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Abstract

Abrupt changes in dynamics of an ecosystem can sometimes be detected using monitoring data. Using nonparametric
methods that assume minimal knowledge of the underlying structure, we compute separate estimates of the drift
(deterministic) and diffusion (stochastic) components of a general dynamical process, as well as an indicator of the
conditional variance. Theory and simulations show that nonparametric conditional variance rises prior to critical transition.
Nonparametric diffusion rises also, in cases where the true diffusion function involves a critical transition (sometimes called
a noise-induced transition). Thus it is possible to discriminate noise-induced transitions from other kinds of critical
transitions by comparing time series for the conditional variance and the diffusion function. Monte Carlo analysis shows that
the indicators generally increase prior to the transition, but uncertainties of the indicators become large as the ecosystem
approaches the transition point.
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Introduction

Regime shifts are massive changes in ecosystem structure and

feedbacks that sometimes occur with little warning [1–3].

Examples include degradation of rangelands and forests, loss of

fish stocks, and eutrophication of lakes and reservoirs. Massive

changes that are slow to reverse can cause significant losses that

affect human wellbeing [4]. Therefore regime shifts have attracted

attention from ecosystem managers as well as researchers.

Regime shifts often come as surprises. In certain situations,

however, statistical early warning signals can be measured in

advance of regime shifts [3,5–7]. These statistical indicators

include changes in the autocorrelation and variance of time

series. An expanding literature evaluates the situations where

early warnings may or may not occur, as well as the empirical

evidence for early warning indicators. Various indicators have

successfully provided early warnings in applications to paleocli-

mate time series [8,9], lab experiments on plankton [10,11], and

a whole-lake food web experiment [12]. Thus ecosystems do

exhibit early warning indicators for cases of practical interest. In

at least some cases, warnings could decrease the incidence of

surprising regime shifts. Nonetheless they cannot completely

eliminate surprise. For example, if ecosystems are forced rapidly

into degraded states, environmental shocks are too large, or

observations are too imprecise then there will be no early

warning [13,14].

A fundamental problem of early warning indicators is that

the true process that generates the observed data is not known.

If we knew in advance the key variables that control a critical

transition, we would simply measure those variables. Sometimes

a plausible model for nonlinear transitions can be fitted with

acceptably small errors [15,16]. However, the data must include

several instances of the regime shift and adequate data sets are

rare in ecology [2].

Nonparametric regression, in contrast, requires relatively few

assumptions about the true data-generating process. Here we

investigate the use of nonparametric regression to estimate key

features of the underlying stochastic dynamic process and provide

early warnings of impending critical transition. This paper

provides substantial information not found in previous papers

about early warnings using nonparametrics [17,18]. We introduce

a conditional variance estimator that, in theory, should perform

better than statistics used in earlier papers. While Dakos et al.

(2012) explain how to compute nonparametrics, this paper

provides a thorough explanation of underlying theory and why

it works.

Methods

This section first introduces a general model for nonlinear

stochastic time series that may contain regime shifts, and

indicators that may serve as early warnings. We then explain

how the indicators can be computed from observed time series

using nonparametric methods. In order to illustrate and test the

indicators, we conducted simulation experiments using different

versions of a lake eutrophication model, as well as a more complex

lake food web model. The rationale and procedures for the

simulation experiments are explained.
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A General Model
In many cases it may be reasonable to assume that observed

ecosystem dynamics are generated by a dynamical stochastic

process of the general form

dxt~f (xt,h1t)dtzg(xt,h2t)dWt ð1Þ

According to [1], the one-step rate of change in the time series

of x (the state variable, which is possibly multi-dimensional)

depends on a deterministic component f() and a stochastic

component g(). It is conventional to refer to f() as the drift function

and g() as the diffusion function. Either f() or g(), or both, may be

nonlinear functions that are subject to a critical transition. Thus

the model can represent most of the critical transitions that are

commonly studied in ecology, depending on the specific form of f()

and g(). The critical transition, if it occurs, happens when the

variables h1t or h2t cross a critical threshold. An early warning, if it

occurs, is a statistic that changes discernibly as either h1t or h2t

approach the critical threshold. Changes in h1t and h2t are

assumed to be slow relative to the rate of change in x. In [1], {Wt}

is a standardized Wiener process.

In order to generalize the methods presented below, we assume

that the state vector is not directly observed, but instead we

observe a variable

yt~c0xt ð2Þ

Usually y is lower-dimensioned than x and c is a matrix that

converts x to y (c’ denotes transpose). Thus equation [2] can

represent cases where only a few dimensions are sampled from a

high-dimensional system.

