 7 (0–22)

Mean (range) percentage of weight of caught fish species during pre-laying and
incubation (Feb–Apr) and chick-rearing (May–Jul). Percentage of weight per
species in prey was determined from otoliths in pellets collected at the colony.
1including eel (Anguilla anguilla) and three-spined stickleback (Gasterosteus
aculeatus).
doi:10.1371/journal.pone.0046165.t003
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There was evidence that the intensity of selection on breeding

time, quantified as the slope from the GLM, increased with

ambient temperature. In the best five models the seasonal decline

in reproductive success was positively correlated with January

water temperature, January air temperature, May air temperature,

May water temperature or March-May NAO index (Table 4).

However, these variables did not fully explain the increasing

selection as year was significant in each model. Population density

did not affect the strength of selection (Table 4).

Discussion

Although it is generally assumed that timing of migration in

birds is important for individual fitness, documented evidence for

this is relatively scarce [37]. We found here that annual

reproductive success, measured as the number of fledged chicks,

indeed declined with arrival time in the studied cormorant colony

(Fig. 3). Arrival time at the colony and breeding time were

positively correlated and the fitness consequences of arrival time

could be explained by this close link because reproductive success

declined during the breeding season, which is a common pattern

in birds, e.g. [6,38,39].

There is one general problem with the measurement and

interpretation of phenotypic selection [40]: the observed relation-

ship between fitness and trait, here timing of migration and

breeding, could possibly be caused by a third, unmeasured,

variable that affects fitness and trait simultaneously. In the context

of avian breeding time this problem is generally discussed as the

distinction between the ‘timing hypothesis’ e.g. [7,8] versus the

‘quality hypothesis’,e.g. [8,41]. While under the first a true causal

relationship between timing and reproductive success exists, under

the second individuals differ in ‘quality’ and individuals of ‘good

quality’ are able to raise many offspring and to breed early. The

main problem here is to identify and measure ‘quality’, i.e. the

variable being possibly responsible for the correlation between

fitness and trait. Consequently, rather than trying to include this

variable in the selection analysis, it is more realistic to address this

issue by experimentally manipulating breeding time [6] or by

comparing phenotypic with genotypic selection [40] and so far the

evidence for avian breeding time points to a causal relationship

between timing of breeding and reproductive success [6,7,42–44].

We also found that the selection on arrival and breeding time

has increased during the study period (Figs. 2 and 3). Climate

change has been shown to have advanced the prey phenology in

several predator-prey systems [45,46] and if the predator fails to

track this advancement this mis-match can lead to increased

selection for a phenological advancement in the predator [e.g. 13].

Arrival and breeding time showed no advancement in the

cormorants (Fig. 2). This pattern would hence be consistent with

climate change creating a phenological mis-match between

predator and prey.

Cormorants prey almost entirely on fish e.g,. [47,48,49] and it

has been shown that prey abundance strongly affects reproductive

success in cormorants and other seabirds [50–55]. The abundance

of a relevant prey species can easily change during the breeding

season, especially in open waters where certain fish species migrate

in or out of the shallow areas, which are preferred hunting areas of

the cormorants [24]. Climate change may have affected this

seasonal pattern of prey abundance by advancing the appearance

and disappearance of certain species in the cormorants’ hunting

areas. Increasing temperatures may not only affect the phenology

[56–58] but also the life-history and thereby directly the

abundance of fish available as prey [59].

Because no data on fish phenology in the cormorants’ preferred

hunting areas are available, we could only indirectly test whether

increasing temperatures have intensified selection on timing. To

test this we regressed selection intensity, measured as the slope

from the corresponding GLM, against temperature and NAO and

found that the strength of selection was positively correlated to

winter and spring temperatures. There was no evidence that

population density, as measured by the number of breeding pairs

in the colony, would affect the strength of selection. While

temperatures increased as expected from climate change [60] this

trend was statistically non-significant for the climatic variables that

correlated with the strength of selection. With 15 years the

available data set for water temperatures was however not very

large and it may hence have been a power problem to detect

significant trends in climatic variables. Furthermore, these

temperatures explained only part of the increase in selection as

year was significant in all models.

While no data on fish abundance was available, we could

analyse relative abundance of fish species that the studied

cormorants caught from regurgitated pellets. The relative prey

abundance changed only little over the season but strikingly over

time (Table 3). This does not necessarily imply that absolute

abundances did not change as the analysis of pellets only indicates

choice or relative abundances but not absolute abundances. We

however think that the most parsimonious explanation would be

Table 4. Relationship between selection on breeding time, measured as slope of GLM, and year, climatic variable and population
density, measured as number of breeding pairs.

rank AIC b se F1,12 b se F1,12 b se F1,11

1 293.11 20.002 0.0004 19.9*** 0.010 0.002 14.1** 21.2e26 2.8e26 0.21 n.s.

2 289.99 20.001 0.0005 7.90* 0.005 0.002 9.18* 23.5e26 3.1e26 1.30 n.s.

3 287.30 20.002 0.0005 18.1** 0.006 0.002 5.70* 26.2e27 3.4e26 0.03 n.s.

4 286.05 20.002 0.005 13.3** 0.004 0.002 4.19{ 23.6e26 3.6e26 1.00 n.s.

5 285.46 20.002 0.005 9.31* 0.006 0.003 3.66{ 21.4e26 3.6e26 0.14 n.s.

The five best models are presented here and the climatic variables included in the model were: 1) mean January water temperature, 2) mean January air temperature, 3)
mean May air temperature, 4) March-May NAO index and 5) mean May water temperature.
n.s. p.0.28,
{p,0.10,
*p,0.05,
**p,0.01,
***p,0.001.
doi:10.1371/journal.pone.0046165.t004
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a change in prey abundance rather than a change in preference of

the cormorants, which are generalist predators [48,49].

In conclusion, we found that – as expected but rarely reported –

migration time affects reproductive success because early arriving

individuals are able to breed early and reproductive success

declines during the breeding season. The seasonal decline in

reproductive success was positively correlated with winter and

spring climate, i.e. selection was stronger after warmer winters and

springs. Selection also became stronger during the study period.

This increasing selection could not be fully explained, however, by

warming temperatures. The relative abundance of prey species

taken by the cormorants changed during the study period, which

likely indicates a change in abundance of these species. It hence

seems that a change in prey abundance, whether driven by climate

change or not, would have led to the increased selection on

breeding time.

Consistent selection on a heritable trait should lead to an

evolutionary response. Currently, we do not know whether timing

of breeding and migration are heritable in cormorants but several

aspects of migratory behaviour have been shown to be heritable

reviewed in [61,62] and to respond to selection [63,64]. Timing of

breeding also generally shows moderate heritability in birds

[43,44,65,66]. Consequently, we might expect an evolutionary

response to selection, which would however be slow due to the

long generation time of cormorants.
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