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Abstract

Parkinson'’s disease is characterized by dopaminergic neurodegeneration and is associated with mitochondrial dysfunction.
The bioenergetic susceptibility of dopaminergic neurons to toxins which induce Parkinson’s like syndromes in animal
models is then of particular interest. For example, rotenone, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its
active metabolite 1-methyl-4-phenylpyridinium (MPP*), and 6-hydroxydopamine (6-OHDA), have been shown to induce
dopaminergic cell death in vivo and in vitro. Exposure of animals to these compounds induce a range of responses
characteristics of Parkinson’s disease, including dopaminergic cell death, and Reactive Oxygen Species (ROS) production.
Here we test the hypothesis that cellular bioenergetic dysfunction caused by these compounds correlates with induction of
cell death in differentiated dopaminergic neuroblastoma SH-SY5Y cells. At increasing doses, rotenone induced significant
cell death accompanied with caspase 3 activation. At these concentrations, rotenone had an immediate inhibition of
mitochondrial basal oxygen consumption rate (OCR) concomitant with a decrease of ATP-linked OCR and reserve capacity,
as well as a stimulation of glycolysis. MPP* exhibited a different behavior with less pronounced cell death at doses that
nearly eliminated basal and ATP-linked OCR. Interestingly, MPP™, unlike rotenone, stimulated bioenergetic reserve capacity.
The effects of 6-OHDA on bioenergetic function was markedly less than the effects of rotenone or MPP™ at cytotoxic doses,
suggesting a mechanism largely independent of bioenergetic dysfunction. These studies suggest that these dopaminergic
neurotoxins induce cell death through distinct mechanisms and differential effects on cellular bioenergetics.
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Introduction

Parkinson’s disease is the second most common neurodegener-
ative disease, affecting over 4 million people with pronounced
degeneration of the dopaminergic neurons of the substantia nigra
[1]. Although genetic factors contribute to the disease, over 90% of
Parkinson’s disease cases do not have an identified genetic cause
[1]. Mitochondrial dysfunction has been proposed to play a major
role in Parkinson’s disease pathogenesis and can be induced by
both exogenous and endogenous neurotoxins [2]. The mitochon-
drial enzyme which has been most frequently implicated in
Parkinson’s disease is complex I [2]. Dysfunction of this complex
has been shown in mitochondria isolated from postmortem brains,
skeletal muscle and platelets of Parkinson’s disease patients [3—10].
Cybrid cell lines with mitochondria from Parkinson’s disease
patients also exhibit decreased complex I activity [9,11-14].

To investigate Parkinson’s disease pathogenesis and to test for
potential therapeutics, chemicals that cause dopaminergic toxicity
have been used in a variety of cell-based and animal models
[15,16]. The most frequently studied compounds are structurally
diverse, and include rotenone, MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine) and its active metabolite MPP* (1-methyl-4-
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phenylpyridinium) and 6-hydroxydopamine (6-OHDA) [15,16].
All have been shown to inhibit mitochondrial complex I, either
directly or indirectly, in assays involving isolated mitochondria
[17-29]. Whether the extent of cell death induced by these toxins
is directly related to their impact on mitochondrial function has
not been assessed. The examination of bioenergetic function in
intact cells is important because experiments with isolated
mitochondria are typically constrained to a very narrow range of
conditions including saturating concentrations of respiratory
substrates or ADP, that do not occur in a cellular context. An
understanding of the cellular effects of rotenone, MPP+ and 6-
OHDA is also potentially important to better understand the gene-
environment interactions in the context of Parkinson’s disease.
Rotenone has been used as an insecticide or fish poison for the
past 50—150 years and has been studied as a potential cause of PD.
Mixed reports have been published, and a conclusion regarding a
causative role correlating with the dose and duration of rotenone
exposure in PD is difficult to reach, due to insufficient longitudinal
tracking, heterogeneity and combinatorial natural of environmen-
tal exposures [30]. Meta-analyses examining 19, 39 or 59 studies
have concluded that pesticide exposures potentially increase PD
risk on average ~1.5-3 fold [31-33]. The recent and by far the
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most rigorous study by Tanner et al. reported that exposure to
paraquat and rotenone by farming communities increased the
incidence of PD with a odds ratio of ~2-3 fold [34]. Rotenone is
able to pass the blood brain barrier and plasma membrane, and
radiolabeled [3H]dihydrorotenone binds to striatal sections from
rodent brains with a Kd of ~55 nM [35]. Although rotenone can
freely diffuse into cells due to its hydrophobicity, in animal models,
dopaminergic neurons appear to be particularly susceptible to
rotenone-induced degeneration, [36]. Rats injected with 3 mg/kg
of rotenone via subcutaneous osmotic minipump exhibit dopami-
nergic neurodegeneration in the nigrostriatal pathway and
cytoplasmic a-synuclein aggregates in nigra neurons [37]. In vitro,
4 weeks of 5 nM rotenone exposure induces both soluble and
msoluble a-synuclein accumulation, increased caspase activation
and apoptosis [38]. In differentiated SH-SY5Y cells, 50 nM
rotenone for 7 days induces Lewy neurite-like structures [39].

