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Abstract

Insulin resistance (IR) is one of the most widespread health problems in modern times. The gold standard for quantification
of IR is the hyperinsulinemic-euglycemic glucose clamp technique. During the test, a regulated glucose infusion is delivered
intravenously to maintain a constant blood glucose concentration. Current control algorithms for regulating this glucose
infusion are based on feedback control. These models require frequent sampling of blood, and can only partly capture the
complexity associated with regulation of glucose. Here we present an improved clamp control algorithm which is motivated
by the stochastic nature of glucose kinetics, while using the minimal need in blood samples required for evaluation of IR. A
glucose pump control algorithm, based on artificial neural networks model was developed. The system was trained with a
data base collected from 62 rat model experiments, using a back-propagation Levenberg-Marquardt optimization. Genetic
algorithm was used to optimize network topology and learning features. The predictive value of the proposed algorithm
during the temporal period of interest was significantly improved relative to a feedback control applied at an equivalent low
sampling interval. Robustness to noise analysis demonstrates the applicability of the algorithm in realistic situations.
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Introduction

Insulin resistance syndrome (IRS) is one of the most widespread

health problems in modern times, and is the main cause of type II

diabetes. The clinical manifestations of the syndrome include

abnormal plasma insulin levels, hypertension, dyslipidemia and

glucose intolerance. IRS is the main cause of type II diabetes and

can also progress to obesity, cardiovascular disorders, non-

alcoholic fatty liver disease, and polycystic ovary syndrome.

Lifestyle habits, chronic use of certain medications [1] as well as

genetic factors are assumed to be some of the pivotal causes of

insulin resistance (IR) and type II diabetes. Since no known and

proven cure currently exists, treatment focuses on controlling the

symptoms: regulation of blood glucose levels, control of weight,

and maintenance of healthy blood fat levels [2]. In 2007 the

United Nations has officially recognized diabetes as a global

epidemic which requires allocation of resources for prevention and

treatment. According to the World Health Organization (WHO)

estimation, more than 220 million people worldwide and around

20 million people in the US alone suffer from diabetes. A

worldwide dramatic rise is predicted, with a forecast growth rate of

almost 40% in twenty years [3,4]. Due to the growing interest in

treatment and prevention of IRS and type II diabetes, quantifi-

cation of insulin resistance is critical for both clinical and research

proposes.

The gold standard method for quantifying insulin resistance is

the hyperinsulinemic-euglycemic glucose clamp (HEGC) tech-

nique. In this method, plasma glucose and plasma insulin

concentrations are controlled by the investigator and thus the

natural glucose-insulin feedback loop is interrupted and directed.

During the test, plasma insulin is raised acutely to a desired set-

point and maintained at that level throughout the study due to

constant exogenous insulin infusion. In response to insulin action,

glucose infusion is administrated in order to maintain (‘clamp’)

plasma glucose within its euglycemic (fasting) level. Whole-body

insulin resistance, can be calculated, under of the approximation

of steady-state conditions of glucose and insulin levels. Thus, the

exogenous glucose infusing rate (GIR) can serve as an estimation

of the net glucose disposal rate (Rd) [5]. In order to maintain

plasma glucose at the desired level, the HEGC test is performed

such that the investigator manually sets the glucose infusion rate.

To improve accuracy of this feedback loop, several real time

computer-based algorithms have been developed for controlling

glucose infusion rate in response to frequently measured plasma

glucose levels.

DeFronzo et al. [5] proposed a negative feedback algorithm for

real time calculation of glucose infusion rate based on volume and

metabolic modifications in glucose concentration. Later, Clemens

et al. have introduced the Biostator Glucose Controlled Insulin

Infusion System (GCIIS) [6]. The automatic system features a

closed-loop glucose algorithm. It provides glucose and insulin
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pumps control, and blood glucose concentration monitoring

sensor with one minute sampling rate. Another simple solution

was the algorithm proposed by Furler et al. [7]. The algorithm

employs proportional and differential feedback control and uses

discrete blood sampling with a sampling rate of five minutes

interval. Lately, Bequette [8] has suggested a simple model-based

glucose proportional integral controller with time-delay compen-

sation.