Our earlier work pointed out that S2
?, the long-run stationary

variance of x for the linearization of [1] around a deterministic

steady state, becomes infinite at a critical point caused by a generic

bifurcation where the leading eigenvalue(s) approach the boundary

of the stable region [6,19]. Here we attempt to go beyond

linearizations by using nonparametric estimators of general

functions. This approach avoids restrictions to particular func-

tional forms and also allows one to help separate critical transitions

caused by bifurcations in the drift from critical transitions caused

by increases in the diffusion function, called ‘‘noise induced

transitions’’ [20,21]. Such transitions encompass a wide spectrum

of phenomena that share a common feature (Kuehn 2011, page

1029): ‘‘The noise induces a behavior in a system that cannot be

found in the deterministic version.’’

We investigate the use of nonparametric estimated S2
? and the

diffusion function g(.) as early warning indicators (Table 1). One

could also consider the drift function f (xt,h1t) of equation [1] as an

indicator. The derivative df(.)/dx evaluated at a deterministic

steady state is an approximation of the eigenvalue of the

linearization around that deterministic steady state, which

becomes zero at the critical transition point. However, we focus

here on the indicators based on variance, S2
? and g(.). If we

observe time series, fxtg, we can estimate S2
?, f(.) and g(.) using

the estimators explained below. It is also possible to compute

nonparametric estimates of higher moments (Carpenter and Brock

2011) [22] but in the interest of brevity we do not address higher

moments here.

Nonparametric Estimators
We estimate the indicators using nonparametric regression

[23,24]. There are many different approaches to analysis of data

sets generated by stochastic dynamical systems like [1] besides the

nonparametric regression approach taken here (for example

Siegert et al. [25] for approaches based upon the Fokker Planck

equation of [1]). We use the nonparametric approach of Bandi

and Phillips [26] and their references here because it can

approximate the shape of [1] without the need to specify a

functional form.

The quantities to be estimated as functions of x (or y depending

on the application) are the conditional variance ŜSn(ai;Dn) (defined

in [5] below), drift f(.), and diffusion g(.). We use symbols like dx or

dW to denote infinitesimals and we use dx1 or dxd to denote d

dimensional column vectors and d by d dimensional square

matrices respectively. For data analysis we represent the dynamics

using equations [1] and [2] where x and f are dx1 vectors, g is a

dxd square matrix, fdWtg, is an dx1 vector of Wiener processes,

EtdWtdWt
0~Vdt, and V denotes a dxd positive definite square

matrix. Data are sampled over the time interval [0,T], T finite, at

equi-spaced times ft1,t2,:::,tng. Thus we have n observations on

the process Yt, denoted by fYDn
,Y2Dn

,:::,YnDn
g at

ft1~Dn,t2~2Dn,:::,tn~nDng,where nDn~T .

Consider a vector a of equi-spaced values of Y for which the

estimators will be computed. Let ai denote the i’th component of

this vector. The conditional variance function, ŜSn(ai;Dn), is

estimated as the difference between the second conditional

moment and the square of the first conditional moment as follows,

M̂M1
n (ai;Dn):

½
Pn

k~1

K((YkDn{ai)=hn)YkDn �

½
Pn

k~1

K((YkDn{ai)=hn)�
ð3Þ

M̂M2
n (ai;Dn):

½
Pn

k~1

K((YkDn{ai)=hn)YkDnY
0
kDn
�

½
Pn

k~1

K((YkDn{ai)=hn)�
ð4Þ

ŜSn(ai;Dn):fM̂M2
n (ai;Dn)g{fM̂M1

n (ai;Dn)g2 ð5Þ

Here K(:) is a kernel function of bandwidth hn defined in [8]

below (for the multivariate case) or [9] below (for the univariate

case). Equation [3] is the kernel-weighted average of the first

power of Y. Equation [4] is the kernel-weighted average of the

second power of Y. Expressions [3] and [4] are standard

nonparametric regression conditional moments estimators of the

first conditional moment and the second conditional moment for

the one dimensional case [24]. The dx1 vector of first moments

and the dxd matrix of second moments for the d-dimensional case

are computed by an obvious expansion of [3–5] [24].

Estimator [5] is a standard nonparametric estimator of the

conditional variance. From this point on we use the simple

notation S2 in place of ŜSn(ai;Dn). Equations [3–5] are known to

be consistent estimators under regularity conditions [23,24]

(Chapter 7) that include strict stationarity and ergodicity, which

we assume are satisfied by [1].

