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Abrupt changes in dynamics of an ecosystem can sometimes be detected using monitoring data. Using nonparametric
methods that assume minimal knowledge of the underlying structure, we compute separate estimates of the drift
(deterministic) and diffusion (stochastic) components of a general dynamical process, as well as an indicator of the
conditional variance. Theory and simulations show that nonparametric conditional variance rises prior to critical transition.
Nonparametric diffusion rises also, in cases where the true diffusion function involves a critical transition (sometimes called
a noise-induced transition). Thus it is possible to discriminate noise-induced transitions from other kinds of critical
transitions by comparing time series for the conditional variance and the diffusion function. Monte Carlo analysis shows that
the indicators generally increase prior to the transition, but uncertainties of the indicators become large as the ecosystem
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Introduction

Regime shifts are massive changes in ecosystem structure and
feedbacks that sometimes occur with little warning [1-3].
Examples include degradation of rangelands and forests, loss of
fish stocks, and eutrophication of lakes and reservoirs. Massive
changes that are slow to reverse can cause significant losses that
affect human wellbeing [4]. Therefore regime shifts have attracted
attention from ecosystem managers as well as researchers.

Regime shifts often come as surprises. In certain situations,
however, statistical early warning signals can be measured in
advance of regime shifts [3,5-7]. These statistical indicators
include changes in the autocorrelation and variance of time
series. An expanding literature evaluates the situations where
early warnings may or may not occur, as well as the empirical
evidence for early warning indicators. Various indicators have
successfully provided early warnings in applications to paleocli-
mate time series [8,9], lab experiments on plankton [10,11], and
a whole-lake food web experiment [12]. Thus ecosystems do
exhibit early warning indicators for cases of practical interest. In
at least some cases, warnings could decrease the incidence of
surprising regime shifts. Nonetheless they cannot completely
eliminate surprise. For example, if ecosystems are forced rapidly
into degraded states, environmental shocks are too large, or
observations are too imprecise then there will be no early
warning [13,14].

A fundamental problem of early warning indicators is that
the true process that generates the observed data is not known.
If we knew in advance the key variables that control a critical
transition, we would simply measure those variables. Sometimes
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a plausible model for nonlinear transitions can be fitted with
acceptably small errors [15,16]. However, the data must include
several instances of the regime shift and adequate data sets are
rare in ecology [2].

Nonparametric regression, in contrast, requires relatively few
assumptions about the true data-generating process. Here we
investigate the use of nonparametric regression to estimate key
features of the underlying stochastic dynamic process and provide
early warnings of impending critical transition. This paper
provides substantial information not found in previous papers
about early warnings using nonparametrics [17,18]. We introduce
a conditional variance estimator that, in theory, should perform
better than statistics used in earlier papers. While Dakos et al.
(2012) explain how to compute nonparametrics, this paper
provides a thorough explanation of underlying theory and why
it works.

Methods

This section first introduces a general model for nonlinear
stochastic time series that may contain regime shifts, and
indicators that may serve as early warnings. We then explain
how the indicators can be computed from observed time series
using nonparametric methods. In order to illustrate and test the
indicators, we conducted simulation experiments using different
versions of a lake eutrophication model, as well as a more complex
lake food web model. The rationale and procedures for the
simulation experiments are explained.
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A General Model

In many cases it may be reasonable to assume that observed
ecosystem dynamics are generated by a dynamical stochastic
process of the general form

dx, =1 (x;,01)dt + g(x,02)d W, (1)

According to [1], the one-step rate of change in the time series
of x (the state variable, which is possibly multi-dimensional)
depends on a deterministic component f{) and a stochastic
component g(). It is conventional to refer to f{) as the drift function
and g() as the diffusion function. Either f{) or g(), or both, may be
nonlinear functions that are subject to a critical transition. Thus
the model can represent most of the critical transitions that are
commonly studied in ecology, depending on the specific form of f{)
and g(). The critical transition, if it occurs, happens when the
variables 0, or 0y, cross a critical threshold. An early warning, if it
occurs, is a statistic that changes discernibly as either 6;, or 0y,
approach the critical threshold. Changes in 6), and 0, are
assumed to be slow relative to the rate of change in x. In [1], {W}
is a standardized Wiener process.