Glucose metabolism is affected by many factors such as

peripheral and hepatic sensitivity, physical activity level, diet,

stress and endogenous control systems. Current mathematical

models cannot fully describe the complex physiological regulation

and the subject’s metabolic state. Furthermore, use of such models

for maintaining a desired glucose level in a HEGC test requires

frequent sampling of blood glucose. In small sized animals, blood

volume is limited and it is necessary to reduce the withdrawal of

blood samples to minimum in order to prevent intravascular

volume depletion and stress.

In the present work, we aim at developing an algorithm for real

time automatic regulation of glucose levels during HEGC, by

taking into account the stochastic nature of glucose kinetics and

the nonlinear relationship between input parameters [9]. In

addition, the algorithm should be performed with the use of

minimum blood samples required for evaluation of IR. An

artificial neural networks (ANN) algorithm was suggested to

develop a predicting controller for regulating glucose infusion rate

as part of a closed-loop system. The controller was trained and

evaluated on experimental data collected during HEGC tests in

rat models. This database included results obtained from

previously reported experiments [10,11], as well as results

collected in experiments we have conducted and are reported

here for the first time.

Methods

Ethics Statement
The animals were treated and handled according to the

guidelines of Tel-Aviv Sourasky Medical Center’s Animal Care

and Use Committee. The study protocol was reviewed approved

by the Animal Care and Use Committee of the Tel Aviv Sourasky

Medical Center, permit number: 27_09_08.

Animal Model
In order to obtain a wide range of insulin sensitivity levels, the

datasets of this study were collected from 62 experiments

performed using a similar HEGC protocol. Table 1 lists the

characteristics of the animals. A part of the experimental results

was obtained from pervious data sets using Sprague Dawley and

Fischer-F344 rats (recorded by colleagues from the Dept. of

Gastroenterology and Hepatology, TASMC, as detailed in

[10,11]). Another part of the experiments was performed by the

authors using Wistar Han rats (Harlan, Jerusalem). In our

experiments, variations in insulin sensitivity levels were achieved

by using short duration peripheral electrical stimulation (PES)

applied non-invasively at functional skin zones at the hind-limbs

(Frequency 2Hz/bursts 16 Hz rectangular bi-phasic, Pulse width:

150 ms, 5–10 mA variable). Detailed information about this study

is in preparation for publication.

Hyperinsulinemic-euglycemic clamp (HEGC)

protocol. All studies were performed as described in previous

studies [12,13]. In brief, the studies were performed in conscious,

unstressed and unrestrained rats using HEGC technique, in

combination with high-performance liquid chromatography–

purified [3-3H] glucose infusion. The experimental setup of the

system is illustrated in Figure 1. The system consists of three

infusion syringe pumps (NE-1000, Syringe Pump Inc) for [3-3H]

glucose, insulin and variable glucose respectively. Arterial catheter

is connected to the infusion pumps, and venous catheter is used for

manual blood sampling.

The studies lasted 240 minutes and included two hours of basal

clamp phase for assessment of the basal glucose turnover, and two

hours of hyperinsulinemic-euglycemic clamp phase for evaluation

of insulin sensitivity. At the beginning of the basal clamp phase, a

primed-continuous infusion of [3-3H] glucose (10 mCi bolus,

0.5 mCi/min; Perkin-Elmer, Boston, MA) was initiated and

maintained throughout the remaining 4 hours of the study. At

the beginning of the hyperinsulinemic phase, a primed-continuous

infusion of insulin (3 mU/min Kg) was administered, and a

variable infusion of a 25% glucose solution was started and later

on adjusted manually and periodically to clamp the plasma

glucose concentration at the basal level. To prevent endogenous

insulin secretion, somatostatin (1.5 g/min Kg) was infused. Plasma

samples for glucose measurements were obtained at t = 0, 30, 60,

70, 80, 90, 100, 110 and 120 minutes during the basal phase and

at t = 150, 180, 190, 200, 210, 220, 230, and 240 minutes during

the glucose clamp phase. A schematic representation of the study

protocol is shown in Figure 2. Serum glucose concentration was

determined using ELISA (BioVision Research Products, Mountain

View, CA).

Neural Networks Model Design
Data acquisition. The data set, collected for each animal,

consisted of the following information: rat’s body weight, 16

plasma glucose concentration levels (8 during the basal clamp

phase and 8 during the hyperinsulinemic-euglycemic clamp phase,

both in fixed time slots) and 8 glucose pump settings corresponding

to each time slot of measurement during the hyperinsulinemic

euglycemic-clamp phase.