MPTP first associated with an increased incidence of Parkin-
sonism in an uncharacteristically young patient population
[40,41]. MPTP is converted into its active metabolite, MPP*,
which is selectively taken up by dopaminergic cells via the
dopamine transporters and induces dopaminergic cell death in
mice, rats and primates [15,16,42]. Overexpression of the
dopamine transporter into cells can change the susceptibility of
cells to MPP" toxicity. For example, the dopamine transporter has
been expressed COS, Hella and neuroblastoma SK-N-MC cells
and this decreases the concentration of MPP" needed to cause
toxicity [43,44]. The differentiated neuroblastoma cells we have
used in this study are an established model to evaluate
neurotoxicity, because these cells exhibit neurite extension,
markedly decreased cell division and expression of neuronal
markers [45,73,76,77,81,82]. Retinoic acid was used as the
differentiating agent because it results in transport characteristics
for dopamine (Vmax of 21 pmol/mg protein, Km of 45 nM)
which are similar to those reported for rat striatal synaptosomes
(Vmax of 33 pmol/mg protein, Km of 29 nM) [45].

MPP* is reported to inhibit rat or mouse mitochondrial
pyruvate oxidation with Ki ranging from 60 to 400 uM, about
1000 fold higher than rotenone [19]. The weak inhibitory effect of
MPP" on complex I raised questions regarding its mechanisms of
toxicity. For example, MPP" at a concentration of 200 uM can
induce partial and transient inhibition of complex III and IV
activities in mitochondria from mouse brains [46]. In dopaminer-
gic LUHMES cells, MPP* depletes cellular ATP at the low
concentration of 5 uM consistent with a bioenergetic mechanism
distinct from the isolated mitochondria and which cannot be
simply explained by increased transport into the cells [47].
Furthermore, in mesencephalic dopaminergic neurons, MPP*
inhibits mitochondrial trafficking at 2 pM which led us to the
hypothesis that the interaction of MPP" with cellular bioenergetic
mechanisms may be distinct from those with isolated mitochondria
{Kim-Han, 2011 5257/id}. Another mechanism that could
contribute to MPP* toxicity is oxidative stress. In support of this
adding cellular or exogenous antioxidants has been shown to
partially attenuate the detrimental effects of MPP" {Przedborski,
1992 5272/id;Klivenyi, 1998 5271/id}.

The idea that both rotenone and MPP' bind and inhibit
complex I has been supported by the observation that exogenous
expression of the yeast rotenone resistant complex I subunit NDI1
attenuated both rotenone and MPP* toxicity i vitro and in vivo
[29,51-55]. Interestingly, NDI1 attenuated rotenone inhibition of
cell growth, but did not attenuate cell growth in MPP" treated cells
unless under conditions of glucose deprivation, indicating different
effects of the two compound [55]. These data suggest that the
effects of MPP" on cellular bioenergetics are more complex than
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simple inhibition of complex I. The obligatory role of complex I
inhibition as a mechanism of rotenone toxicity was further
challenged by a recent study showing that the absence of a
complex I subunit Ndufs4, did not change the susceptibility to
rotenone or MPP*-induced cytotoxicity, even though complex I
activity is decreased [56]. Taken together these data highlight a
persistent and interesting controversy in the literature regarding
the impact on bioenergetics of rotenone and MPP*.