In order to generalize the methods presented below, we assume
that the state vector is not directly observed, but instead we
observe a variable

yi=cx (2)

Usually y is lower-dimensioned than x and ¢ is a matrix that
converts x to y (¢’ denotes transpose). Thus equation [2] can
represent cases where only a few dimensions are sampled from a
high-dimensional system.

Our earlier work pointed out that S2 , the long-run stationary
variance of x for the linearization of [1] around a deterministic
steady state, becomes infinite at a critical point caused by a generic
bifurcation where the leading eigenvalue(s) approach the boundary
of the stable region [6,19]. Here we attempt to go beyond
linearizations by wusing nonparametric estimators of general
functions. This approach avoids restrictions to particular func-
tional forms and also allows one to help separate critical transitions
caused by bifurcations in the drift from critical transitions caused
by increases in the diffusion function, called “noise induced
transitions” [20,21]. Such transitions encompass a wide spectrum
of phenomena that share a common feature (Kuehn 2011, page
1029): “The noise induces a behavior in a system that cannot be
found in the deterministic version.”

We investigate the use of nonparametric estimated S2, and the
diffusion function g(.) as early warning indicators (Table 1). One
could also consider the drift function f(x;,0},) of equation [1] as an
indicator. The derivative df{.)/dx evaluated at a deterministic
steady state is an approximation of the eigenvalue of the
linearization around that deterministic steady state, which
becomes zero at the critical transition point. However, we focus
here on the indicators based on variance, S2 and g(). If we
observe time series, {x,}, we can estimate S2 , f{.) and g(.) using
the estimators explained below. It is also possible to compute
nonparametric estimates of higher moments (Carpenter and Brock
2011) [22] but in the interest of brevity we do not address higher
moments here.
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Nonparametric Estimators

We estimate the indicators using nonparametric regression
[23,24]. There are many different approaches to analysis of data
sets generated by stochastic dynamical systems like [1] besides the
nonparametric regression approach taken here (for example
Siegert et al. [25] for approaches based upon the Fokker Planck
equation of [1]). We use the nonparametric approach of Bandi
and Phillips [26] and their references here because it can
approximate the shape of [1] without the need to specify a
functional form.

The quantities to be estimated as functions of x (or y depending
on the application) are the conditional variance S,(a;; A,) (defined
in [5] below), drift f{.), and diffusion g(.). We use symbols like dx or
dW to denote infinitesimals and we use dx1 or dxd to denote d
dimensional column vectors and d by d dimensional square
matrices respectively. For data analysis we represent the dynamics
using equations [1] and [2] where x and f are dx1 vectors, g is a
dxd square matrix, {dW,}, is an dx1 vector of Wiener processes,
EdW,dW,=Vdt, and V denotes a dxd positive definite square
matrix. Data are sampled over the time interval [0,T], T finite, at
equi-spaced times {71,%2,...,t; }. Thus we have n observations on
the process Y, denoted by {Ya,,Yoa,....Yna,} at
{ti=An,t2=2A,,....t,=nA, },where nA,=T.

Consider a vector a of equi-spaced values of 1" for which the
estimators will be computed. Let @; denote the i’th component of
this vector. The conditional variance function, S,,(a,—; Ay), s
estimated as the difference between the second conditional
moment and the square of the first conditional moment as follows,

135 K((Yiay —a) /) Yiay]
M) (a; A=+ (3)
[Zl K((Yra, —an)/h))

k=

150 K(Yiay — )/ hn) Vi Vi |
M (a; A== (4)
[k; K((Yka, —ai)/hn)

Sulai; A= {2 (a;; A} —{ M) (a3 A,)) (5)

Here K(.) is a kernel function of bandwidth /4, defined in [8]
below (for the multivariate case) or [9] below (for the univariate
case). Equation [3] is the kernel-weighted average of the first
power of Y. Equation [4] is the kernel-weighted average of the
second power of Y. Expressions [3] and [4] are standard
nonparametric regression conditional moments estimators of the
first conditional moment and the second conditional moment for
the one dimensional case [24]. The dx1 vector of first moments
and the dxd matrix of second moments for the d-dimensional case
are computed by an obvious expansion of [3-5] [24].