Nonparametric estimates of drift and diffusion can be computed

as a function of any variable that is measured at the same times as

Nonparametric Early Warnings
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Y, subject to regularity conditions specified in Bandi and Phillips

(2010). In the case Y = X, for a particular element ai the estimator

for the dx1 vector of f(.) is given by

m̂mn(ai)~(1=Dn)

Pn{1

k~1

K((YkDn{ai)=hn)(Y(kz1)Dn{YkDn )

Pn
k~1

K((YkDn{ai)=hn)

ð6Þ

where hn is a bandwidth [26]. Equation [6] is the kernel-weighted

average of the first difference of Y. Thus m̂mn(ai) estimates the

vector f (ai,h). When Y = c’X, [6] estimates the vector c0f (ai,h1t).

The estimator for the dxd matrix of second moments,

corresponding to the covariance matrix for g(.) is given by

ŝs2
n(ai)~(1=Dn)

Pn{1

k~1

K((YkDn{ai)=hn)(Y(kz1)Dn{YkDn )(Y(kz1)Dn{YkDn )0

Pn
k~1

K((YkDn{ai)=hn)

ð7Þ

where the apostrophe denotes transpose. Equation [7] is the

kernel-weighted average of the square of the first difference of Y. If

one sets Y = X in equation [7] then the matrix ŝs2
n(ai) estimates the

matrix g(ai,h)g(ai,h)0. When Y = c’X, [7] estimates the matrix,

c0g(ai,h2t)Vg(ai,h2t)
0c. Bandi and Phillips [26] review literature

that locates sufficient conditions for [7] to be a strongly consistent

estimator of the matrix g(ai,h)g(ai,h)0, i.e. for [7] to converge with

probability one to g(ai,h)g(ai,h)0.
Following Bandi and Phillips [26] (equations (48) and (49)) for

any bandwidth hn, and any dx1 vector z, K(z) is defined by

K(z):(1=hd )Pd
r~1k(zr=h) ð8Þ

where k(.) is any one dimensional kernel function that satisfies their

regularity conditions. The product kernel [8] where z is the dx1

vector z~XkDn{ai is useful for multivariate applications. When

Y = c’X where the dimension d’ of Y is less than or equal to d, then

the dimension of z will be d’.The Gaussian kernel function we used

for one dimensional estimation is

k((YkDn{ai)=hnj)~
1ffiffiffiffiffiffiffiffiffiffiffi

2ph2
nj

q exp {
(YkDn{ai)

2

2h2
nj

 !
ð9Þ

For multivariate kernels insert [9] into [8] after replacing the

vectors by their j’th components, and run j = 1,2,…,d and

j = 1,2,…,d’ for Y = X and Y = c’X respectively.

Drift and diffusion estimates are smoother the larger the

bandwidth. Johannes [27] provides advice on choice of band-

width. Methods for computing an optimal bandwidth exist [23].

We have found that these methods undersmooth the drift and

diffusion functions, yielding curves that are too irregular in

experiments where the drift and diffusion functions are known a

priori. Therefore we prefer the guidelines of Johannes [27] which

scale the bandwidth to the standard deviation of the time series.

Bandi and Phillips [26] review literature that shows that as one

samples more and more frequently within a fixed interval [0,T] the

estimate of the matrix g(ai,h)g(ai,h)0 becomes infinitely precise

whereas the precision of the drift remains low. But in order to

drive the variance of the drift to zero one must increase the length

of the sampling interval [0,T] to infinity. We call sampling by

sending T to infinity ‘‘long span sampling’’ and sampling more

often within the interval [0,T] ‘‘infill sampling’’. Infill sampling

within each interval of time achieves a much more precise estimate

of the moment matrix function gg’ than the drift function f

whereas long span sampling is needed to get a precise estimate of

the drift function f. Simulations that illustrate this point are

available in the literature [22,27,28].

Simulation Studies
We used two well-studied ecosystem models as case studies. The

lake eutrophication model [6] in one dimension is

dxt

dt
~c1Ut{c2xtzc3mF (xt)zsRmF(xt)

dW

dt

F (x)~
xq

c
q
4zxq

ð10Þ

The regime shift is driven by a slow increase in the mass of

phosphorus in the watershed soil Ui. Phosphorus in sediment m is

constant at 200 g m22. Other fixed parameters are input

coefficient c1 = 0.00115, output coefficient c2 = 0.85, recycling

rate coefficient c3 = 0.019, recycling half-saturation coefficient

c4 = 2.4, exponent in the recycling function q = 8, and standard

deviation of Wiener shocks (dW ) to recycling sR = 0.005. For

simulations reported here, D= 0.1 and N = 10,000. The soil

phosphorus U was increased linearly from 600 to 1100 g m22 over

the N time steps.

