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Abstract

The characterization of bacterial communities using DNA sequencing has revolutionized our ability to study microbes in
nature and discover the ways in which microbial communities affect ecosystem functioning and human health. Here we
describe Serial Illumina Sequencing (SI-Seq): a method for deep sequencing of the bacterial 16S rRNA gene using next-
generation sequencing technology. SI-Seq serially sequences portions of the V5, V6 and V7 hypervariable regions from
barcoded 16S rRNA amplicons using an Illumina short-read genome analyzer. SI-Seq obtains taxonomic resolution similar to
454 pyrosequencing for a fraction of the cost, and can produce hundreds of thousands of reads per sample even with very
high multiplexing. We validated SI-Seq using single species and mock community controls, and via a comparison to cystic
fibrosis lung microbiota sequenced using 454 FLX Titanium. Our control runs show that SI-Seq has a dynamic range of at
least five orders of magnitude, can classify .96% of sequences to the genus level, and performs just as well as 454 and
paired-end Illumina methods in estimation of standard microbial ecology diversity measurements. We illustrate the utility of
SI-Seq in a pilot sample of central airway secretion samples from cystic fibrosis patients.
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Introduction

Microbes inhabit all environments on earth and contribute to

ecosystem function in ways that are only vaguely understood.

Decades of culture-based study have provided a solid foundation

for our understanding of microbial physiology, genetics, and

evolution, but investigations of microbial ecology have been

notoriously difficult due to the small size and vast diversity of

microbes. Recent developments of culture-independent methods

have illuminated the microbial ecosystems that are found in

terrestrial and aquatic environments, as well as those intimately

associated with organisms. Of particular interest are microbial

ecosystems within the human body (the human microbiome), as

they are expected to profoundly impact human health and disease.

For example, bacterial communities within human intestines are

being studied for their effects on atopic and bowel diseases [1,2],

and altered structure of bacterial communities in the vagina is

associated with susceptibility to a plethora of diseases including

bacterial vaginosis and sexually transmitted infections [3].

The development of next-generation sequencing technology has

enabled the large-scale investigation of microbial communities and

stimulated broad interest in microbiota research. Similar to earlier

studies that relied on Sanger sequencing, most of the next-

generation microbiota studies have focused on a portion of the

taxonomically informative 16S rRNA gene. 454 pyrosequencing

was the first and is still the dominant next-generation sequencing

technology applied to microbiota research because it can produce

reads of sufficient length for appreciable taxonomic resolution.

This need for adequate read length has generally hampered the

use of Illumina sequencing by synthesis technologies that produce

shorter reads despite the fact that the vastly higher throughput of

the Illumina systems would enable much deeper and cost-effective

sampling. Several groups have circumvented this problem by

overlapping Illumina reads produced by paired-end sequencing

(sequencing reads produced from opposite ends of the same

template) to provide longer sequence albeit at the cost of decreased

taxonomic resolution due to the unavoidable sequencing of the

two highly conserved primer-binding regions [4,5,6,7,8,9].
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Here we propose 16S rRNA gene-based community analysis by

Serial Illumina Sequencing (SI-Seq), which provides a taxonomic

resolution similar to 454 pyrosequencing with the throughput and

cost-effectiveness of Illumina sequencing. SI-Seq is able to get the

best of both technologies by adapting Illumina sequencing

technology to read three hypervariable regions of the 16S rRNA

gene. Here we describe the development of SI-Seq, its validation

using single species controls and a mock community, and its

comparison to 454 FLX 16S rRNA sequencing of 56 sputum

samples collected from Cystic Fibrosis patients.

Materials and Methods

Control communities
Genomic DNA was extracted from overnight cultures of five

bacterial species (Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus

aureus, Erwinia amylovora, and Burkholderia cepacia) using the Gentra

Puregene Cell kit (Qiagen). Genomic DNAs were quantified using

the Qubit Fluorometer (Life Technologies) and mixed in

abundances that differed 10-fold.

CF sample collection and processing
Ethics Statement. Protocols for specimen collection, distri-

bution and use were approved by the University Health Network

(UHN) and St. Michael’s Hospital Research Ethics Boards.

Central airway secretion samples were aspirated intraoperative-

ly using sterile syringes at the time of lung explantation, from

consenting patients with an established diagnosis of CF undergo-

ing transplantation in the Toronto Lung Transplant Program

between July 2008 and December 2010. Sputum samples were

voluntarily produced by consenting CF patients attending the CF

clinic at St. Michael’s Hospital. Samples were flash frozen in liquid

nitrogen and stored in cryovials at 280uC until use. Whole

genomic DNA was extracted using the DNeasy Blood & Tissue

Kit, with lysozyme pretreatment (Qiagen, Toronto, ON).

16S rRNA amplicons
Primers for amplification and sequencing were designed using

consensus nucleotides at each position of the Greengenes 16S

rRNA alignment while also considering the high melting

temperatures (.70uC) required for Illumina technology (Table 1).

Primers were assessed for their matching to reference sequences

using the ‘‘Probe Match’’ function of the Ribosomal Database

Project (http://rdp.cme.msu.edu/probematch/search.jsp). Multi-

plexing versions of amplification primers V5+791 and V7-1104

had 8-mer barcodes attached to their 59 ends. Eight barcodes were

used for initial SI-Seq development, whereas a subsequent set of

96 barcodes was designed using the barcrawl program [10] for

amplification of the CF sputum templates (Table S1).