6-OHDA has been found in human brain [57] and human
urine, with elevated levels in the urines of Parkinson’s disease
patients who were treated with L-dopa [58]. Systemic injection to
rodents caused depletion of norepinephrine in the heart {Porter,
1965 5267/id;Porter, 1963 5268/1d}, while stereotaxic injection to
the striatum induced degeneration of dopaminergic neuron
processes in the striatum and dopaminergic neuron death in the
substantia nigra [61]. 6-OHDA has been shown to reversibly
inhibit both complexes I and IV activities in rat brain mitochon-
dria with IC50 of ~10 and 34 uM [26-28]; while it can also be a
source of both hydrogen peroxide and superoxide radical through
an auto-oxidation reaction [62,63]. In vitro it has been shown that
dopamine reacts with Fe(I) in the presence of hydrogen peroxide,
to generate 6-OHDA [64]. 6-OHDA can then react with Fe(III)
causing its release and subsequent cellular damage [65]. This is
potentially important for PD pathogenesis, because the dopami-
nergic neurons of the substantia nigra in human brains have
higher iron levels associated with the protein neuromelanin
[66,67]. Whether the effects of 6-OHDA on cell survival are
related to damage to mitochondria in a cellular context is not
known.

In summary, the effects of rotenone, MPP" and 6-OHDA on
activities of respiratory complexes have been investigated in
isolated mitochondria with substrates and ADP in excess, but their
effects on bioenergetic function and the relationship to toxicity in
intact cells remains unknown. A novel approach to assessing
cellular bioenergetics is to use extracellular flux analysis which uses
real time measurement of oxygen consumption and pH in
adherent cells [68-70]. This technology overcomes many of the
drawbacks inherent in experiments with isolated mitochondria,
because it allows the cell to provide physiologically relevant levels
of respiratory substrates and ADP [68-70]. Because both rotenone
and MPP* are reversible inhibitors, accurately determining
bioenergetic dysfunction from mitochondria isolated after expo-
sure to these compounds is not feasible. The extracellular flux
analysis also overcomes this problem. Using this approach we were
able to relate the toxicity of the three toxins to their effects on
cellular bioenergetics. At concentrations inducing a similar level of
toxicity distinct effects on cellular bioenergetics were observed.

Methods

Cell Culture

Early passage P8-17 human neuroblastoma SH-SY5Ycells,
grown in DMEM supplemented with 10% fetal bovine serum,
2 mM Glutamine, and penicillin/streptomycin were used. Differ-
entiation was induced as described previously [70]. For bioener-
getic measurements SH-SYSY cells were grown in XF24 plates,
differentiated with retinoic acid. These cells have extended axons,
express the neuronal MAP2 marker, and have elongated
mitochondria [70]. Both undifferentiated and differentiated
(induced by various compounds) SH-SY5Y cells express dopamine
transporters (DAT), and are susceptible to rotenone, MPP* and 6-
OHDA-induced cell death [45,71-83]. We chose to use differen-
tiated cells because they exhibit markedly decreased cell prolifer-
ation, many characteristics of neuronal cells and a dopamine
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transport system with similar characteristics to those synaptosomes

[45].