In equation [10], noise is added to the recycling parameter, such

that the recycling term is c3zsRdW=dt. As a result the diffusion

sRSF (x)is a function of x. As an instructive contrast we also

Table 1. Indicators considered in this paper.

Name of indicator Interpretation Symbol
Nonparametric
Estimate

Conditional
variance

Variance of x as a function of x. We use the conditional variance as an approximation of the

long-run stationary variance of x, S2
? . In a critical transition caused by a local co-dimension

one bifurcation of the drift function, the long-run stationary variance of the linearization
around the deterministic steady state becomes infinite at the transition point. The long run
stationary variance may increase as a noise-induced transition is approached.

S2 Equation [5]

Diffusion Variance of dx as a function of x. We use the estimator as an approximation of g(xt,h2t)
2

as defined near equation [1]. In a noise-induced transition, the variance matrix function
g’g (or g2) increases as the transition is approached.

g’g, or g2 Equation [7]

doi:10.1371/journal.pone.0045586.t001
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considered the additive noise case

dxt

dt
~c1Ut{c2xtzc3mF (xt)zsA

dW

dt

F (x)~
xq

c
q
4zxq

ð11Þ

In [11], recycling is deterministic, and diffusion is constant sA.

To evaluate the performance of low-dimensional indicators for

a higher-dimensional system, we analyzed a 5-dimensional model

of a lake food web [29] using samples of one or three components.

This case study illustrates the performance of the estimators when

only part of a multi-dimensional system is sampled. Details of the

model are presented in Supporting Information S2. The model

describes the dynamics of adult and juvenile piscivorous fishes,

planktivorous fishes, herbivorous zooplankton and phytoplankton

as driven by nutrient inputs, irradiance, and harvest of adult

piscivores. As the harvest rate of adult piscivores is increased

slowly, the system undergoes a bifurcation that is announced in

advance by rising variance [29].

We performed two kinds of experiments with the 5-dimensional

model. In both cases we gradually increased the bifurcation

parameter (harvest rate of adult piscivores). In the first case, we

assumed that data were available only for phytoplankton, a one-

dimensional data set. In the second case, we assumed that data

were available for phytoplankton, zooplankton, and planktivorous

fishes.

A R function for computing the indicators is presented in

Supporting Information S3.

For each model, three types of simulations are presented. (1) To

show estimates over a wide range of the observed state variable,

simulations that extend before and after the critical transition were

analyzed by computing the estimators. (2) Early warnings, to be

useful, must be detected prior to the critical transition. To

investigate early detection, we terminated simulations prior to the

critical transition and computed the estimators. (3) In order to

assess the precision of the estimators, we conducted Monte Carlo

simulations. For each Monte Carlo replicate, time series were

computed up to the critical transition, but not beyond, and the

estimators were then calculated. Then the functions for condi-

tional variance, drift and diffusion were averaged over 1000

realizations to compute the mean and standard deviation. For

univariate analyses, nonparametric functions were computed on a

mesh of 500 values spanning the range of the observed state

variable using a bandwidth of 0.3 times the standard deviation of

the entire series. In addition to the three types of univariate

simulations, we present a multivariate example for the food web

model. The multivariate example was computed in three

dimensions, planktivore, herbivore, and phytoplankton, on a

mesh of 75675675 values using a bandwidth of 0.4 times the

standard deviation of the entire series.

In order to be useful, an early warning indicator must be plotted

against time. The nonparametric methods yield indicators as a

function of the observed state variable. We used linear interpo-

lation to obtain indicator values as a function of time, by

interpolating indicator values for each observed value of the state

variable. Because the mesh used for the nonparametric compu-

tations is quite dense, linear interpolation is likely to be reasonably

accurate.

Results

As an initial demonstration of the indicators, we analyze the

eutrophication model with noise added to recycling (equation

[10]). The time series shows clearly that x (lake phosphorus in this

case) increases in level and fluctuates more after the transition

point (Fig. 1A). Plots of the indicators versus a show a sharp

increase in S2 as a rises near 3 (Fig. 1B) Diffusion also rises as a

approaches 3, and then tends to plateau. Plots of the indicators

versus time show that the increases are quite sharp near the

inflection point of the time series (Fig. 1C). When the graph zooms

in on events near the inflection point, it is clear that S2 increases at

least 5 time steps prior to the inflection point whereas diffusion

increases much closer to the inflection point (Fig. 1D).