Initially each 25ul PCR consisted of 1X Taq buffer (Invitrogen

or Fermentas), 1.5 mM MgCl2, 0.2 mM each primer, 0.2 mM

dNTPs, 50 ng DNA and 0.4 U Taq polymerase (Native,

Invitrogen); later reactions were also performed using the Kapa2G

Robust Hotstart Ready Mix (Kapa Biosystems), which provided

more reliable amplification. Minus-template control reactions

were always included. Amplification conditions were: 2 minutes at

94uC; 30 cycles of 30 seconds at 94uC, 30 seconds at 56uC or

58uC, and 30 seconds at 72uC; followed by 5 minutes final

extension at 72uC. All reactions were prepared in a sterile PCR

hood.

Four independent 25ul PCR reactions were generated for each

patient template. Replicate reactions were then pooled and

concentrated using purification columns (Fermentas). To ensure

removal of primers and any nonspecific amplicons, reactions were

then run on 1% low melting temperature agarose gels and

amplicons were extracted from agarose using Agarase (Fermentas)

or purification columns (Fermentas), according to the manufac-

turer’s instructions. Amplicons were quantified using the Qubit

dsDNA BR assay kit (Life Technologies) and equal quantities of

product from each patient were pooled before preparation for

Illumina sequencing.

DNA library construction and Illumina sequencing
Libraries were constructed based on Illumina’s paired-end

library sample preparation protocol with the exception of starting

at the ‘A’ base overhang addition, omitting the fragmentation and

end repair steps to maintain the 16S rRNA gene amplicons.

Libraries were loaded onto the Illumina cBot cluster station for

cluster generation according to the manufacturer’s instructions.

Sequencing was performed on an Illumina GA-IIx, and the

sequencing recipe used is available for download in xml format

from the University of Toronto Centre for the Analysis of Genome

Evolution & Function (CAGEF) website (www.cagef.utoronto.ca).

First strand sequencing began with the Illumina sequencing primer

for eight cycles to read the barcode, followed by a denaturation

chemistry and hybridization with a mix of the V5 forward and V7

reverse primers at 5 mM final concentration each. After 36 cycles

of sequencing, another round of denaturation was performed and

a mixture of V6 forward and V6 reverse primers (5 mM each) was

hybridized for another 36 cycles of sequencing. The second strand

was then synthesized using the paired-end protocol and the same

procedures were carried out to generate the barcoded reads and

reads for V5, V7 and V6 forward and V6 reverse. Data were

pipelined using the standard Illumina computation pipeline.

Library construction, sequencing, and data pipelining were

performed at CAGEF.

454 pyrosequencing
Barcoded amplicons from 56 CF sputum samples were pooled

and then split in half for sequencing using SI-Seq (described above)

or 454 pyrosequencing; therefore, the same amplicons generated

using primers V5+791 and V7-1104 (Table 1) were sequenced by

Table 1. Primers.

Primer Name Primer Sequence (59-39) % Match*

V5+791 GGGKAKCRAACVGGATTAGATACCCBGGTAGTCCWNRCHSTAAACGWTG 70.4

V6+953 (V6a) AAGCRGHGGADYRTGYGGYTYAATTCGANGMWAMGCGMRRAACCTTACC 67.3

V6-976 (V6b) CTCACRRCACGAGCTGACGACRRCCATGCASCACCT 88.5

V7-1104 GGSCRTRMKGAYTTGACGTCRYCCCCDCCTTCCTCC 79.7

*RDP Database match (% Bacteria), including perfect match to sequences of ‘Good’ quality and at least 1200nt
doi:10.1371/journal.pone.0045791.t001

Serial Illumina Sequencing of the Microbiota
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both technologies. For 454 sequencing, amplicons were submitted

to The Centre for Applied Genomics (Toronto, ON) for adaptor

ligation and one half plate of single read pyrosequencing on a 454

FLX Titanium sequencer. The average raw 454 read length was

386nt (range 40 to 677); QIIME quality trimming (see below)

resulted in an average read length of 415nt (range 200 to 573).

Structuring local version of reference databases
Sequence reads were simulated using JAligner [11] and in-

house Java scripts as follows. Sequencing primers (Table 1 or

published [4,5,12,13]) were aligned to each taxon in the database

(Bergey, Silva, or Greengenes) using JAligner with the EDNA-

FULL matrix, and gap opening and extension penalties of 15 and

1, respectively. DNA fragments downstream from the aligned

primer (SI-Seq), or starting at the 59 end of the aligned primer (454

and Illumina Paired-End), were then extracted and concatenated.

The proportion of each read set that could be assigned to the

genus level was determined by classifying the simulated reads using

the RDP Classifier [14] (trained with the same read structure) and

choosing the taxonomic classification with bootstrap support

greater than or equal to 0.7.

Preparing sequence reads for classification
Sequence data in FASTQ format were subjected to quality

control analysis and prepared for taxonomic classification using an

in-house Java application made available on CAGEF website

(Figure S1). Reads were assigned to patient samples based on the

barcode data by concatenating the two barcodes sequences

obtained from each of the two individual paired-end reads and

comparing the sequences to a reference barcode dataset. Barcode

sequences were required to match a reference barcode sequence at

13 of 16 sites to be retained. Read quality was checked using the

FASTQ data. Multiple quality-filtering measures were tested with

the controls and those with .6 bases with a Phred quality score

below 20 were discarded.

Since SI-Seq produces reads in two possible orientations it was

necessary to concatenate the two paired-end reads in both

orientations (i.e. Read1::Read2 and Read2::Read1) to ensure that

one of resulting concatenated sequences was reconstructed in the

proper orientation to match the reference database. Paired reads

were trimmed to discard the leading 8-bp barcode and then

concatenated in both orientations. The concatenated reads were

then individually mapped by UBLAST [15] to a Greengenes

dataset (reconstructed with simulated reads structured in

V5::V6a::V7::V6b orientation) using an identity cutoff of 0.8.

The concatenated read that provided the best UBLAST result was

retained as the ‘‘correct orientation’’.