Estimator [5] is a standard nonparametric estimator of the
conditional variance. From this point on we use the simple
notation S in place of Sy(a;; A,). Equations [3-5] are known to
be consistent estimators under regularity conditions [23,24]
(Chapter 7) that include strict stationarity and ergodicity, which
we assume are satisfied by [1].

Nonparametric estimates of drift and diffusion can be computed
as a function of any variable that is measured at the same times as
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Table 1. Indicators considered in this paper.

Nonparametric Early Warnings

Nonparametric

g'g (or g?) increases as the transition is approached.

Name of indicator Interpretation Symbol Estimate
Conditional Variance of x as a function of x. We use the conditional variance as an approximation of the s? Equation [5]
variance long-run stationary variance of x, Szw. In a critical transition caused by a local co-dimension

one bifurcation of the drift function, the long-run stationary variance of the linearization

around the deterministic steady state becomes infinite at the transition point. The long run

stationary variance may increase as a noise-induced transition is approached.
Diffusion Variance of dx as a function of x. We use the estimator as an approximation of g(x;,05,)* g'g, or g° Equation [7]

as defined near equation [1]. In a noise-induced transition, the variance matrix function

doi:10.1371/journal.pone.0045586.t001

Y, subject to regularity conditions specified in Bandi and Phillips
(2010). In the case Y =X, for a particular element g, the estimator
for the dx1 vector of f{.) is given by

n—1
kZI K((Yka, —ai) /) (Y + A, — Ya,)
f(a)=(1/A)= i (6)
kz:l K((Yka, —ai)/hy)

where £, is a bandwidth [26]. Equation [6] is the kernel-weighted
average of the first difference of Y. Thus fi,(a;) estimates the
vector f(a;,0). When Y =c’X, [6] estimates the vector ¢f(a;,01;).
The estimator for the dxd matrix of second moments,
corresponding to the covariance matrix for g(.) is given by

Gaa)=(1/4,)
n—1 (7)
kzl K(Yieay—a) /1) Y+ 1)4n— Yiea) Yt ytn—Yiean)

O K((Yep =) /)

where the apostrophe denotes transpose. Equation [7] is the
kernel-weighted average of the square of the first difference of Y. If
one sets Y = X in equation [7] then the matrix ¢2(a;) estimates the
matrix g(a;,0)g(a;,0). When Y=c’X, [7] estimates the matrix,
c'g(a;,02,)Veg(a;,05) c. Bandi and Phillips [26] review literature
that locates sufficient conditions for [7] to be a strongly consistent
estimator of the matrix g(a;,0)g(a;,0), i.e. for [7] to converge with
probability one to g(a;,0)g(a;,0)'.

Following Bandi and Phillips [26] (equations (48) and (49)) for
any bandwidth /,, and any dx1 vector z, K(z) is defined by

K(2)=(1/hE_ k(z, /D) (8)

where k(.) is any one dimensional kernel function that satisfies their
regularity conditions. The product kernel [8] where z is the dxI
vector z= Xya, —a; is useful for multivariate applications. When
Y = c’X where the dimension d’ of Y is less than or equal to d, then
the dimension of z will be d’.The Gaussian kernel function we used
for one dimensional estimation is

k((Yen, —a)/hog) = - M) 9)

1
———exp
\ /2nh%j ( 2hgj
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For multivariate kernels insert [9] into [8] after replacing the
vectors by their jth components, and run j=1,2,....d and
j=1,2,...,d" for Y=X and Y =c’X respectively.

Drift and diffusion estimates are smoother the larger the
bandwidth. Johannes [27] provides advice on choice of band-
width. Methods for computing an optimal bandwidth exist [23].
We have found that these methods undersmooth the drift and
diffusion functions, yielding curves that are too irregular in
experiments where the drift and diffusion functions are known a
priori. Therefore we prefer the guidelines of Johannes [27] which
scale the bandwidth to the standard deviation of the time series.