When noise is purely additive (equation [11]), diffusion should

be constant when plotted versus a or time. An additive-noise

example is presented in Fig. 2. The change in level is clear but any

changes in variability are subtle (Fig. 2A). As expected, S2 rises

prior to the inflection point near a = 3 (Fig. 2B). After the inflection

point there is a small increase in diffusion that gradually declines at

values of a $ 3.5. Both S2 and diffusion spike near the inflection

point when plotted versus time (Fig. 2C). Zooming in on the

inflection point, the increase in S2 starts several time steps prior to

the inflection point whereas the increase in diffusion occurs after

the inflection point.

The increase in diffusion seen in Fig. 2 appears to be an artifact

of averaging during the steep rise in the time series. The elevated

values of diffusion occur for x values roughly between 2.5 and 5,

which occur for only a few data points during the steep rise of the

time series. Apparently the bandwidth is of a size that leads to a

small increase in the diffusion estimator during the steep rise.

When the time series settles down around the higher equilibrium

near x < 6, the diffusion estimate is again near zero.

To be useful as early warning signals, the indicators must

increase as the ecosystem approaches the transition, using data

measured only up to some point in time prior to the transition.

Figure 1. Simulation with the eutrophication model using
noise added to recycling (eq. 10). A. Time series of the state
variable. Note that the sample includes data before and after the
transition. B. Diffusion and S2 versus a. C. Diffusion and S2 versus time.
D. Diffusion and S2 versus time for a short time interval near the
transition.
doi:10.1371/journal.pone.0045586.g001

Nonparametric Early Warnings
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Fig. 3 presents an example (Fig. 3A). In this realization, both S2

and diffusion show increases with a (Fig. 3B). Also, increases in

both indicators are apparent in plots versus time (Figs. 3C, D).

Uncertainties become relatively large if the data do not span the

transition. Fig. 4 presents Monte Carlo simulations with noise

added to recycling (equation [10]) for 1000 time series, each of

which was truncated at x = 2. The standard deviation of drift is

very large, while those of diffusion and S2 are smaller (Fig. 4A).

Confidence bands for drift span zero, indicating that even the sign

is uncertain, for values of a above about 1.6 (Figs. 4B). Both

diffusion and S2 are clearly positive up to a values of about 1.9 or

even larger (Figs. 4C, D).

Plots of indicators and confidence bands versus time show that

uncertainties increase as the indicators approach the transition

point (Fig. 5). Time plots give a somewhat different impression

from plots versus a, because not all a values occur in the time

series. This is especially true for drift which is not discernibly

different from zero over many time steps (Fig. 5A). However the

confidence band for diffusion also includes zero for some time

steps (Fig. 5B). Conditional variance S2 is generally larger than

zero over time (Fig 5C).

From a single realization of the lake food web model

(Supporting Information S2), we analyze the time series for

phytoplankton (Fig. 6A). The inflection point occurs around time

step 5624 which corresponds to X < 40. Both S2 and diffusion

increase at values of a prior to the critical transition (Fig. 5B).

When the indicators are plotted against time, there is a notable

increase in S2 and smaller increase in diffusion prior to the

inflection point (Fig. 6C, D).

To illustrate the use of the indicators as an early warning before

the critical transition in the food web model, we present results for

a time series that ended when x = 40 (Fig. 7A). S2 is high and

fluctuating for a $ 10, and diffusion increases for a $ 35 (Fig. 7B).

The plot of indicators versus time shows that S2 is elevated over

much of the range, whereas diffusion increases only as the system

gets close to the transition point (Fig. 7C). Zooming into the last 20

time steps, it is evident that diffusion continues to rise whereas S2

actually declines in the last few time steps (Fig. 6D). As noted in

Supporting Information S1, the relationship of S2 and diffusion is

not necessarily monotonic.

To evaluate the information that might be gained by

multivariate analysis, we computed multivariate indicators using

the planktivore, herbivore and phytoplankton time series simul-

taneously. For each indicator, multivariate analysis yields a 36363

array of estimated values. This array is very difficult to visualize

and understand. However, over time the ecosystem took a one-

dimensional path through this high-dimensional space. Therefore,

Figure 2. Simulation with the eutrophication model using
additive noise (eq. 11). A. time series of the state variable. Note that
the sample includes data before and after the transition. B. Diffusion
and S2 versus a. C. Diffusion and S2 versus time. D. Diffusion and S2

versus time for a short time interval near the transition.
doi:10.1371/journal.pone.0045586.g002

Figure 3. Simulation with the eutrophication model using
noise added to recycling (eq. 10). A. Time series of the state
variable. Note that the sample includes data up to, but not after, the
transition. B. Diffusion and S2 versus a. C. Diffusion and S2 versus time.
D. Diffusion and S2 versus time for a short time interval near the
transition.
doi:10.1371/journal.pone.0045586.g003