Measurement of Mitochondrial Function

To measure mitochondrial function in differentiated SH-SY5Y
cells, the Seahorse Bioscience X124 Extracellular Flux Analyzer
(XF24) was used. The XF24 creates a transient, 7 pl chamber in
specialized microplates that allows for the determination of oxygen
concentration and pH in real time [69,70]. Both the oxygen
consumption rate (OCR) in pmol/min and the extracellular
acidification rate (ECAR) in mpH/min, were normalized to total
protein amount in individual wells determined by the DC protein
assay (BioRad). The optimal seeding density of the cells needed to
obtain a measurable Oy consumption rate and extracellular
acidification rates (OCR and ECAR respectively) was established,
and both ECAR and OCR show a linear response with cell
number [70]. For subsequent experiments, a seeding density of
80,000 cells per well was selected to allow both potential increases
and inhibition of OCR and ECAR to be assessed. Over the course
of these experiments we found that the initial OCR prior to
mjection of compounds varied between preparations from 7—
12 pmol/min/pg protein depending on small changes in cell
culture conditions as we have reported previously for SH-SY5Y
cells [70]. To allow comparison between multiple experiments
data for OCR measurements are expressed as % of the stable rate
prior to injection of neurotoxins. Mitochondrial function was
assessed using the sequential injection of oligomycin, carbonyl
cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP); and anti-
mycin A concentrations to elicit maximal effects, which were
optimized prior to assessment of bioenergetic function, and found
to be 1 uM, 1 uM and 10 pM respectively. Rotenone was freshly
prepared in DMSO and diluted into the medium, MPP" was
freshly prepared in the medium, and 6-OHDA was freshly
prepared in 0.1% ascorbic acid. All experiments were performed
with appropriate vehicle controls. The purity of MPP* was
assessed by mass spectrometry and a single peak detected at the
anticipated molecular weight of 170.2 with no detectable
impurities (result not shown). During these experiments either
rotenone, MPP", or 6-OHDA were injected after 4 baseline
measurements at the beginning of the experiment, and OCR and
ECAR were continuously measured for 2 hr, followed by a
mitochondrial function assay described above and in detail in

[69,70].

Cell Viability

Cell viability was measured first by Calcein AM assay and then
confirmed using the trypan blue exclusion method. For the
Calcein AM assay, 100,000 cells per well were plated and
differentiated in 48-well plate. Calcein AM stock (I mM) was
prepared in 15 ml of Locke’s buffer. Media was removed from the
cells and the cells were incubated for 30 min at 37°C with 150 pl
Calcein AM in Locke’s Buffer. The cells were imaged on a Perkin
Elmer Life Sciences Wallace 1420 multilabel plate reader. Green
fluorescence was imaged with 488 nm excitation and 530 nm
emission. For trypan blue exclusion assay, 150,000 cells were
plated per well of a 12-well plate. Cells were treated with the
neurotoxins for 24 hr and upon completion of exposure, the cells
were trypsinized and mixed with trypan blue. Cells that excluded
trypan blue were considered viable.

Western Blot Analysis
300,000 cells were grown and differentiated in 6-well plates and

treated for either 2 hr or 24 hr with different doses of rotenone,
MPP" and 6-OHDA. Protein extracts were separated by SDS-

PLOS ONE | www.plosone.org

Bioenergetic Response to Neurotoxins

PAGE and probed with respective antibodies. Anti- caspase 3
antibody was from Cell Signaling (#9661), and actin antibody was
from Sigma (#1978). Relative levels of protein were quantified
using Image J software from the NIH (Bethesda, MA, USA).

Statistical Analysis

Data are reported as mean * SEM. Comparisons between two
groups were performed with unpaired Student’s #tests. One-way
or Two-Way Analysis of Variants (ANOVA) was performed when
multiple comparisons were made whenever appropriate. A p value
of less than 0.05 was considered statistically significant.

Results

Effects of Rotenone, MPP" and 6-OHDA on Caspase 3
Activation and Cell Death

Differentiated human neuroblastoma SH-SY5Y cells were
treated with increasing concentrations of rotenone, MPP* and 6-
OHDA. Western blot analyses of activated caspase 3 were
performed at both 2 and 24 hr after the addition of the toxins.
After 2 hr of various doses of the neurotoxins, no caspase
activation was observed at any of the concentrations used (result
not shown). After 24 hr of exposure to these toxins, the levels of
activated caspase 3 increased progressively with increasing
concentrations of rotenone. An increase of activated caspase 3 in
response to MPP" was not evident at any concentration tested.
Increases of activated caspase 3 in response to 6-OHDA occurred
at 100-200 uM concentrations (Figure 1A,C,E).