Bandi and Phillips [26] review literature that shows that as one
samples more and more frequently within a fixed interval [0,T] the
estimate of the matrix g(a;,0)g(a;,0) becomes infinitely precise
whereas the precision of the drift remains low. But in order to
drive the variance of the drift to zero one must increase the length
of the sampling interval [0,T] to infinity. We call sampling by
sending T to infinity “long span sampling” and sampling more
often within the interval [0,T] “infill sampling”. Infill sampling
within each interval of time achieves a much more precise estimate
of the moment matrix function gg’ than the drift function f
whereas long span sampling is needed to get a precise estimate of
the drift function f. Simulations that illustrate this point are
available in the literature [22,27,28].

Simulation Studies
We used two well-studied ecosystem models as case studies. The
lake eutrophication model [6] in one dimension is

d dw
% =c1U;,—cox; +C3MF(X;)+O’RWZF(X[)7
p (10)
Foy= -
e+ x4

The regime shift is driven by a slow increase in the mass of
phosphorus in the watershed soil U;. Phosphorus in sediment m is
constant at 200 ¢ m~ 2 Other fixed parameters are input
coefficient ¢; =0.00115, output coefficient cy=0.85, recycling
rate coefficient c3=0.019, recycling half-saturation coefficient
¢4 =2.4, exponent in the recycling function q =38, and standard
deviation of Wiener shocks (dW) to recycling ox =0.005. For
simulations reported here, A=0.1 and N=10,000. The soil
phosphorus U was increased linearly from 600 to 1100 gm™? over
the N time steps.

In equation [10], noise is added to the recycling parameter, such
that the recycling term is ¢3+ o rdW /dt. As a result the diffusion

orSF(x)is a function of x. As an instructive contrast we also
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considered the additive noise case

dx w
7; =cU,—cyx;+csmF(x,)+ 04 7
P (11)
Foo= X
¢ +x1

In [11], recycling is deterministic, and diffusion is constant o 4.

To evaluate the performance of low-dimensional indicators for
a higher-dimensional system, we analyzed a 5-dimensional model
of a lake food web [29] using samples of one or three components.
This case study illustrates the performance of the estimators when
only part of a multi-dimensional system is sampled. Details of the
model are presented in Supporting Information S2. The model
describes the dynamics of adult and juvenile piscivorous fishes,
planktivorous fishes, herbivorous zooplankton and phytoplankton
as driven by nutrient inputs, irradiance, and harvest of adult
piscivores. As the harvest rate of adult piscivores is increased
slowly, the system undergoes a bifurcation that is announced in
advance by rising variance [29].

We performed two kinds of experiments with the 5-dimensional
model. In both cases we gradually increased the bifurcation
parameter (harvest rate of adult piscivores). In the first case, we
assumed that data were available only for phytoplankton, a one-
dimensional data set. In the second case, we assumed that data
were available for phytoplankton, zooplankton, and planktivorous
fishes.

A R function for computing the indicators is presented in
Supporting Information S3.

For each model, three types of simulations are presented. (1) To
show estimates over a wide range of the observed state variable,
simulations that extend before and after the critical transition were
analyzed by computing the estimators. (2) Early warnings, to be
useful, must be detected prior to the critical transition. To
investigate early detection, we terminated simulations prior to the
critical transition and computed the estimators. (3) In order to
assess the precision of the estimators, we conducted Monte Carlo
simulations. For each Monte Carlo replicate, time series were
computed up to the critical transition, but not beyond, and the
estimators were then calculated. Then the functions for condi-
tional variance, drift and diffusion were averaged over 1000
realizations to compute the mean and standard deviation. For
univariate analyses, nonparametric functions were computed on a
mesh of 500 values spanning the range of the observed state
variable using a bandwidth of 0.3 times the standard deviation of
the entire series. In addition to the three types of univariate
simulations, we present a multivariate example for the food web
model. The multivariate example was computed in three
dimensions, planktivore, herbivore, and phytoplankton, on a
mesh of 75x75x75 values using a bandwidth of 0.4 times the
standard deviation of the entire series.