Figure 4. Monte Carlo simulations with the eutrophication
model using noise added to recycling (eq. 10). The samples
ended at x = 2. A. Parameter standard deviations for drift, diffusion and
S2 versus x. B. Drift 6 standard deviation versus a. C. Diffusion 6

standard deviation versus a. D. S2 6 standard deviation versus a.
doi:10.1371/journal.pone.0045586.g004

Nonparametric Early Warnings
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Figure 5. Time series plots with confidence bands (± standard deviation) for the eutrophication model, interpolated from the
functions in Fig. 4. A. Drift. B. Diffusion. C. Conditional variance S2.
doi:10.1371/journal.pone.0045586.g005

Figure 6. Simulation with the food web model (Supporting
Information S2). A. Time series of phytoplankton. Note that the
sample includes data before and after the transition. B. Diffusion (times
1000) and S2 versus a. C. Diffusion (times 1000) and S2 versus time. D.
Diffusion (times 1000) and S2 versus time for a short time interval near
the transition.
doi:10.1371/journal.pone.0045586.g006

Figure 7. Simulation with the food web model (Supporting
Information S2). A. Time series of phytoplankton sampled up to
x = 40, just before the transition. B. Diffusion (times 100) and S2 versus a.
C. Diffusion (times 100) and S2 versus time. D. Diffusion (times 100) and
S2 versus time for a short time interval near the transition.
doi:10.1371/journal.pone.0045586.g007

Nonparametric Early Warnings
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time plots of the indicators were constructed by interpolation

(Fig. 8). The multivariate analysis was also slow to compute. For

1635 data points in three dimensions, computing the indicators on

the 75675675 mesh took 21.4 hours on a Intel 1.6 GHz processor

running Windows XP and R 2.10.1, downloaded 2009-12-14.

The maximum eigenvalue of the conditional covariance matrix

and the conditional covariances of the planktivore and phyto-

plankton show similar patterns with peaks near time step 5000

(Figs. 8 A, B, D). The conditional variance for the herbivore

(Fig. 8C) behaves differently, with some fluctuations near time step

5000 but no distinct peak. In the model, herbivores are stabilized

by a refuge and this factor may account for the muted responses of

herbivores [29]. All indicators for diffusion show sharp rises near

the end of the time series (Figs 8A–D). The difference in responses

suggest that the regime shift for the system as a whole, indicated by

conditional variance, occurred around time step 5000 whereas a

critical transition in g() occurs near the end of the sampled series.

The responses of the conditional variance and diffusion for

phytoplankton are roughly similar for the univariate and

multivariate analyses (compare Fig. 7C with Fig. 8D). We would

not expect them to be identical, because they employ different

bandwidths and different meshes for a, due to the slow

computation speed of the multivariate method. The phytoplank-

ton responses are quite similar to the eigenvalues which reflect the

integrated response of the entire ecosystem. Thus in this case a

univariate analysis of phytoplankton would have been sufficient as

an early warning.

Precision of the estimators computed from 1000 Monte Carlo

samples of the food web model showed high uncertainty as the

state variable approaches the transition point (Fig. 9A). When the

observed state variable is near 40, Confidence bands overlap zero

for all of the indicators (Fig. 9B–D).

Time plots of the Monte Carlo sample show that confidence

bands are highest near the transitions (Fig. 10). Drift is often close

to zero (Fig. 10A). Diffusion is non-zero and generally rises across

the time window (Fig. 10B). Conditional variance is consistently

different from zero, and is highest near the middle of the time

frame (Fig. 10C). This pattern is similar to what we observed in the

analyses of single time series. The time axis is re-scaled in Fig. 10

in order to put all of the time series on the same basis relative to

the inflection point.

Discussion

Estimators of S2 and diffusion are clearly elevated near the

critical transition in time series that are sampled both before and

after the transition (Figs. 1, 5). Such time series are a case of long-

span sampling. According to theory and previous simulation

studies, long-span sampling is needed to obtain precise estimates of

drift [30].

Comparison of the noise-in-parameter (Fig. 1) and additive

noise (Fig. 2) cases for the eutrophication model shows clear

differences related to the fact that diffusion is constant in the

additive case. Nonetheless S2 is strongly elevated around the

critical transition even in the additive case. The rise in S2 suggests

a bifurcation in either f() or g(), whereas a rise in the diffusion

function suggests a bifurcation in g(). The strong response of S2,

combined with the weak and transient response of diffusion, could

be used to discriminate noise-induced transitions (such as that

generated by eq. [10]) from drift-induced transitions (such as that

generated by eq. [11]). For example, the current discussion about

the role of noise-induced transitions in the Dansgaard-Oeschger

events of climate change history [31,32] could perhaps be

addressed using nonparametric methods to measure the condi-

tional variance and diffusion functions.