We determined cell viability in response to these neurotoxins by
the trypan blue exclusion method. After 2 hr of exposure, no cell
death was observed at any of the concentrations used (result not
shown). At 24 hr rotenone was found to be the most potent
inducer of cell death with 50% cell death induced at approxi-
mately 5 nM, MPP" induced 50% cell death at ~ 5 mM, and 6-
OHDA induced 50% cell death at ~ 100 pM (Figure 1B,D,F).

Effects of Rotenone, MPP™ and 6-OHDA on Cellular
Bioenergetics

To investigate the early cellular bioenergetic responses to
rotenone, MPP" and 6-OHDA, we performed studies using the
XF24 analyzer. Initially a stable baseline for OCR was established
for 32 min, at which point the compounds were injected directly
onto the cells in the XF24 analyzer chamber, and the changes in
OCR were monitored for a further 2 hr.

As shown in Figure 2A, 3A, rotenone induced significant
effects on basal OCR at concentrations of 1 nM with a rate of
onset of inhibition which was dependent on the concentration.
MPP* at a concentration of 500 nM or above significantly
decreased basal OCR and similar to rotenone the rate of onset
of inhibition was dependent on the concentration (Figure 2B
and 3B). In contrast, 6-OHDA at concentrations between 50 to
200 uM  inhibited OCR to a much lesser extent (<30%),
(Figure 2C and 3C). To better understand the relationship
between cell viability and mitochondrial function, we have
directly plotted the basal OCR versus cell viability by
integrating the data from Figure 1B-T and Figure 3A-C. The
extent of rotenone induced cell death matches the extent of
rotenone induced decrease in OCR. It decreases ~40% OCR
at a dose that decreases ~50% cell viability. In contrast, MPP+
substantially decreases OCR without substantial decreases in
viability. It decreases ~80% basal OCR at a dose that
decreases ~20% cell viability. 6-OHDA substantially decreases
viability without substantial decreases in OCR. It decreases
~30% basal OCR at a dose that decreases ~50% cell viability.
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Figure 1. Caspase 3 activation and cell viability in response to rotenone, MPP* and 6-OHDA. Whole cell lysates were collected after 24 hr
exposure with increasing concentrations of rotenone, MPP* and 6-OHDA. Western blot analysis for activated caspase 3 was performed using actin as
a loading control, for increasing concentrations of rotenone (A), MPP* (C), and 6-OHDA (E). Cell viability was assessed by trypan blue exclusion for
rotenone (B), MPP* (D), and 6-OHDA (F) after 24 hr exposure. Data are expressed as percent normalized to 0 uM treatment. Data = mean + SEM,

n=3. *p<<0.05, Student t-test compared to 0 uM treatment.
doi:10.1371/journal.pone.0044610.g001

Inhibition of mitochondrial respiration stimulates glycolysis and
this can be detected by an increase in the rate of extracellular
acidification (ECAR). Shown in Figure 4 are the relationships
between OCR and ECAR in response to increasing concentra-
tions of the 3 neurotoxins. The data are plotted as % of control for

ease of comparison between experiments. Concentrations of
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rotenone or MPP" which inhibit OCR also increase ECAR to
approximately the same extent. There is a biphasic effect of MPP*
on ECAR, with maximal stimulation at 5 uM. In contrast, in
response to 6-OHDA, both OCR and ECAR are modestly
decreased to similar extents.
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Figure 2. Concentration-dependent effects of rotenone, MPP*, and 6-OHDA on basal OCR. Using the XF24 analyzer, the mitochondrial
oxygen consumption rate (OCR) was determined for 4 basal readings with 80,000 cells plated per well. OCRs were between 8-12 pmol O,/min/pg
protein. Then rotenone (A), MPP* (B), and 6-OHDA (C) were injected. (A) B control, [J 1 nM rotenone, @ 10 nM rotenone, and O 100 nM rotenone.
(B) M control, [ 500 nM MPP*, @5 uM MPP*, and O 500 uM MPP*. (C) B control, [J 50 uM 6-OHDA, and O 200 uM 6-OHDA. Data are expressed as
percent of the basal OCR prior to injection of neurotoxins. Data = mean = SEM, n=3. In some cases, the error bars are smaller than the symbols.