In order to be useful, an early warning indicator must be plotted
against time. The nonparametric methods yield indicators as a
function of the observed state variable. We used linear interpo-
lation to obtain indicator values as a function of time, by
interpolating indicator values for each observed value of the state
variable. Because the mesh used for the nonparametric compu-
tations is quite dense, linear interpolation is likely to be reasonably
accurate.
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Results

As an initial demonstration of the indicators, we analyze the
eutrophication model with noise added to recycling (equation
[10]). The time series shows clearly that x (lake phosphorus in this
case) increases in level and fluctuates more after the transition
point (Fig. 1A). Plots of the indicators versus a show a sharp
increase in S” as a rises near 3 (Fig. 1B) Diffusion also rises as a
approaches 3, and then tends to plateau. Plots of the indicators
versus time show that the increases are quite sharp near the
inflection point of the time series (Fig. 1C). When the graph zooms
in on events near the inflection point, it is clear that S? increases at
least 5 time steps prior to the inflection point whereas diffusion
increases much closer to the inflection point (Fig. 1D).

When noise is purely additive (equation [11]), diffusion should
be constant when plotted versus a or time. An additive-noise
example is presented in Fig. 2. The change in level is clear but any
changes in variability are subtle (Fig. 2A). As expected, S? rises
prior to the inflection point near a = 3 (Fig. 2B). After the inflection
point there is a small increase in diffusion that gradually declines at
values of a = 3.5. Both S and diffusion spike near the inflection
point when plotted versus time (Fig. 2C). Zooming in on the
inflection point, the increase in S? starts several time steps prior to
the inflection point whereas the increase in diffusion occurs after
the inflection point.

The increase in diffusion seen in Fig. 2 appears to be an artifact
of averaging during the steep rise in the time series. The elevated
values of diffusion occur for x values roughly between 2.5 and 5,
which occur for only a few data points during the steep rise of the
time series. Apparently the bandwidth is of a size that leads to a
small increase in the diffusion estimator during the steep rise.
When the time series settles down around the higher equilibrium
near x = 6, the diffusion estimate is again near zero.

To be useful as early warning signals, the indicators must
increase as the ecosystem approaches the transition, using data
measured only up to some point in time prior to the transition.
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Figure 1. Simulation with the eutrophication model using
noise added to recycling (eq. 10). A. Time series of the state
variable. Note that the sample includes data before and after the
transition. B. Diffusion and S? versus a. C. Diffusion and S? versus time.
D. Diffusion and S? versus time for a short time interval near the
transition.

doi:10.1371/journal.pone.0045586.9001
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Figure 2. Simulation with the eutrophication model using
additive noise (eq. 11). A. time series of the state variable. Note that
the sample includes data before and after the transition. B. Diffusion
and S? versus a. C. Diffusion and S? versus time. D. Diffusion and 2
versus time for a short time interval near the transition.
doi:10.1371/journal.pone.0045586.9g002

Fig. 3 presents an example (Fig. 3A). In this realization, both S*
and diffusion show increases with a (Fig. 3B). Also, increases in
both indicators are apparent in plots versus time (Figs. 3C, D).

Uncertainties become relatively large if the data do not span the
transition. Fig. 4 presents Monte Carlo simulations with noise
added to recycling (equation [10]) for 1000 time series, each of
which was truncated at x=2. The standard deviation of drift is
very large, while those of diffusion and S$? are smaller (Fig. 4A).
Confidence bands for drift span zero, indicating that even the sign
is uncertain, for values of a above about 1.6 (Figs. 4B). Both
diffusion and S? are clearly positive up to a values of about 1.9 or
even larger (Figs. 4C, D).

Plots of indicators and confidence bands versus time show that
uncertainties increase as the indicators approach the transition
point (Fig. 5). Time plots give a somewhat different impression
from plots versus a, because not all a values occur in the time
series. This is especially true for drift which is not discernibly
different from zero over many time steps (Fig. 5A). However the
confidence band for diffusion also includes zero for some time
steps (Fig. 5B). Conditional variance S? is generally larger than
zero over time (Fig 5C).

From a single realization of the lake food web model
(Supporting Information S2), we analyze the time series for
phytoplankton (Fig. 6A). The inflection point occurs around time
step 5624 which corresponds to X =~ 40. Both S? and diffusion
increase at values of a prior to the critical transition (Fig. 5B).
When the indicators are plotted against time, there is a notable
increase in S? and smaller increase in diffusion prior to the
inflection point (Fig. 6C, D).