OTU clustering and taxonomic classification
SI-Seq reads. Operational Taxonomic Units (OTUs) were

identified using the OTU_PIPE function within USEARCH [15];

this step also identifies and excludes chimeric reads. The

appropriate identity cutoff for OTU clustering was determined

empirically using the single species controls, as follows. We

determined the average pairwise nucleotide identity of SI-Seq

structured sequences from all members of the genera Pseudomonas

(89% average pairwise identity) and Bacillus (85%) in the Bergey

database. We clustered starting at the average of these two

identities (87%) and repeated the process using identities of 97%,

95%, 93%, 90%, 85%, 83%, and 80%. The consensus sequences

for each cluster at each identity cutoff were then classified using

the RDP Classifier [14] and the clustering identity that most

closely recapitulated the single species input with a low level of

false positive classification was chosen. Because 87% was found to

be the average nucleotide identity within Pseudomonas and Bacillus,

and also had the optimal empirical results with the single species

controls, we performed all clustering of SI-Seq data using an

identity cutoff of 87%. Seed sequences from each cluster from

each community were classified by further clustering with the SI-

Seq structured Silva database using USEARCH, with parameters

values chosen to ensure the best hit was chosen (--maxaccepts = 0

and --maxrejects = 0).

Additional classifications were performed on each read (i.e., not

clustered into OTUs) using the RDP Classifier [14]. Reference

databases included three versions of the Bergey database: the SI-

Seq structured database, the V5 454 simulated dataset, and the

full-length database. RDP assignments with greater than 0.8

bootstrap support were incorporated into OTU tables using an in-

house PERL script.

454 reads. 454 pyrosequencing data files were de-barcoded

and quality filtered using the QIIME pipeline [16] with default

parameters except for: a minimum quality score of 20, a maximum

primer mismatch of 15, and a maximum of 2 errors in the

barcode. A separate pipeline was run using a minimum quality

score of 25 and a maximum primer mismatch of 5. The resultant

reads were analyzed using the QIIME analysis pipeline with

default parameters, unless otherwise indicated. Read trimming

and filtering were also done separately using Mothur [17] with the

following parameters: minlength = 200, maxlength = 300, max-

ambig = 0, maxhomop = 10, qwindowsize = 25, qwindowaver-

age = 30, bdiffs = 1, pdiffs = 10.

For both read sets (454 and SI-Seq) questionable OTUs (i.e.,

below the abundance cutoff) were removed by manual inspection

of OTU tables. Abundance cutoffs were determined by run-

specific single species controls, as described in the Results section

and shown in Tables S2 & S3.

Community ecology analyses
OTU tables for 454 and SI-Seq sequences were analyzed using

QIIME and the R package VEGAN [16,18]. Rarefaction analyses

for assessment of community coverage were performed in QIIME

using 100 rarefactions for each sequence sampling step. The alpha

diversity metrics Chao1, observed species, and Phylogenetic

Diversity (PD) whole tree were estimated in QIIME during

rarefaction. The beta diversity metrics Bray-Curtis (BC), un-

weighted UniFrac (UF), and weighted UniFrac (WUF) were

estimated in QIIME on OTU tables rarefied to the lowest number

of sequences per sample (454: 478 sequences; SI-Seq: 38,120

sequences).

The reference tree used for estimating phylogenetic based

metrics with the SI-Seq data was inferred using full-length Silva

database hits. Full length sequences were aligned using gap

opening and extension costs of 30 and 10, respectively, and

alignments were trimmed to remove gaps at the beginning and

end of the alignment that were due differences in sequence length.

Phylogenetic inference was performed using the Neighbor-Joining

algorithm with 1000 bootstrap pseudoreplicates. Alignment and

phylogenetic inference were performed in CLC Genomics

Workbench version 4.9 (Århus, Denmark).

Principal components analyses of 454 and SI-Seq data were

performed separately in QIIME [16], using BC, UF, or WUF

dissimilarity matrices. Procrustes analysis was used to compare the

communities in the 454 and SI-Seq datasets in QIIME. Separate

analyses were performed on the BC, UF, and WUF derived

principal components. 1000 Monte Carlo simulations were

performed to assess significance of the Procrustes matrix correla-

tions. Mantel tests with 1000 permutations were also performed in

QIIME to assess significance.

Serial Illumina Sequencing of the Microbiota
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Figure 1. Serial Illumina Sequencing (SI-Seq). (A) Schematic of the 16S rRNA locus with the hypervariable regions indicated as cylinders. The V5
through V7 hypervariable regions are PCR amplified with using universal primers tagged with 8-mer barcodes on their 59 ends. (B) Ligation of Illumina
paired-end adaptors to the 16S rRNA amplicon. (C) 59 attachment to of each template onto the Illumina flowcell followed by cluster generation (not
shown) and serial sequencing of each template using three sequencing primer sets: Illumina sequencing primers to read barcodes (bc); a mix of V5
and V7 primers; and a mix of V6a and V6b primers. Note that each template can bind in either the V5:V6:V7 or the V7:V6:V5 orientation. (D) Fixed
templates are flipped on the flowcell and regenerated for pair-end sequencing. Serial sequencing as described in (C) is repeated. (E) SI-Seq data
structure showing the barcode, the V5 read and the V6a read, or the barcode, the V7 read and the V6b read.
doi:10.1371/journal.pone.0045791.g001
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Figure 2. In silico simulation of next-generation 16S rRNA sequences based on Bergey database. (A) The proportion of simulated
sequences that can be assigned to the genus level using the RDP Classifier for various next-generation 16S rRNA gene sequencing approaches. For
the Illumina paired-end data, the blue bars indicate 72nt paired-end reads, while the red bars indicate 144nt paired-end reads (similar to the expected
150 bp Illumina MiSeq reads). For the SI-Seq data, the blue bar indicates 36nt reads, while the red bar indicates 72nt reads. 454 data corresponds to
400nt reads. Full length corresponds to sequencing of the entire 16S rRNA gene. (B) The proportion of reads assigned to the genus level as a function
of total concatenated sequence length.
doi:10.1371/journal.pone.0045791.g002
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Species Accumulation curves were calculated in VEGAN [18],

using rarefied OTU tables. Patient samples were randomly drawn

and the cumulative number of OTUs was calculated. This was

repeated 100 times. An additional curve was calculated after all

OTUs with a combined abundance lower than 0.1% were

removed from the dataset.