To serve as early warnings, the indicators must yield signals

before the regime shift occurs (Figs. 3, 6). In early warning settings,

long-span sampling may be impossible because only data prior to

Figure 8. Results of multivariate nonparametric analysis of the
same food web simulation depicted in Fig. 7. For multivariate
analysis, time series for planktivore, herbivore and phytoplankton were
analyzed. Time series are presented for 100*diffusion (solid line) and
conditional variance (dashed line). (A) Largest eigenvalue of the
diffusion and conditional variance matrices. (B) Variance of planktivores
from the diffusion and conditional variance matrices. (C) Variance of
herbivores from the diffusion and conditional variance matrices. (D)
Variance of phytoplankton from the diffusion and conditional variance
matrices.
doi:10.1371/journal.pone.0045586.g008

Figure 9. Monte Carlo simulations with the Food Web model
(Supporting Information S2) showing results for phytoplank-
ton. The samples included data for X # 40, just below the transition. A.
Parameter standard deviations for drift, diffusion and S2 versus a. B. Drift
6 standard deviation versus a. C. Diffusion 6 standard deviation versus
a. D. S2 6 standard deviation versus a.
doi:10.1371/journal.pone.0045586.g009
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the transition are useful for early warnings. Nonetheless, infill

sampling can be used and this will improve the precision of

diffusion estimates.

Single realizations of the eutrophication and food web models

show early warnings in the estimates of S2 and diffusion for data

collected before the transition (Figs. 3,6). These increases, while

notable, are less pronounced that those we observed using rolling

window statistics for the same models [6,29]. However it is difficult

to compute unambiguous error estimates for rolling window

analyses. For the nonparametric method, Monte Carlo analysis

shows that estimates are surrounded by considerable uncertainty

(Figs. 4, 7). For drift, even the sign is unknown. For the

eutrophication model (Fig. 4), there is a maximum near a = 1.9

which could indicate an eigenvalue of zero (the eigenvalue is the

derivative of drift with respect to a). Because of the wide

confidence band, however, any estimate of the eigenvalue is

highly uncertain. Both S2 and diffusion are clearly positive and

increasing prior to the transition. However, the confidence bands

of S2 and diffusion span zero at the highest values of a. Apparently

it is difficult to obtain precise estimates of these functions at

extreme values of the data. Nonetheless, for the great majority of

stochastic realizations the estimates of S2 and diffusion increase

before the transition and thereby provide useful early warnings.

Many previous studies of early warning indicators have

employed time series of autocorrelation, variance, and other

statistics computed on a sequence of rolling-window subsets of the

data [8,29]. Our analyses have several interesting implications for

rolling-window statistics. (1) The autocorrelation and the variance

are both affected by both drift and diffusion (Supporting

Information S1). Therefore it is not possible to separate drift

and diffusion components using these statistics. However,

nonparametric analysis does provide a means of estimating drift

and diffusion separately. This is advantageous where researchers

seek to distinguish additive noise from nonlinear noise. (2) The

nonparametric estimate of S2 is analogous to rolling-window

variance. Our analyses corroborate the value of variance as an

early-warning indicator. (3) Monte Carlo analyses indicate that

trajectories of S2 and (for noise-induced transitions) diffusion will

generally increase as a critical transition is approached. However,

uncertainties of both indicators tend to become large as the system

approaches the transition. In some cases it may be possible to

increase the precision of diffusion estimates by sampling more

frequently. Nonetheless, while these indicators generally rise prior

to a critical transition this pattern is not guaranteed. Decreases or

cycles are possible when the transition is near.

There are important ecological cases where an appropriate

structural model (specific form of [1]) is known from other research

or can be determined by fitting models to the data. For example,

extensive research on many ecosystems for many years suggests

certain structural forms for well known regime shifts in lakes

[2,33]. In other cases methods for optimal model identification can

be used to infer the structural form of nonlinear models for

ecological time series [15,16]. These approaches have the powerful

advantage of strong inference about the underlying nature of the

bifurcation. We are enthusiastic about early warnings based on

structural model identification, but we recognize that in many

cases the data will not be up to the task. Structural models may not

always be available in ecological applications because long time

series, typically including covariates and several instances of

regime shift, are needed to fit nonlinear models of bifurcations [2].