Input data vectors. In order to realize the glucose pump

controller algorithm during the hyperinsulinemic-euglycemic

clamp phase, two neural networks were suggested representing

two states of physiological behavior (Figure 2). During the first

period (Period-I), plasma insulin concentration is raised acutely to

a new level while a variable glucose infusion keeps the blood

glucose concentration in its euglycemic level. Period-I is charac-

terized by rapid changes in glucose concentration in order to

Table 1. Data Groups Characteristics.

Data Set Rat Species n BW [g] BPG [mg/dL]

Training Wistar HAN 82 30162 133.961.6

SD 20 31964 127.561.1

Fischer-F344 81 25563 129.261.8

Validation Wistar HAN 28 29864 131.963.3

SD 5 32364 127.763.2

Fischer-F344 28 24965 130.263.3

Test Wistar HAN 27 29263 133.864.1

SD 5 32269 123.064.2

Fischer-F344 29 25165 130.663.1

SD - Sprague Dawley, BW - body weight, BPG - average basal plasma glucose
concentration.
doi:10.1371/journal.pone.0044587.t001

ANN Glucose Controller for Clamp Test
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stabilize the glucose levels on the basal concentration. The second

period (Period-II) starts at T = 190 minutes from initiation of the

study, and exhibits a near steady state behavior of insulin and

plasma glucose concentrations. The input data and the output

vectors are given by

InputVectorI~ T ,BW ,BG,DG,G(T{1),G(T),P(T{1)½ � ð1Þ

InputVectorII~ BW ,BG,DG,G(T{2),G(T{1),G(T),½

P(T{2),P(T{1)�
ð2Þ

OutputVectorI=II~P(T) ð3Þ

where T is the time slot in minutes, BW is the rat body weight, BG

is the mean basal plasma glucose level (PG), calculated over the last

hour of the basal clamp phase, DG is the difference between the

current PG level and the desired PG level, G(T) is the plasma

glucose at time slot T and P(T) is the glucose pump setting at time

slot T.

For each period, the chosen parameters of the training vector

were uncorrelated using principal component analysis (PCA)

technique, and contributed more than 0.01% of the total variance

in the database. Data was normalized by scaling the values within

the range [21 1] for each parameter. The data vectors were

randomly assigned into three groups – Training, Validation and

Test sets. Table 2 lists the general characteristics of the groups.

Learning strategy. We implemented a feed-forward multi-

layer artificial neural network with a back-propagation training

method. Three different optimization training algorithms were

tested: The Gradient-Descent with momentum and adaptive

learning rate, the Scaled Conjugate Gradient and the Levenberg-

Marquardt (LM) optimization algorithm. The LM algorithm

provided the best performance, and also has been shown to be fast

and highly efficient when training small and medium size

networks, especially when high precision is required [14]. The

LM method combines the Gauss-Newton method, which

converges quickly near the minimum, and the gradient descent

method, which converges in all space but relatively slow. The

weights update rule is a linear combination of both methods:

wij(tz1)~wij(t){(HzmI){1 LE

Lwij

ð4Þ

where wij are the weights of iteration t, E is the error function, H is

the Hessian matrix of second derivatives, I is the identity matrix

Figure 1. Schematic configuration of the experimental setup. The system consists of three infusion syringe pumps for [3-3H] glucose, insulin
and variable glucose respectively. Arterial catheter is connected to the infusion pumps, and venous catheter is used for manual blood sampling. A
closed-loop, computer controlled system is proposed for maintaining plasma glucose concentration within the desired level during HEGC.
doi:10.1371/journal.pone.0044587.g001

ANN Glucose Controller for Clamp Test
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and m is a positive control scalar. The algorithm starts with a large

value of m, and adjusts this value dynamically in order to decrease

the error. In later iterations, as a minimum is approached, m
approaches zero and so the algorithm switches to Newton’s

method. The algorithm uses three parameters for process

management: m0 is the initial value of the control scalar, m+ is a

multiplier that increases the current value of m, and m2 is a

multiplier that decreases the current value of m.

The error function represents the prediction error i.e., the

variation between the network’s output and the target values in the

current iteration of the optimization process. The error function is

based on the root mean square error (RMSE) criterion as

expressed in (5).