Results

Description of SI-Seq method
We sequenced the V5 through V7 region of the 16S rRNA

locus to balance taxonomic resolution with fragment size

restrictions imposed by Illumina sequencing technology. PCR

amplicons of ,300 bp were generated by amplification of the 16S

rRNA gene using bacterial universal primers with 59 barcodes

(Table 1 & Table S1). These amplification products were pooled

and libraries were prepared for SI-Seq Illumina sequencing as

described in the Materials and Methods. The resulting SI-Seq

library consisted of templates with 16S rRNA V5–V7 amplicons

flanked by the barcoded universal 16S rRNA PCR primers

flanked by the standard Illumina paired-end adaptors (Figure 1). It

is important to recognize that each individual SI-Seq template has

the potential to bind to the flowcell in either the V5–V7

orientation or the V7–V5 orientation (Figure 1).

As discussed in the Methods section, the SI-Seq library was

serially sequenced using multiple template-specific primer sets.

The first sequencing step used the standard Illumina sequencing

primer to sequence off the Illumina adaptors and into the barcode

attached at the 59 end of the 16S rRNA PCR primers. After eight

cycles, this sequencing primer was removed by denaturation and

replaced with a mix of V5 and V7 sequencing primers. These

primers hybridize in conserved 16S rRNA regions just outside of

the appropriate hypervariable regions and sequence into the

hypervariable regions. Sequencing was performed with these

primers for 36 cycles and followed by another round of

denaturation and the addition of two distinct V6 sequencing

primers [V6+953 (V6a) and V6-976 (V6b)]. The V6 sequencing

primers hybridize to two conserved regions on opposite sides of the

V6 hypervariable region and sequence into the V6 region from

both orientations. After another round of sequencing, the two V6

primers were removed by denaturation and the clusters were

flipped and regenerated using the Illumina pair-end sequencing

protocol. After pair-end cluster generation the entire process was

repeated by serially sequencing with the Illumina barcode primer,

the V5 and V7 primers, and finally the two V6 primers (Figure 1).

Overall, a total of six sequencing steps were performed with 144

nucleotides read from the 16S rRNA locus (4 sequencing steps of

36 cycles each) and the eight nucleotide barcode read twice. The

Figure 3. The effect of quality filtering on taxonomic classification. Cumulative distributions are shown for the proportion of sequences
assigned to a particular level of taxonomy. Correctly classified sequences are shown in the top panel; incorrectly classified sequences are shown in the
bottom panel. Bsu = B. subtilis; Pae = P. aeruginosa. The numbers following Bsu and Pae indicate the quality filtering applied. The first number is the
Phred score cutoff and the second number is the number of sites allowed with a quality score below the Phred cutoff. For example, 35 2 indicates
that sequences were only retained if they had two or fewer sites with a Phred score lower than 35. ‘‘none’’ indicates no quality filtering was
performed.
doi:10.1371/journal.pone.0045791.g003
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primers used and specific number of cycles performed can be

easily altered to fit specific needs.

SI-Seq data is generated in two possible orientations depending

on how the template binds to the flowcell. The first orientation is

barcode:V5:V6a for read one of the pair and barcode:V7:V6b for

read two, while the second orientation is the reverse with

barcode:V7:V6b for read one and barcode:V5:V6a for read two

(Figure 1). These two orientations can be distinguished by a rapid

UBLAST analysis [15] as described in the Materials and Methods.

To compare SI-Seq to other commonly used 16S rRNA

sequencing protocols (e.g., 454 and Illumina Paired-End), we

simulated reads of varying lengths using published primer

sequences [4,5,12,13]. From these simulated reads we calculated

the proportion of reads that could be assigned to the genus level

using the RDP Classifier [14]. As shown in Figure 2, SI-Seq and

454 were similar in their ability to produce a high proportion of

reads that could be assigned to the genus level. These data indicate

that SI-Seq is in theory comparable to 454 in its ability to produce

reads with enough sequence variation for good taxonomic

Figure 4. Observed and expected abundances of taxa in mock community control. Observed abundances are given as totals and as
barcode-separated datasets. Expected abundances have been corrected for the number of rRNA operons present in each species’ genome.
doi:10.1371/journal.pone.0045791.g004

Figure 5. Rarefaction curves from 100 resamplings of each patient’s community at different sequencing depths. The y-axis indicates
the average Phylogenetic Diversity (PD) whole tree diversity estimate for each sample at each sequencing depth. Data shown are from the 454 OTU
table (left), and SI-Seq OTU table (right). Each line corresponds to one sample listed in Table 3.
doi:10.1371/journal.pone.0045791.g005

Serial Illumina Sequencing of the Microbiota
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assignment, yet being Illumina-based, produces over 100-fold

more reads at similar cost.

Validation with single species controls
Amplicons from either Bacillus subtilis or Pseudomonas aeruginosa

genomic DNA were sequenced separately by SI-Seq and the

resulting reads were used to determine the overall quality of the

SI-Seq data and how quality filtering influenced the accuracy of

taxonomic classification.