doi:10.1371/journal.pone.0044610.9002

Next we tested the effects of the inhibitors on ATP-linked and
maximal respiration using the sequential addition of mitochondrial
inhibitors as described previously [69] (Figure 5A-C). The
capacity of the respiratory chain to synthesize ATP under basal
conditions can be estimated from the extent of decrease in OCR
after the addition of oligomycin. The values for ATP linked
respiration varied between 40-65% of the Basal OCR depending
on the specific cell preparation. We found ATP-linked respiration
to be completely inhibited by both rotenone (1-100 nM), and
MPP* (0.5-500 uM) in a concentration-dependent manner. In
contrast, 6-OHDA (50-200 uM) inhibited ATP-linked respiration
to a lesser extent and did not exceed 40% (Figure 5D-F).

The remaining OCR after the addition of oligomycin can be
ascribed to proton leak or non-mitochondrial sources of oxygen
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consumption and varied between 12.5-25% of basal for these
preparations. The values for proton leak are shown in Figure 4G-I
for the three compounds. Interestingly, rotenone decreased proton
leak at 0.1-100 nM, at a concentration lower than that needed to
change basal OCR and ECAR. MPP* decreased proton leak at
10-100 pM, whereas 6-OHDA increased proton leak at 200 pM.

Next FCCP was added to stimulate maximal respiration
(Figures 6A-C), and this was also used to calculate the reserve
capacity (the difference between basal and maximal OCR)
(Figure 6D-F). Interestingly, the behavior of all 3 compounds
was markedly different. Rotenone at 0.1-100 nM concentrations
inhibited maximal OCR and reserve capacity (Figure 6A,D).
MPP" in contrast decreased maximal respiration at 10-100 uM
(concentrations that also affect proton leak) with an apparent
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Figure 3. Concentration-dependent effects of rotenone, MPP* and 6-OHDA on basal OCR after 2 hr exposure. Changes in basal OCR
after rotenone (A), MPP™ (B), and 6-OHDA (C) are shown and are expressed as percent normalized to OCR before injection. Data = mean = SEM, n=3.
*p<<0.05, Student t-test compared to 0 uM treatment. The relationship between 24 hr % viability and 2 hr % of OCR was plotted for (D) rotenone, (E)
MPP* and (F) 6-OHDA. (D) M control, & 0.1 nM rotenone, [ 1 nM rotenone, @ 10 nM rotenone, and O 100 nM rotenone. (E) B control, & 5 nM
MPP*, [J 500 nM MPP*, @ 5 uM MPP*, and O 500 uM MPP*. (F) B control, [J 50 uM 6-OHDA, @ 100 uM 6-OHDA, and O 200 uM 6-OHDA.

doi:10.1371/journal.pone.0044610.g003

increase in reserve capacity at 0.5-500 uM (Figure 6B,E). 6-
OHDA decreased both maximal OCR and reserve capacity at the
highest concentration tested (200 uM) (Figure 6C.F). Non-
mitochondrial OCR is unchanged for rotenone and 6-OHDA
while is decreased by MPP* at 0.5-500 uM.