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i~0

(Ti{Yi)
2

N

vuuut
ð5Þ

where Ti is the measured glucose pump setting (the Target values),

Yi is the predicted value (the Output values), N is the total number

of data records. The transfer function used is the hyperbolic

tangent sigmoid function.

Architecture. A network’s architecture plays a key role in the

capability of the system to present a desired and generalized response

to a wide set of metabolic states. This is since this capability is highly

responsive to the number of neurons in the hidden layers. The use of a

small number of neurons may lead to under-fitting. On the other

hand, too many neurons may contribute to over-fitting, in which all

training vectors are well fitted, thereby, losing the generalization

capabilityof thenetworkanditspredictionability[15].Therefore, the

design of our glucose pump controller consisted of two stages. In the

first stage we determined the best network topology and learning

parameters (the ‘solution vector’), based on performance comparison

measures using genetic algorithm (GA) optimization method. In the

next stage an ensemble of 50 ANNs was created using the best

parameters evaluated. Figure 3 illustrates the controller design

algorithm.

Genetic algorithm is an iterative stochastic optimization

method, and is a one type of an evolutionary algorithm. In brief,

evolution process is based on a natural selection mechanism,

operating over chromosomes during the reproduction stage.

Across successive generations, an enhancement process is done

towards creating the optimal population representing an optimal

solution [16]. Initial population of potential solution vectors was

generated randomly with a uniform distribution, in which each

individual is represented as follows:

Individual~½½m0,mz,m{�,NL,½NCELL� �
T

ð6Þ

where m0 is an initial value of LM learning control constant, m+

and m2 are positive values that multiply the current m0 whenever

Figure 2. Hyperinsulinemic-euglycemic glucose clamp experiment (HEGC) protocol – Schematic illustration. Representation of the
experimental design of the clamp study: The animals were studied under basal conditions for the first 2 hours and under hyperinsulinemic conditions
over the last 2 hours. Period–I is characterized by rapid changes in glucose concentration. Period-II exhibits a near steady state behavior of insulin and
plasma glucose concentrations. Circles represent times at which blood samples were taken.
doi:10.1371/journal.pone.0044587.g002

Table 2. Network Parameters and Ranges.

Parameter Lower Bound Upper Bound

NL 1 3

[NCELL] 2 25

m0 1024 2

m2 0.01 0.95

m+ 1.05 10

NL - number of layers, [NCELL] - number of cells in each layer vector, m0, m+, m2 -
Levenberg-Marquardt optimization learning parameters.
doi:10.1371/journal.pone.0044587.t002

ANN Glucose Controller for Clamp Test
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the performance function was reduced or increased, respectively,

in a previous step, NL is the number of hidden layers and [NCELL]

is the number of cell elements in each layer vector. Table 3 lists the

network parameters and ranges to be optimized using the genetic

algorithm. According to the universal approximation theorem,

ANN with one hidden layer can approximate almost any function

[17]. In some cases, depending on the degree of complexity of the

data, higher performance may be achieved by using larger

architectures. We, therefore, examined the performance of the

network in the range of 1 to 3 hidden layers. Selection of other

parameters was based on previous work to avoid over-fitting.

Comparison between individuals was performed through LM

optimization prediction error. The next generations were created

according to the following rules. We chose to use MatlabH default

parameters for creating the next generations, which we found to

produce optimal convergence of the algorithm.

N Best fit rule – The following generation will contain 10% of the

individuals in the current population with the best fitness score.

N Crossover rule – The crossover rule is applied to 80% of the

remaining individuals by combining the vectors of a pair of

parents according to a random binary vector.

Figure 3. Glucose pump controller design stage block diagram. The output of this stage is an ensemble of 50 sets of Artificial Neural Network
(ANN) connection weights, created using the Test set of data and the best fit parameters vector.
doi:10.1371/journal.pone.0044587.g003

ANN Glucose Controller for Clamp Test
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N Mutation rule - The mutation rule is applied to 20% of the

remaining individuals by adding a random number derived

from a normal Gaussian distribution to the parent vectors.

Using the optimal set of parameters obtained by the GA

algorithm, an ensemble of 50 networks was generated from 50

successive LM optimization training simulations. In real time

experiment for any input vector, the controller output Pi+1 will be

chosen as the median of the ensemble output based on the

performance determined by root mean square error (RMSE) and

correlation coefficient (cc) values (Figure 4). The algorithm was

developed using MatlabH version 7.1.