Filtering the sequences to obtain the optimal dataset is a balance

between retaining too many sequences of poor quality that may

give erroneous taxonomic classifications in order to favor dataset

size (type I error) versus discarding too many moderate quality

sequences in order to favor dataset quality (type II error). We

filtered sequences for quality using four different cutoffs and then

classified the retained sequences using the RDP Classifier [14]

(Table S2); RDP reference sequences were trimmed to retain only

those regions of the 16S rRNA locus recovered by the SI-Seq

protocol.

We calculated the rate of taxonomic classification error by

calculating the number of SI-Seq sequences whose taxonomy was

inconsistent with B. subtilis or P. aeruginosa. Across several SI-Seq

development runs, this average rate of classification error was

,0.03%. Figure 3 shows the cumulative distributions of sequence

proportions assigned to each taxonomic level, for both the correct

and incorrect classifications. These data highlight the usefulness of

quality filtering: the stricter the quality filter, the larger the

proportion of sequences assigned to the genus level. This was

particularly apparent for B. subtilis. Also evident is that the

overwhelming majority of the single species datasets are comprised

of sequences that are classified correctly.

Because every Illumina run varies in quality, we included a

single species control as one barcoded sample to empirically

determine the rate of classification error. This value is then used as

a lower, run-specific threshold for elimination of low abundance

OTUs.

Validation with a mock community
A mock community control was sequenced to determine

whether PCR amplification introduced taxonomic biases and to

identify the dynamic range of SI-Seq taxon detection. Our control

community consisted of genomic DNA from Bacillus subtilis,

Pseudomonas aeruginosa, Staphylococcus aureus, Erwinia amylovora, and

Burkholderia cepacia that were mixed at abundances that differed

from each other by an order of magnitude. As shown in Figure 4,

the observed taxon abundances were nearly identical to those

expected. Furthermore, we were able to detect taxon abundances

that ranged over five orders of magnitude. The taxon of lowest

abundance, B. cepacia, had only 120 pg of total genomic DNA

added to the original pool, of which less than 1,000th of which

would be 16S rRNA; thus, the reliable detection of Burkholderia in

all separate barcoded samples verifies the repeatability and

sensitivity of SI-Seq.

Comparison of SI-Seq to 454 FLX Titanium
To further validate SI-Seq, we sequenced 56 sputum samples

collected from CF patients using both SI-Seq and 454 FLX

Titanium. Samples for both platforms were taken from the same

PCR stock to ensure no PCR bias. Sequence reads from 454 and

SI-Seq were filtered for quality and de-barcoded either using

QIIME (454) or a pipeline developed in-house (SI-Seq) (as

described in Materials and Methods). The range of sequences

obtained per sample differed substantially between the two

sequencing approaches: between 478 and 11,405 quality reads

were obtained using 454, whereas between 38,120 and 859,764

quality reads were obtained using SI-Seq (Table 2). The average

length for the 454 reads was 415nt, with 33% of the reads shorter

than the average. A rarefaction sampling analysis indicated that

the number of reads obtained for each patient sample saturated

the community diversity in all cases for the SI-Seq data and in

most cases for the 454 data (Figure 5). Both rarefaction analyses

suggest that ,1,000 sequences would be sufficient for character-

izing the majority of bacteria present in these CF lung

communities. The saturation of community diversity with such

low read numbers indicates that a much higher degree of

multiplexing would further reduce per patient sequencing costs

without reducing community information.

Table 2. Cystic Fibrosis samples.

Number of Sequences

Sample Time 1 Time 2 Time 3

Patient type SI-Seq 454 SI-Seq 454 SI-Seq 454

0002 Sputum 319,749 11,405 339,814 7,842

0004 Sputum 474,226 8,467 443,729 3,941

0005 Sputum 547,415 7,973 472,506 3,703

0006 Sputum 859,784 8,008 824,181 8,471

0007 Sputum 484,648 4,299 538,229 6,587 613,251 5,527

0028 Sputum 383,201 1,650 347,991 3,179

0035 Sputum 488,906 1,620 363,620 2,008

0037 Sputum 286,778 2,069 205,463 581

0052 Sputum 86,380 570 103,260 1,876 100,212 1,089

0060 Sputum 567,023 1,877 799,027 4,760 438,495 4,721

0064 Sputum 418,650 4,075 241,436 4,162 495,277 4,138

0068 Sputum 437,179 3,189 328,141 3,248

0073 Sputum 360,834 5,418 468,731 6,364

0077 Sputum 517,309 6,827 576,069 5,161 488,426 6,848

0082 Sputum 554,580 7,614 692,440 8,516

0083 Sputum 315,906 5,127 509,827 6,394 139,260 580

0089 Sputum 288,846 938 167,530 1,230

0092 Sputum 38,120 478 81,624 526 315,702 2,088

0096 Sputum 378,450 960 371,370 1,400 299,837 1,489

0104 Sputum 349,007 1,855 157,340 1,276

0105 Sputum 46,065 1,170 159,400 980

0106 Sputum 354,331 1,999 190,479 683

0107 Sputum 183,695 947 221,825 1,392

0109 Sputum 77,311 1,176 97,820 1,892

S1 Airway 11,426,004

S2 Airway 7,037,404

S3 Airway 1,385,423

S4 Airway 1,448,413

S5 Airway 7,191,912

S6 Airway 2,149,307

S7 Airway 3,271,206

S8 Airway 3,380,628

S9 Airway 6,546,059

S10 Airway 2,495,002

doi:10.1371/journal.pone.0045791.t002
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Figure 6. Comparison of phylogenetic diversity (PD). Whole tree PD diversity measurements from the 454 and SI-Seq analysis using rarefied
OTU tables with 478 reads per patient for 454 and 38,120 reads per patient for SI-Seq. Very strong correlation is observed between the two
approaches.
doi:10.1371/journal.pone.0045791.g006

Table 3. Taxonomic Classification Comparison.