To illustrate the use of the indicators as an early warning before
the critical transition in the food web model, we present results for
a time series that ended when x=40 (Fig. 7A). S? is high and
fluctuating for a = 10, and diffusion increases for a = 35 (Fig. 7B).
The plot of indicators versus time shows that $? is elevated over
much of the range, whereas diffusion increases only as the system
gets close to the transition point (Fig. 7C). Zooming into the last 20
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Figure 3. Simulation with the eutrophication model using
noise added to recycling (eq. 10). A. Time series of the state
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transition. B. Diffusion and S? versus a. C. Diffusion and S? versus time.
D. Diffusion and S? versus time for a short time interval near the
transition.

doi:10.1371/journal.pone.0045586.9003

time steps, it is evident that diffusion continues to rise whereas S
actually declines in the last few time steps (Fig. 6D). As noted in
Supporting Information S1, the relationship of $? and diffusion is
not necessarily monotonic.

To evaluate the information that might be gained by
multivariate analysis, we computed multivariate indicators using
the planktivore, herbivore and phytoplankton time series simul-
taneously. For each indicator, multivariate analysis yields a 3x3x3
array of estimated values. This array is very difficult to visualize
and understand. However, over time the ecosystem took a one-
dimensional path through this high-dimensional space. Therefore,
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Figure 4. Monte Carlo simulations with the eutrophication
model using noise added to recycling (eq. 10). The samples
ended at x=2. A. Parameter standard deviations for drift, diffusion and
S? versus x. B. Drift + standard deviation versus a. C. Diffusion *
standard deviation versus a. D. $? * standard deviation versus a.
doi:10.1371/journal.pone.0045586.g004
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x =40, just before the transition. B. Diffusion (times 100) and S versus a.
C. Diffusion (times 100) and S? versus time. D. Diffusion (times 100) and
S? versus time for a short time interval near the transition.
doi:10.1371/journal.pone.0045586.9007
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Figure 8. Results of multivariate nonparametric analysis of the
same food web simulation depicted in Fig. 7. For multivariate
analysis, time series for planktivore, herbivore and phytoplankton were
analyzed. Time series are presented for 100*diffusion (solid line) and
conditional variance (dashed line). (A) Largest eigenvalue of the
diffusion and conditional variance matrices. (B) Variance of planktivores
from the diffusion and conditional variance matrices. (C) Variance of
herbivores from the diffusion and conditional variance matrices. (D)
Variance of phytoplankton from the diffusion and conditional variance
matrices.

doi:10.1371/journal.pone.0045586.9008

time plots of the indicators were constructed by interpolation
(Fig. 8). The multivariate analysis was also slow to compute. For
1635 data points in three dimensions, computing the indicators on
the 75 x75x75 mesh took 21.4 hours on a Intel 1.6 GHz processor
running Windows XP and R 2.10.1, downloaded 2009-12-14.
The maximum eigenvalue of the conditional covariance matrix
and the conditional covariances of the planktivore and phyto-
plankton show similar patterns with peaks near time step 5000
(Figs. 8 A, B, D). The conditional variance for the herbivore
(Fig. 8C) behaves differently, with some fluctuations near time step
5000 but no distinct peak. In the model, herbivores are stabilized

by a refuge and this factor may account for the muted responses of

herbivores [29]. All indicators for diffusion show sharp rises near
the end of the time series (Iigs 8A-D). The difference in responses
suggest that the regime shift for the system as a whole, indicated by
conditional variance, occurred around time step 5000 whereas a
critical transition in g() occurs near the end of the sampled series.

The responses of the conditional variance and diffusion for
phytoplankton are roughly similar for the univariate and
multivariate analyses (compare Fig. 7C with Fig. 8D). We would
not expect them to be identical, because they employ different
bandwidths and different meshes for a, due to the slow
computation speed of the multivariate method. The phytoplank-
ton responses are quite similar to the eigenvalues which reflect the
integrated response of the entire ecosystem. Thus in this case a
univariate analysis of phytoplankton would have been sufficient as
an early warning.