Furthermore, the time to relax to the stationary distribution can be

very long especially as the bifurcation parameter gets close to the

critical value of the bifurcation parameter [20,21,34]. Thus even if

the bifurcation parameter h is known and can be estimated,

Figure 10. Time series plots with confidence bands (± standard deviation) for the food web model, interpolated from the functions
in Fig. 9. A. Drift. B. Diffusion. C. Conditional variance S2.
doi:10.1371/journal.pone.0045586.g010

Nonparametric Early Warnings

PLOS ONE | www.plosone.org 8 September 2012 | Volume 7 | Issue 9 | e45586



detection of tiny changes as ht gets close to the critical value hc

may not be the most efficient approach to constructing early

warning indicators. Therefore we focus here on alternatives that

are useful even when the structural model cannot be identified.

The nonparametric method will typically require more obser-

vations than a parametric method. This is so because parametric

methods can exploit the knowledge embedded in parametric

specification of components of equation [1]. However the

parametric assumptions may be invalid and thereby invalidate

the results of the parametric method. Hence there is a tradeoff

between reducing the risk from mistaken model specification in

parametric methods and the heavy data demands of the

nonparametric method. Different situations may be best suited

to one approach or the other. If data are plentiful and measured at

high frequencies, then the nonparametric method provides a

rather precise estimate of the conditional variance and diffusion

terms [35]. High frequency data are increasingly common in

ecology. In addition. one can learn about noise-induced versus

non-noise-induced transitions by comparing S2 and diffusion

functions.

In order to be useful, early warning indicators must be plotted

against time. Strictly speaking, nonparametric functions should be

fitted against random covariates such as the observed state

variable, and not time. However, interpolation can be used to

provide a time series of the indicators as we have shown here.

Nonparametrics are expensive to compute even for a coarse

mesh in the multivariate case. However, our results show that even

one dimension sampled from a multi-dimensional system can

provide an early warning.

Error estimates for nonparametric estimates are a topic for

further research. For cases where the underlying structural model

is not known, Monte Carlo analysis using the fitted functions is

difficult because drift is highly uncertain. While Monte Carlo

analysis using the fitted function is beyond the scope of this paper,

we suggest that it may be informative to guess some plausible

structural models and compute Monte Carlo analyses to get a

rough idea of how large the uncertainties could be.

In management applications, one would compute the nonpara-

metric functions at regular intervals of time to check for increases

in conditional variance or diffusion. Monte Carlo analyses

presented here show that estimates of the functions become rather

uncertain near the critical transition point. While the majority of

the Monte Carlo realizations suggest an impending transition,

some do not. There will, therefore, be cases where the early

warning is not detected even though a critical transition is

imminent. In management decisions, an imperfect early warning is

more valuable than no warning at all. Even an uncertain early

warning may have great value when there is risk of a very

expensive regime shift.

There are important ecological cases where an appropriate

structural model (specific form of [1]) is known from other research

or can be determined by fitting models to the data. For example,

extensive research on many ecosystems for many years suggests

certain structural forms for well known regime shifts in lakes

[2,33]. In other cases methods for optimal model identification can

be used to infer the structural form of nonlinear models for

ecological time series [15,16]. These approaches have the powerful

advantage of strong inference about the underlying nature of the

bifurcation. We are enthusiastic about early warnings based on

structural model identification, but we recognize that in many

cases the data will not be up to the task. Structural models may not

always be available in ecological applications because long time

series, typically including covariates and several instances of

regime shift, are needed to fit nonlinear models of bifurcations [2].

Furthermore, the time to relax to the stationary distribution can be

very long especially as the bifurcation parameter gets close to the

critical value of the bifurcation parameter [20,21,34]. Thus even if

the bifurcation parameter h is known and can be estimated,

detection of tiny changes as ht gets close to the critical value hc

may not be the most efficient approach to constructing early

warning indicators. Therefore we focus here on alternatives that

are useful even when the structural model cannot be identified.

The need for early warning indicators of ecological regime

shifts, despite uncertainty about the true data generating process,

raises many challenges. Nonetheless, this paper provides several

reasons to think that early warning indicators for ecosystem regime

shifts are worth pursuing, even if there is little information about

underlying processes. Nonparametric methods that assume no

particular data generating process (other than that it is a stochastic

differential equation like [1]) can yield useful estimates of the

conditional variance and diffusion functions. In principle, such

estimates could be updated periodically over time to track the

movement of the system toward or away from a critical transition.

Nonparametric methods are especially effective for high-frequency

automated observations that are becoming more available in

ecology.

The encouraging exploratory results presented here suggest that

further research to understand and improve ecological early

warning indicators is worth the effort.

Supporting Information

Figure S1 State variables versus time for a realization
of the food web model illustrating dynamics of the five
dimensions. Adult and juvenile piscivore curves were multiplied

by 4 for convenient display on the same axes as the other variables.

(TIF)
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