Proportion of Sequences Classified to Each Taxonomic Level

Platform Template1 Ref.DB2 Domain Phylum Class Order Family Genus

454 PAO1 FL 0 0 0.29 0 0.55 0.16

454 PAO1* FL 0 0 0.17 0 0.20 0.63

454 PAO1 V5 0 0 0.25 0 0.58 0.17

454 PAO1* V5 0 0 0.14 0 0.20 0.65

454 PAO1 SI-Seq 0.76 0.18 0.06 0 0 0

SI-Seq PAO1 FL 0.91 0.09 0 0 0 0

SI-Seq PAO1 V5 0.56 0.37 0.07 0 0 0

SI-Seq PAO1 SI-Seq 0 0 0.03 0 0.06 0.91

454 CFS FL 0.01 0 0.14 0.02 0.27 0.56

454 CFS* FL 0.01 0 0.06 0 0.08 0.85

454 CFS V5 0.01 0 0.13 0.02 0.28 0.57

454 CFS* V5 0.01 0 0.05 0 0.08 0.86

454 CFS SI-Seq 0.82 0.13 0.04 0 0 0.01

454 CFS-SS SI-Seq 0.14 0.05 0.10 0.04 0.06 0.61

454 CFS-HQ V5 0.01 0 0.13 0.02 0.28 0.56

SI-Seq CFS FL 0.91 0.06 0.01 0.01 0 0.01

SI-Seq CFS V5 0.62 0.27 0.07 0.02 0 0.01

SI-Seq CFS SI-Seq 0.01 0 0.01 0 0.02 0.95

1Template sequenced: PAO1, P. aeruginosa PAO1; CFS, CF sputum community; CFS-SS, CF sputum community with 454 reads trimmed to correspond to the SI-Seq data
format; CFS-HQ, CF sputum community using only high quality 454 reads (Q.25). *indicates reads were trimmed using Mothur [17] instead of QIIME [16].
2Reference Database: FL, full length database sequences; V5, all database sequences trimmed to 400 bp starting at our V5 primer; SI-Seq, database sequences formatted
to correspond to the SI-Seq read structure.
doi:10.1371/journal.pone.0045791.t003
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To compare within sample diversity estimates from 454 and SI-

Seq communities, we calculated alpha diversity (Phylogenetic

Diversity) on rarefied OTU tables (454: 478 reads per patient; SI-

Seq: 38,120 reads per patient). It is important to use rarefied data

to normalize the number of sequences per sample; this is because

samples with greater sequencing depth are expected to have

higher diversity due to sequence coverage alone. Alpha diversity

Figure 7. Relative proportions of bacterial orders found in each sample as assessed by SI-Seq and 454 sequencing approaches. Note
that the relative taxonomic structure of the communities inferred for each sample are nearly identical using the two methods, although SI-Seq
generates ,100-times more data, thereby permitting a higher level of resolution and larger dynamic range. Data is based on OTUs collapsed to the
order level using the MEGAN ver4 software package [35]. Sample IDs are presented in the center of the figure. Relative abundance of bacterial orders
for each sample are presented in mirror order for SI-Seq on the left and 454 on the right. The color code for each bacterial order is presented on the
bottom. The number of reads (sequences) for each sample are presented on either side.
doi:10.1371/journal.pone.0045791.g007
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metrics from 454 and SI-Seq data were significantly correlated

(Spearman’s rho: 0.90; P,2.2610216; Figure 6).

We used the RDP Classifier to determine the number of reads

from each approach that could be classified down to the genus

level. Quite strikingly, an average of only 56% of 454 reads were

classified to the genus level, while 95% of SI-Seq reads carried this

resolution (Table 3). Trimming the 454 reads to include only those

regions sequenced by SI-Seq increased this percentage to 61%.

Separate quality filtering and processing of raw reads using

Mothur [17] increased the percentage of reads assigned at the

genus level to 85%. These results support previously published

findings showing that the 454 platform has a substantially higher

error rate than the Illumina platform, particularly when generat-

ing only very short Illumina reads as is done in the SI-Seq protocol

[19,20,21].

To determine whether the high proportion of genus level

assignments for the SI-Seq data were the result of incorrect high-

confidence classifications due to the short SI-Seq read length, we

compared the classifications of the single species control data

generated by 454 and SI-Seq runs (Table 3). We also used multiple

versions of the reference database to ensure that the database

structure did not bias the results, including full length reference

sequences, reference sequences trimmed to 400 bp starting at our

V5 primer, and SI-Seq formatted reference sequences. When

classifying each dataset with the appropriately formatted reference

database, this analysis remarkably showed that 91% of reads from

the single species control (P. aeruginosa PAO1) were correctly

classified with SI-Seq data compared to only 16% of the 454 data.

We compared the 454 and SI-Seq community profiles visually

and statistically to verify their similarities. We first compared the

per-sample distribution of bacterial orders obtained from the 454

and SI-Seq OTU tables (Figure 7). Despite differing sequencing

methods, OTU clustering thresholds, and taxonomy classification

approaches, the composition of each community for each sample

was remarkably similar between the 454 and SI-Seq datasets. We

next tested for statistical significance using a Procrustes analyses to

determine whether the OTU dissimilarity matrices obtained from

each approach were statistically indistinguishable. We applied a

variety of distance metrics and found that the match between

community profiles generated by 454 and SI-Seq were highly

significant regardless of the dissimilarity matrix used (Table 4;

Figure S2).