Precision of the estimators computed from 1000 Monte Carlo
samples of the food web model showed high uncertainty as the
state variable approaches the transition point (Fig. 9A). When the
observed state variable is near 40, Confidence bands overlap zero

for all of the indicators (Fig. 9B-D).
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Figure 9. Monte Carlo simulations with the Food Web model
(Supporting Information S2) showing results for phytoplank-
ton. The samples included data for X =< 40, just below the transition. A.
Parameter standard deviations for drift, diffusion and S? versus a. B. Drift
+ standard deviation versus a. C. Diffusion = standard deviation versus
a. D. S? = standard deviation versus a.

doi:10.1371/journal.pone.0045586.9009

Time plots of the Monte Carlo sample show that confidence
bands are highest near the transitions (Fig. 10). Drift is often close
to zero (Fig. 10A). Diffusion is non-zero and generally rises across
the time window (Fig. 10B). Conditional variance is consistently
different from zero, and is highest near the middle of the time
frame (Fig. 10C). This pattern is similar to what we observed in the
analyses of single time series. The time axis is re-scaled in Fig. 10
in order to put all of the time series on the same basis relative to
the inflection point.

Discussion

Estimators of $? and diffusion are clearly elevated near the
critical transition in time series that are sampled both before and
after the transition (Figs. 1, 5). Such time series are a case of long-
span sampling. According to theory and previous simulation
studies, long-span sampling is needed to obtain precise estimates of
drift [30].

Comparison of the noise-in-parameter (Fig. 1) and additive
noise (Fig. 2) cases for the eutrophication model shows clear
differences related to the fact that diffusion is constant in the
additive case. Nonetheless S is strongly elevated around the
critical transition even in the additive case. The rise in S suggests
a bifurcation in either f) or g(), whereas a rise in the diffusion
function suggests a bifurcation in g). The strong response of S7,
combined with the weak and transient response of diffusion, could
be used to discriminate noise-induced transitions (such as that
generated by eq. [10]) from drift-induced transitions (such as that
generated by eq. [11]). For example, the current discussion about
the role of noise-induced transitions in the Dansgaard-Oeschger
events of climate change history [31,32] could perhaps be
addressed using nonparametric methods to measure the condi-
tional variance and diffusion functions.

To serve as early warnings, the indicators must yield signals
before the regime shift occurs (Figs. 3, 6). In early warning settings,
long-span sampling may be impossible because only data prior to
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Figure 10. Time series plots with confidence bands (+ standard deviation) for the food web model, interpolated from the functions

in Fig. 9. A. Drift. B. Diffusion. C. Conditional variance S°.
doi:10.1371/journal.pone.0045586.g010

the transition are useful for early warnings. Nonetheless, infill
sampling can be used and this will improve the precision of
diffusion estimates.

Single realizations of the eutrophication and food web models
show early warnings in the estimates of $? and diffusion for data
collected before the transition (Figs. 3,6). These increases, while
notable, are less pronounced that those we observed using rolling
window statistics for the same models [6,29]. However it is difficult
to compute unambiguous error estimates for rolling window
analyses. FFor the nonparametric method, Monte Carlo analysis
shows that estimates are surrounded by considerable uncertainty
(Figs. 4, 7). For drift, even the sign is unknown. For the
eutrophication model (Fig. 4), there is a maximum near a=1.9
which could indicate an eigenvalue of zero (the eigenvalue is the
derivative of drift with respect to a). Because of the wide
confidence band, however, any estimate of the eigenvalue is
highly uncertain. Both $? and diffusion are clearly positive and
increasing prior to the transition. However, the confidence bands
of $? and diffusion span zero at the highest values of a. Apparently
it is difficult to obtain precise estimates of these functions at
extreme values of the data. Nonetheless, for the great majority of
stochastic realizations the estimates of S” and diffusion increase
before the transition and thereby provide useful early warnings.