Discussion

Neurotoxin models play an important role in Parkinson’s
research and the compounds described here have been used by
many researchers with isolated mitochondria, cultured cells and
animal models of the disease [15,16,45,70-85]. In this study we
provide data which bridges the gap between experiments with
rotenone, MPP* and 6-OHDA in isolated mitochondria, with cell
and animal models by assessment of cellular bioenergetics. To
achieve this we have selected a dopaminergic cell line, SH-SY5Y,
which has been used extensively as a model to test the effects of
neurotoxins on cell function [45,70-85]. We have recently shown
that the bioenergetic profile of differentiated SH-SY5Y cells
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possess many of the hallmarks of neurons including the presence of
a bloenergetic reserve capacity [70]. All three neurotoxins have
been tested in this cell model in a wide range of studies
[45,72,75,76,80,81]. The differentiated forms of these cells have
an active dopamine transporter although it may have a lower
activity than in mesencephalic dopaminergic neurons, it has
similar activity to that found in synaptosomes [45,72,85]. It is
important to recognize that the relative potency may change
depending on cell type and the levels of expression of DAT.
Primary dopaminergic neurons from rodents may better resemble
human dopaminergic neurons in terms of cellular properties used
but unfortunately, cellular bioenergetic analysis requires homoge-
neous cell populations and this is a technical limitation to the use
of mesencephalic neurons which are heterogeneous and are not
easy to obtain in large numbers [86] .

To gain more insight into the mechanisms of how these
neurotoxins affect cellular bioenergetics, we assessed different
aspects of the bioenergetic profiles [69]. Oligomycin is an inhibitor
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Figure 4. Concentration-dependent effects of rotenone, MPP*
and 6-OHDA on OCR and ECAR. The OCR and ECAR data are taken
from the 2 hr time point shown in Figure 2 and are expressed as
percent normalized to basal OCR or basal ECAR before injection of
increasing doses of rotenone (A), MPP* (B), and 6-OHDA (C). ECAR
values ranged between 35-110 mpH/min before normalization and
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5 uM MPP*, and O 500 uM MPP™. (C) B control, [J 50 uM 6-OHDA, @
100 uM 6-OHDA, and O 200 uM 6-OHDA. Data are expressed as
percent normalized to OCR and ECAR before injection. Data = mean *=
SEM, n=3. *p<<0.05, Student t-test compared to 0 uM treatment OCR;
#p<0.05, Student t-test compared to 0 uM treatment ECAR.
doi:10.1371/journal.pone.0044610.g004

of the ATP synthase and when added to the cells will decrease the
basal OCR. The extent to which this decreases after a treatment
can be ascribed to the inhibition in the cell of an ATP consuming
process, inhibition of the ATP synthase or related proteins, or
decreased ability of the electron transport chain to provide
sufficient proton motive force to drive ATP synthesis. All 3
compounds, rotenone, MPP" and 6-OHDA exhibit a good
correspondence between the extents to which they decreased
ATP linked respiration and inhibited basal OCR (Figure 5).
However, only rotenone and MPP" completely inhibited both
basal and ATP linked respiration. The remaining OCR after the
addition of oligomycin is ascribed to proton leak. In this parameter
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the 3 neurotoxins also showed different responses. Rotenone
decreased proton leak even at 0.1 nM concentration, whereas
MPP* decreased proton leak at 10-100 uM concentrations. In
contrast, 6-OHDA increased this parameter at 200 uM. We
interpret this result to indicate that rotenone and MPP* may have
increased mitochondrial efficiency by decreasing proton leak
whereas 6-OHDA has decreased efficiency. We have previously
shown that increase ROS can cause an increase in proton leak
consistent with the reported pro-oxidant effects of 6-OHDA [87].

Adding the proton ionophore FCCP removes the regulation of
the proton motive force on basal respiration, and allows full
activity of the respiratory chain to be realized depending on the
substrate availability from cellular metabolism. The difference
between basal and maximal OCR is termed the reserve or spare
bioenergetic capacity and, in the absence of any other bioenergetic
defects, can be used to service increased energy demands in the
cell including increased oxidative stress [68,69]. Using this
approach, we observed that rotenone exposure decreased maximal
respiration and reserve capacity at 0.1 nM, while, in contrast,
MPP" increased reserve capacity at 1 uM to 1 mM.