Results

In this study, we employed artificial neural networks to develop

a real time controller for automatic regulation of glucose levels

during hyperinsulinemic-euglycemic glucose clamp (HEGC) test.

In order to maximize the generalization performance of the

controller, the proposed strategy consisted of the following

components: (1) a wide range database generated from multiple

sources and conditions, (2) direct determination of model

architecture and learning parameters through optimization

approach, and (3) stabilization element by using an ensemble

networks technique. Two types of performance tests were carried

out using a Test set of biological data (that was not used during the

training stage). In the first test we analyzed performance using

regression analysis between the ANN controller’s output and the

experimental target rates. In the second test we demonstrated the

applicability of the algorithm in realistic situations using robustness

to noise analysis. Finally, in order to evaluate the proposed

method, we compared the performance of the ANN controller

Table 3. Animals Characteristics.

Rat Species Wistar HAN SD Fischer-F344

N 28 6 28

BW [gr] 29964 32067 25266

BPG [mg/dL] 133.463.2 128.662.8 131.063.2

GIR [ml/min] 5–22 10–21 5–15

Total No of vectors: Period-I 55 12 52

Total No of vectors: Period-II 137 30 138

SD - Sprague Dawley, BW - body weight, BPG - average basal plasma glucose
concentration, GIR - glucose infusion rate.
doi:10.1371/journal.pone.0044587.t003

Figure 4. Real time glucose pump controller block diagram. In each time slot in a real time experiment, an input vector f(Pi,Gi) is calculated
where Pi is the pump setting and Gi is the blood glucose level of step i. The controller’s prediction output Pi+1 is derived as the median of 50
predictions.
doi:10.1371/journal.pone.0044587.g004

Table 4. Optimized Parameters and Best Performance.

Parameter Period-I Period-II

Architecture 7–4–1 8–2–5–1

m0 0.5 1.5

m+ 0.82 0.85

m2 1.55 5.9

RMSE 1.383 0.597

cc 0.9150 0.9904

% Error 8.7560.97 3.6960.47

m0, m+, m2 - Levenberg-Marquardt optimization learning parameters, RMSE -
root mean square error, cc - correlation coefficient.
doi:10.1371/journal.pone.0044587.t004

ANN Glucose Controller for Clamp Test
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with a reference feedback control algorithm. The following section

describes the results of our study and performance analysis.

Animal data. The database of this study was obtained from

62 HEGC experiments. 28 experiments were performed by the

authors in this study on Wistar Han rats. 34 experimental results

were taken from pervious datasets of Sprague Dawley and Fischer-

F344 rats as reported in [10,11]. General characteristics of the

dataset are shown in Table 3. The dataset covers a wide range of

glucose infusion rate (GIR) (between 5–22 ml/min) as well as body

weight and environmental conditions. A total of 120 and 300 input

data vectors were generated for training Period-I and II networks

respectively. Each input vector consisted of two types of variables:

constant variables (body weight and basal blood glucose level) and

time dependent variables (glucose pump setting and plasma

glucose level at previous time slots).

Controller model architecture. Our proposed controller

model is composed of two separate sub-units corresponding to the

two states of physiological behavior during the HEGC test (Period-

I, II). Each sub-unit is build of an ensemble of 50 neural networks,

generated from successive training simulations. Table 4 summa-

rizes the optimized architecture and learning parameters obtained

for those neural networks by the genetic algorithm based on

RMSE test function. The optimal network architecture for Period-

I was composed of 1 hidden layer with 4 neurons. For Period-II,

the optimal network architecture included 2 hidden layers, 2

neurons in the first layer and 5 neurons in the second layer. The

ANN controller output, at any of the experimental time periods,

was determined as the median of all prediction rates of the

networks ensemble. For example, the variations in RMSE values,

within the networks ensemble generated for the data of the Test

set, were within the range 0.52 to 0.72, with an average value of

0.5860.04. The RMSE of 60% of the networks was between 0.55

and 0.57; therefore a median value may better represent the

controller’s output, and improve the system’s generalization and

stability.

Performance analysis. Performance analysis, determined

by RMSE and cc measures, was performed using the Test set.