Application of SI-Seq to study the ecology of the CF lung
To demonstrate the utility of SI-Seq, we performed additional

analyses on the CF sputum samples to begin our investigation of

CF lung ecology, although a more in depth analysis of this subject

will be completed in the future with a larger patient cohort.

We used a Species Accumulation curve to determine if the

bacterial diversity observed in our patient cohort represented the

overall bacterial diversity present in CF lungs. This approach

measures how many new OTUs are identified as additional

samples are cumulatively added to the analysis. As shown in

Figure 8A, the number of OTUs increased quickly between 0 and

20 samples, and began to plateau by the end of our sampling; this

indicated that we have largely saturated the diversity found in this

environment. Many of the OTUs detected with increased sputum

sampling were rare, as reduction of the dataset to include only

those OTUs with a total abundance greater than 0.001 resulted in

a plateau around 25 sputum samples (Figure 8B).

We also performed SI-Seq on ten samples extracted from mucus

plugs obstructing the airways of lungs surgically removed from CF

lung transplant patients, and combined these results with those

from the 56 sputa discussed above. Clustering of community

profiles from these two sample types indicated substantial overlap

in community composition of sputum and lung airway samples

(Figure 9A). The heatmap in Figure 9A shows three types of

patient samples: (1) those with only P. aeruginosa; (2) those with

predominantly P. aeruginosa with additional minor constituents; and

(3) those with little or no P. aeruginosa, but either a diversity of other

bacterial species or a community dominated by Streptococcus or

Burkholderia. The ten airway samples were evenly divided among

these three groups. Despite this similarity, a principal components

analysis using weighted UniFrac dissimilarities showed a separa-

tion of the sputum and lung airway samples (Figure 9B). This

suggests that when phylogenetic distance is taken into account (as

was done with the weighted UniFrac but not the Euclidean

distance based heatmap), sputum and airway samples slightly

differ in their microbiota.

We also compared our SI-Seq data with clinical culture data

and found complete agreement (data not shown). There were no

samples in which a particular bacterial species was cultured but

not detected using SI-Seq.

Discussion

Targeted sequencing of taxonomically informative regions of

the 16S rRNA gene has been instrumental in describing and

comparing microbial communities and ecosystems. Associating

changes in these microbiota with disease etiology or ecosystem

function requires a method that fulfills the following criteria: good

taxonomic resolution; deep enough sequencing to ensure commu-

nity saturation; and a cost that permits multiple biological

replicates and fine temporal or spatial sampling. Our side-by-side

comparison of 454 and SI-Seq profiling of single species controls

and CF sputum samples revealed the superiority of SI-Seq

regarding each of these criteria; below we discuss these in turn.

SI-Seq profiling permits as good or better taxonomic resolution

as 454 profiling. Analysis of CF communities using the RDP

Classifier found that a maximum of 85% of the 454 reads were

classified to the genus level, compared to 95% of SI-Seq reads.

This result seems counter-intuitive since the 454 reads are

substantially longer than SI-Seq reads. However, highly conserved

regions are included in the 454 reads and these regions do not

segregate for sufficient or appropriate genetic variation to

discriminate genera. SI-Seq passes over these highly conserved

regions and reads only hypervariable regions that permit greater

taxonomic resolution.

An additional factor affecting taxonomic resolution is the error

profiles of the two platforms. It is well established that the 454

platform has an approximately 10-fold higher error rate compared

to the Illumina platform [19,20], and most Illumina sequencing

errors are generated in later cycles [21]. Because SI-Seq uses only

very short reads, it generates data with an extremely low error

rate. This conclusion is supported by our classifications of CF

Table 4. Procrustes comparisons of 454 and SI-Seq PCA plots.

Dissimilarity matrix used for PCA plot M2{ P value*

Bray-Curtis 0.257 ,0.001

Unweighted UniFrac 0.649 ,0.001

Weighted UniFrac 0.325 ,0.001

{Goodness of fit between 454 and SI-Seq PCA plots
*Based on 1000 random permutations of SI-Seq matrix
doi:10.1371/journal.pone.0045791.t004
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microbiome reads trimmed to match the SI-Seq format, which

allowed direct comparisons of 454 and SI-Seq on real samples

using the same data format and the same reference database; this

trimming only increased the percent of reads assigned to genus by

5% (from 56% to 61%). The substantial difference that remains

between 454 and SI-Seq (61% vs. 95% of reads classified to the

genus level, respectively) can only be explained by sequencing

error (Table 3).

Our analyses of both control and real samples show that

bacterial communities profiled using the two approaches were

significantly correlated, even though different parameters were

used for OTU clustering, different reference databases were used

Figure 8. Species Accumulation (SA) analysis. SA plots showing the increase in OTUs detected with the addition of each patient sample. Each
bar represents 100 random draws (without replacement) of samples from the sample pool. Panel (A) shows the curve obtained using all of the OTU
data whereas panel (B) includes only OTUs with abundances greater than 0.1%.
doi:10.1371/journal.pone.0045791.g008
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for taxonomic classification, and different reference trees were

used for phylogeny-based diversity metrics. The convergence of

these sequencing methods and analysis pipelines on a similar

picture of the CF lung community speaks to SI-Seq being a robust

method.

In addition to superior taxonomic resolution, SI-Seq provides a

major cost advantage relative to 454 by producing over 100-fold

more data per dollar. Clearly though, it is a unique and more

complicated protocol, which requires the careful addition of

multiple sequencing primers during the sequencing run and

additional data processing steps to deal with the structured reads.