In summary, the response of SH-SY5Y cells to rotenone was as
predicted for an authentic complex I inhibitor. Specifically,
inhibition of cellular respiration by rotenone results in the
compensatory induction of glycolysis, loss of bioenergetic reserve
capacity, activation of the apoptotic cascade and a strong
correspondence between the doses which cause bioenergetic
dysfunction and cell death. In contrast, MPP", while inhibiting
basal respiration to a similar extent as rotenone, did not induce the
same level of cytotoxicity. This difference could occur because
rotenone has an additional effect leading to cytotoxicity indepen-
dent of inhibition of basal respiration or the mechanism through
which MPP" inhibits respiration is different. Our data suggests
that MPP" interacts through the respiratory chain in a different
manner since basal cellular respiration is inhibited but can still be
stimulated by the addition of uncoupler, suggesting an essentially
unimpaired electron transport chain and possibly inhibition of
ATP synthase or related proteins. The apoptotic pathway is not
activated, and the doses which cause inhibition of mitochondrial
function do not correspond well to cytotoxic doses. An interesting
possibility is that MPP* is acting as a cation, and as such its
distribution and interactions will depend on mitochondrial
membrane potential [88]. At the present time we cannot exclude
the possibility that MPP" levels are decreased by the addition of
FCCP but if this were the case inhibition of electron transport
which would also decrease membrane potential should result in
reversal of its inhibitory effects. Recent gene array studies in SH-
SYSY cells suggest that ATP synthase is down regulated in
response to MPP*, which would be consistent with a change in
both basal and ATP-linked OCR while maintaining reserve
capacity [71]. 6-OHDA has none of the characteristics of an
inhibitor of mitochondrial oxidative phosphorylation, direct or
indirect, and the observed responses to bioenergetics, such as
increased proton leak, are consistent with oxidative stress
[62,63,65]. It is possible 6-OHDA impacts mitochondrial redox
signaling without engagement of the major intra-mitochondrial
metabolic pathways.

ROS generation by rotenone, MPP+ and 6-OHDA has been
proposed to contribute to their toxicity. ROS increase in
Parkinson’s disease has been well documented, although clinical
trials using antioxidants have not been proven efficacious [89].
Furthermore, a most recent study in the Journal of Neurochem-
istry [90] has shown that at doses clearly affecting mitochondrial
function, there is a lack of correlation with superoxide generation.
In this study we further conclude that the widely used
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Figure 5. Changes in ATP-linked and proton leak OCR in response to 2 hr exposure to rotenone, MPP* and 6-OHDA. After exposure to
rotenone (A), MPP* (B), and 6-OHDA (C) for 2 hr, OCRs were measured after injection of oligomycin (O), FCCP (F) and antimycin A (A). ATP-linked OCR
was plotted for rotenone at 0, 0.1, 1, 10 and 100 nM (D), MPP* at 0, 0.005, 0.5, 5 and 500 uM (E), and 6-OHDA at 0, 50, 100 and 200 uM (F); and proton
leak OCR for rotenone (G), MPP* (H), and 6-OHDA (1) over the same ranges of increasing doses of neurotoxins as in panels D-F. Data are expressed as
percent normalized to OCR before injection of rotenone, MPP*, and 6-OHDA. Data = mean * SEM, n=3. *p<0.05, Student t-test compared to 0 uM

treatment.

doi:10.1371/journal.pone.0044610.g005
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Figure 6. Changes in maximal, reserve capacity and non-mitochondrial OCR in response to 2 hr exposure to rotenone, MPP* and 6-
OHDA. Using the OCR traces shown in Figure 5 A-C, maximal OCR, reserve capacity, and non-mitochondrial OCR were determined. Maximal OCR for
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mean * SEM, n=3. *p<0.05, Student t-test compared to 0 uM treatment.
doi:10.1371/journal.pone.0044610.g006
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experimental neurotoxins, rotenone, MPP* and 6-OHDA, at
doses that induce cell death in differentiated dopaminergic SH-
SYSY cells, do not result in similar changes in bioenergetic
function.
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