Many previous studies of early warning indicators have
employed time series of autocorrelation, variance, and other
statistics computed on a sequence of rolling-window subsets of the
data [8,29]. Our analyses have several interesting implications for
rolling-window statistics. (1) The autocorrelation and the variance
are both affected by both drift and diffusion (Supporting
Information S1). Therefore it is not possible to separate drift
and diffusion components using these statistics. However,
nonparametric analysis does provide a means of estimating drift
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and diffusion separately. This is advantageous where researchers
seek to distinguish additive noise from nonlinear noise. (2) The
nonparametric estimate of S? is analogous to rolling-window
variance. Our analyses corroborate the value of variance as an
early-warning indicator. (3) Monte Carlo analyses indicate that
trajectories of $? and (for noise-induced transitions) diffusion will
generally increase as a critical transition is approached. However,
uncertainties of both indicators tend to become large as the system
approaches the transition. In some cases it may be possible to
increase the precision of diffusion estimates by sampling more
frequently. Nonetheless, while these indicators generally rise prior
to a critical transition this pattern is not guaranteed. Decreases or
cycles are possible when the transition is near.

There are important ecological cases where an appropriate
structural model (specific form of [1]) is known from other research
or can be determined by fitting models to the data. For example,
extensive research on many ecosystems for many years suggests
certain structural forms for well known regime shifts in lakes
[2,33]. In other cases methods for optimal model identification can
be used to infer the structural form of nonlinear models for
ecological time series [15,16]. These approaches have the powerful
advantage of strong inference about the underlying nature of the
bifurcation. We are enthusiastic about early warnings based on
structural model identification, but we recognize that in many
cases the data will not be up to the task. Structural models may not
always be available in ecological applications because long time
series, typically including covariates and several instances of
regime shift, are needed to fit nonlinear models of bifurcations [2].
Furthermore, the time to relax to the stationary distribution can be
very long especially as the bifurcation parameter gets close to the
critical value of the bifurcation parameter [20,21,34]. Thus even if
the bifurcation parameter 0 is known and can be estimated,
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detection of tiny changes as 6, gets close to the critical value 60,
may not be the most efficient approach to constructing early
warning indicators. Therefore we focus here on alternatives that
are useful even when the structural model cannot be identified.

The nonparametric method will typically require more obser-
vations than a parametric method. This is so because parametric
methods can exploit the knowledge embedded in parametric
specification of components of equation [1]. However the
parametric assumptions may be invalid and thereby invalidate
the results of the parametric method. Hence there is a tradeoff’
between reducing the risk from mistaken model specification in
parametric methods and the heavy data demands of the
nonparametric method. Different situations may be best suited
to one approach or the other. If data are plentiful and measured at
high frequencies, then the nonparametric method provides a
rather precise estimate of the conditional variance and diffusion
terms [35]. High frequency data are increasingly common in
ecology. In addition. one can learn about noise-induced versus
non-noise-induced transitions by comparing S? and diffusion
functions.

In order to be useful, early warning indicators must be plotted
against time. Strictly speaking, nonparametric functions should be
fitted against random covariates such as the observed state
variable, and not time. However, interpolation can be used to
provide a time series of the indicators as we have shown here.

Nonparametrics are expensive to compute even for a coarse
mesh in the multivariate case. However, our results show that even
one dimension sampled from a multi-dimensional system can
provide an early warning.

Error estimates for nonparametric estimates are a topic for
further research. For cases where the underlying structural model
is not known, Monte Carlo analysis using the fitted functions is
difficult because drift is highly uncertain. While Monte Carlo
analysis using the fitted function is beyond the scope of this paper,
we suggest that it may be informative to guess some plausible
structural models and compute Monte Carlo analyses to get a
rough idea of how large the uncertainties could be.

In management applications, one would compute the nonpara-
metric functions at regular intervals of time to check for increases
in conditional variance or diffusion. Monte Carlo analyses
presented here show that estimates of the functions become rather
uncertain near the critical transition point. While the majority of
the Monte Carlo realizations suggest an impending transition,
some do not. There will, therefore, be cases where the early
warning is not detected even though a critical transition is
imminent. In management decisions, an imperfect early warning is
more valuable than no warning at all. Even an uncertain early
warning may have great value when there is risk of a very
expensive regime shift.

There are important ecological cases where an appropriate
structural model (specific form of [1]) is known from other research
or can be determined by fitting models to the data. For example,
extensive research on many ecosystems for many years suggests
certain structural forms for well known regime shifts in lakes
[2,33]. In other cases methods for optimal model identification can
be used to infer the structural form of nonlinear models for
ecological time series [15,16]. These approaches have the powerful
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