Table 4 shows performance results of the ANN controller. For

Period-I ANN, the overall RMSE (calculated for the median

predicted pump setting rate) and cc measures were 1.383 and

0.9150 respectively and 0.597 and 0.9904 respectively for Period-

II ANN. The estimated error between the predicted pump setting

value and the experimental value was 8.7560.97% for Period-I

ANN and 3.6960.47% for Period-II ANN. As expected, better

performance rates were obtained for Period-II, due to its larger

training dataset. Underestimation of extreme values in the Test set

led to the increased error in Period-I. However, the performance is

highly acceptable for practical use, and may be improved by using

larger datasets. Figure 5 demonstrates an example of the

controller’s prediction power, during hyperinsulinemic-euglycemic

glucose clamp phase (with experimental data of a single animal,

whose data was not included in the training set of data; animal

number TG11). As can be seen, the pump setting rates predicted

by the ANN are in good correlation with the target experimental

results. This behavior is also demonstrated in a regression analysis

between the ANN predicted rates and the target rates of the Test

set (R2 = 0.9904) as shown in Figure 6. High prediction accuracy

and good performance was obtained throughout the whole range

of the glucose infusion rate, which represents a corresponding

range of insulin sensitivity levels.

Robustness to noise analysis. In order to assess the

behavior of the algorithm in a realistic situation, we tested the

performance related to the robustness to noise in the data. We

added random noise components to the Test set input vectors,

drawn from a Gaussian density function with zero mean and

variance corresponding to signal to noise ratios (SNR) of 5 dB to

35 dB. The average error, over 100 simulations, between the

prediction rates of the ANN controller and the experimental target

rates are shown in Figure 7 as a function of SNR. It appears that

under severe noise conditions (SNR = 10 dB) the error is less than

10%. This property of the system of robustness to noise, further

Figure 5. Artificial neural networks model predictive performance. Plasma glucose concentration and experimental glucose infusion rate
during hyperinsulinemic-euglycemic glucose clamp phase in comparison to target values (data presented for animal TG11).
doi:10.1371/journal.pone.0044587.g005

ANN Glucose Controller for Clamp Test
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demonstrates the applicability of the algorithm with noisy

biological data.

Performance comparison. For comparison with a reference

feedback control algorithm, we implemented the algorithm by

DeFronzo et al. [5] that was calculated with a similar blood

sampling rate of 10 minutes. This algorithm for periodic real-time

adjustment of glucose infusion rate uses a negative feedback

technique. The correction formula contains compensation ele-

ments of actual modification and trends in glucose concentration

(full equation set for euglycemic clamp in [5]). This algorithm was

tested within a predictive window of our experimental working

range, ranging from 5 to 25 ml/min. Figure 8 shows the results of

a regression analysis between the feedback control algorithm

output and the target experimental rates, as calculated in Period-

II. A correlation coefficient of 0.9265 was obtained between the

predicted and the desired rates. The average calculated error in

glucose infusion rate was 9.261.1%. It can also be seen that the

feedback control algorithm performs better in the middle range of

infusion rates, therefore suitable for more particular protocols and

subjects. Our ANN control algorithm shows better results while

using a low blood sampling rate and a wide range of conditions,

make it applicable for both animal and human studies.

Discussion

Artificial neural networks models have been effectively used in

various health care applications, for example, classification of

heart rate variability for clinical diagnosis such as arrhythmia

[18,19] and ischemia [20], diagnosis based on gene expression

signature [21] and image pattern recognition associated with

cancer [22]. Due to its multidimensional nature, ANN has also

been used for diagnosis of diabetes based on physical parameters

[23,24], prediction of blood glucose levels [25,26,27], regulation of

insulin dosage setting algorithms for insulin pumps [28] and

detection of hypoglycemic episodes in type I diabetes patients [29].

We proposed the use of artificial neural networks for automatic

regulation of glucose infusion rate during HEGC study. Automatic

real-time adjustment of glucose infusion rate during glucose clamp

test was examined in several studies for its potential to increase

experimental reliability and validity and to ease the examination

procedures. Our results support this understanding and demon-

strate that artificial neural networks method is a powerful tool for

real time control of glucose levels during HEGC. As described in

the results, the prediction ability of the proposed ANN controller

during the experimental phase of interest was found to be more

accurate than the feedback control that was proposed by

DeFronzo et al. when applied at equivalent low sampling interval

(prediction error of 3.7% vs. 9.2% respectively. Other control

feedback algorithms have provided similar performance measures

[5,6,7,8,30]). Recently, predictive control ANN based strategy was

used for solving similar problems, set-point tracking, and system

output maintenance [31]. This strategy is designed for high

sampling rate or long lasting procedures and was not considered

here due to the preferable low sampling rate of blood.