Nevertheless, the incredibly high throughput of the Illumina

platform provides a compelling case for using SI-Seq. Assuming

that the Illumina GA-IIx and MiSeq platforms can sequence 40M

and 15M templates per channel per run, respectively; SI-Seq

should produce over 400K or 150K reads per sample when using

96-fold multiplexing per channel. Importantly, pooling of SI-Seq

samples is performed after PCR, but prior to sample preparation,

cluster generation and sequencing; therefore, only one pooled-

sample needs to be carried through the sample preparation

protocol for all of the sequencing. The net result is that the cost of

performing high-multiplex SI-Seq is in the range of tens of dollars

per sample, while still obtaining as many as 400K sequences per

sample. Multiplexing can be increased for simpler communities

(such as the CF lung) if lower depth coverage is needed, or if

amplicons are run on machines with higher throughput, such as

the Illumina HiSeq.

Paired-end Illumina sequencing of the 16S rRNA gene has been

proposed by a number of authors [4,5,6,7,8,9], particularly since

the Illumina MiSeq can currently produce read lengths of 150nt,

and are expected to reach 250nt within the next couple of years.

While these approaches have great merit, they have some of the

same issues as 454, namely: they are forced to sequence through

conserved regions of the 16S rRNA gene; they have a higher error

rate since the reads are longer and error rates increase

dramatically near the end of long Illumina reads [21] (with the

caveat that some Illumina-based methods overlap the ends of the

two paired-reads to reduce the overall error); and they cost more

per reaction and take longer to run due to the fixed cost and time

accrued per Illumina sequencing cycle. SI-Seq, as described here,

runs in 144 total cycles, while Illumina-based microbiome

approaches need at least 144nt paired-end runs (288 total cycles)

to get taxonomic resolution similar to 454 and SI-Seq (Figure 2).

So while paired-end Illumina approaches are initially simpler to

apply than SI-Seq, they cost at least twice as much per sample and

take twice as long to run.

While this study focuses on the interrogation of the V5, V6 and

V7 hypervariable regions of the 16S rRNA locus, it should be clear

that any region or locus can be analyzed by SI-Seq if appropriate

PCR and sequencing primers can be designed. Additionally, the

methods can be easily adapted to sequence even larger numbers of

regions or provide longer reads for each region. In general, SI-Seq

has many potential applications, including targeted re-sequencing

of amplicons for SNP detection and multilocus sequence analysis.

Our study of the CF lung microbiota indicated that SI-Seq

produces results consistent with laboratory culture and the

published literature [22,23,24,25,26,27,28,29,30,31,32,33]. This

very preliminary analysis reveals some distinction between samples

collected from the CF sputum and those collected from airway

mucus plugs from explanted lungs. Sampling the microbiota

present in mucus plugs is important for determining whether some

taxa are truly present in the lower airways, or present in the more

commonly sampled sputa because of contamination from upper

airway bacteria during sputum expectoration (reviewed in [34]).

However, our results show that anaerobes are indeed present

within the lower airways, as mucus plugs from one patient’s

airways contained Veillonella, Parvimonas, and Streptococcus anginosus,

The DNA from these anaerobes was in low abundance, and likely

to only be detectable using a method like SI-Seq that offers a great

depth of coverage; nevertheless, its presence suggests anaerobic

bacteria are within the lower airways of CF patients, and not

merely oropharangeal contaminants of sputum. Further analysis

will assess the role of these anaerobes in relation to other bacteria

present, and the clinical status, antibiotic therapy, and genotype

on a larger sample of CF patients.

Although here we describe the use of SI-Seq for characterizing

relatively simple CF communities, additional work shows that the

approach easily generates sufficient sequence coverage to

thoroughly examine more complex communities such as mouse

or human feces, house dust, and saliva (unpublished). We believe

SI-Seq will be generally applicable to any microbiota. It can be

readily adapted by designing primers to target different regions of

the 16S rRNA gene, or different loci altogether. This flexibility

also opens the possibility of using SI-Seq to study eukaryotic

microbes and Archaea.

Supporting Information

Figure S1 Flow chart of SI-Seq data analysis pipeline.
Beginning with raw FASTQ reads, the SI-Seq analysis pipeline

filters reads based on quality, checks read orientation and corrects

orientation if needed, and uses barcode sequences to parse read

data into separate output FASTA files.

(TIF)

Figure S2 Procrustes plot comparison of 454 and SI-Seq
community data. Unweighted UniFrac dissimilarity data were

used to generate a Procrustes plot as described in the Materials

and Methods, and discussed in the main text and Table 4.

(TIF)

Table S1 Barcode file. Barcode sequences designed for SI-Seq

development and testing, and for multiplexing CF samples are

listed. Barcodes tested with SI-Seq are indicated as such in the

‘Sample’ column.

(XLSX)

Table S2 Quality filtering and incorrect taxonomic
classification. For the single species controls used in the

development of SI-Seq, varying quality cut-off thresholds were

used to filter the raw FASTQ data. These results were used to

identify the best quality cut-off for maximizing the number of

retained reads while minimizing misclassification of reads.

(DOCX)

Table S3 Example of B. subtilis classifications. Taxon-

omy classifications of each read were done using RDP Classifier as

discussed in the Materials and Methods. Prior to classification, the

Figure 9. Comparison of bacterial communities in CF sputum and lung airways. (A) Heatmap showing samples from sputum (CF prefix)
and lung airways (S prefix) often cluster together. Sample suffixes ‘A’, ‘B’, and ‘C’ indicate the time point for longitudinal samples. For better
visualization, OTUs were only included if they had a total abundance greater than 10%. (B) Principal coordinates analysis plot highlighting the sputum
(blue squares) and lung airway (red circles) samples. This plot was obtained using the weighted UniFrac estimates for community dissimilarity.
doi:10.1371/journal.pone.0045791.g009
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reads were filtered based on quality score to exclude any read with

more than five sites having a Phred score less than 30 (Table S2).

(DOCX)
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