Training a specific neural network with different initial

conditions may yield different sets of connection weight, and

therefore different performance rates. Since our network was

trained with random initial conditions (initial weights), the system’s

generalization performance was determined based on ensemble

ANN technique, where multiple networks are created through

different conditions. The desired output prediction of the glucose

pump controller was determined base on the ensemble perfor-

mance instead of a single network prediction. This output may be

less varied and contribute to the system’s stabilization. It has been

shown that the use of an ANN ensemble that differs only in its

initial conditions (but with same architecture and training sets)

may reduce significantly the variance in prediction error [32]. A

common type of determination of ensemble performance is the

ensemble averaging. In this method the output prediction is the

average of the ensemble networks output. We chose to use the

median value of an ensemble of 50 networks trained separately,

since using a median value may reduce the effect of networks with

poor training performance, and avoid the contribution of extreme

values [33]. Based on Period-II results, we can conclude that

Figure 6. Regression analysis between the predicted and
desired values of the ANN glucose pump controller. Perfor-
mance results of the Test set simulation. A: ANN trained using
Levenberg-Marquardt (LM) optimization algorithm, B: ANN trained
using Gradient-Descent with momentum and adaptive learning rate
algorithm.
doi:10.1371/journal.pone.0044587.g006
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artificial neural networks based control strategy is a powerful tool

to control plasma glucose level, taking into account its stochastic

nature. We assume that larger database of Period-I may enhance

generalization of the network and improve performance rates.

Genetic algorithms (GA) are usually used for solving robust

optimization problems and were previously used to optimize

network’s weights [34,35], to optimize neural networks ensemble

mainly in classification problems [36], or to realize novel

architectures in the form of connectivity patterns [37,38]. In our

study an accurate value of glucose infusion rate was needed. We

have, therefore, used GA in order to optimize network topology

and learning features, instead of using trial and error approach

which is a common approach for ANN topology determination. In

our case it was preferable especially for evaluating the learning

parameters.

A possible drawback of feedback control algorithms and ANN

based control solutions is the specificity of the experimental

protocol. Feedback control algorithms include empirical param-

eters suitable to very particular protocols and subjects. Our

experiments were preformed with similar protocol: specific primed

continuous dosage of insulin, infusion rates, fasted animals and

examination at the same time of the day. On the other hand, our

predictive window covers a range of experiments with different rat

species (Wistar, Sprague Dawley, Fischer-F344 rats), body weights

and types of treatment that might be used in insulin resistance

research.

Finally, the system was trained with data obtained from

manually controlled experiments, where variations in plasma

glucose level are sometimes larger then desired (our training data

set included variations in plasma glucose of up to 20%). When

using data of clamp experiments that are manually set (instead of

data obtained from clamp control by automatic systems)

experimental errors may include: blood measurement, pump rate,

operator, etc. These experimental errors may be interpreted as

random noise, such that using manually set data allows a variety of

dynamic events and situations that increase the controller’s

prediction power. Furthermore, good prediction power was

obtained under different levels of noise introduced with the input

vectors. Thus we conclude that the precision and robustness of the

model may reflect its stability in real time cases where blood

glucose should be kept within the predictive window of the

controller.

To summarize, assessment of insulin sensitivity is highly

valuable in glucose homeostasis research, in the development of

drugs for diabetes and in clinical diagnostics. The results presented

Figure 7. Evaluation of the error in the prediction of glucose infusion rate over different levels of random noise. Random Gaussian
density function noise with zero mean, and variance corresponding to signal to noise ratios (SNR) of 5 dB to 35 dB was added to the input data. The
prediction error is expressed in mean 6 SEM over 100 simulations.
doi:10.1371/journal.pone.0044587.g007

Figure 8. Regression analysis between the predicted and
desired values calculated using feedback control algorithm.
The feedback control algorithm of DeFronzo et al. [5] was used for
performance comparison, with a sampling rate of 10 minutes interval.
doi:10.1371/journal.pone.0044587.g008
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here, offer a reproducible and most accurate method for

regulation of glucose levels during hyperinsulinemic-euglycemic

glucose clamp test. Such real-time automatic system may expand

the use of this technique to a boarder range of applications and

make it feasible to use in large scale studies.
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