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Abstract

Background: Species distribution models require selection of species, study extent and spatial unit, statistical methods,
variables, and assessment metrics. If absence data are not available, another important consideration is pseudoabsence
generation. Different strategies for pseudoabsence generation can produce varying spatial representation of species.

Methodology: We considered model outcomes from four different strategies for generating pseudoabsences. We
generating pseudoabsences randomly by 1) selection from the entire study extent, 2) a two-step process of selection first
from the entire study extent, followed by selection for pseudoabsences from areas with predicted probability ,25%, 3)
selection from plots surveyed without detection of species presence, 4) a two-step process of selection first for
pseudoabsences from plots surveyed without detection of species presence, followed by selection for pseudoabsences
from the areas with predicted probability ,25%. We used Random Forests as our statistical method and sixteen predictor
variables to model tree species with at least 150 records from Forest Inventory and Analysis surveys in the Laurentian Mixed
Forest province of Minnesota.

Conclusions: Pseudoabsence generation strategy completely affected the area predicted as present for species distribution
models and may be one of the most influential determinants of models. All the pseudoabsence strategies produced mean
AUC values of at least 0.87. More importantly than accuracy metrics, the two-step strategies over-predicted species
presence, due to too much environmental distance between the pseudoabsences and recorded presences, whereas models
based on random pseudoabsences under-predicted species presence, due to too little environmental distance between the
pseudoabsences and recorded presences. Models using pseudoabsences from surveyed plots produced a balance between
areas with high and low predicted probabilities and the strongest relationship between density and area with predicted
probabilities $75%. Because of imperfect accuracy assessment, the best assessment currently may be evaluation of whether
the species has been sufficiently but not excessively predicted to occur.
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Introduction

Species distribution models provide spatial maps of species

ranges and identify influential environmental factors through

model selection of predictor variables. Among other uses, this

information can be applied to examine effects of land use, climate

change, and biotic interactions [1]. Most statistical methods for

species distribution models either require presence and absence

data or else models may perform better with presence and absence

data [2–4]. However, even the best surveys only can confirm

presence definitively, because a complete census cannot incorpo-

rate all variation in time and space [5]. The matter is further

complicated by locations that have favorable conditions but are

without species presence due to land use, (lack of) natural

disturbance, competition, or barriers to dispersal, processes which

are difficult to quantify into a model.

Pseudoabsences are surrogates for true absences when true

absences are unknown. There are different strategies for gener-

ating pseudoabsences [3–5]. One common strategy for generating

pseudoabsences is simple random selection from within the study

area (i.e., background data), without applying limitations based on

information known from species presence [3,6]. Other strategies

use information about species presence to guide pseudoabsence

selection [7,8]. These strategies employ knowledge about either 1)

spatial distance, by using areas outside where the species is present,

either at a buffered distance or from outside the known range, 2)

environmental distance, by using lower suitability locations, as

determined by the aid of either literature, expert opinion, or

presence-only models, or 3) surveyed absence, that is, surveyed

plots without a recorded species presence but perhaps not true

absences [3–5,7–10]. A modification for pseudoabsence genera-

tion is a two-step modeling process, first using randomly selected

pseudoabsences followed by use of predicted results to select

pseudoabsences [6]. Alternative and more intensive approaches

exist, including for example, development of expectation-maximi-

zation algorithms and detection probabilities [3,5].
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Research has demonstrated the robustness of models with

randomly selected pseudoabsences compared to models that use

constraints on pseudoabsence generation [6]. Nonetheless,

depending on the unknown proportion of the pseudoabsence

sample that contains locations with true absences, models based

on pseudoabsences generated at random should produce

inconsistent results. It seems that any information that can help

guide the statistical method to improved predictions is preferable

than providing no information. Thus, modeling species distribu-

tions using pseudoabsences generated at random followed by

selection for low probability areas as absences should provide

environmental distance between sites with and without the

species. Sites additionally that have been surveyed without

detection of the species at least suggest a lower probability of

presence than unsurveyed sites. Although this strategy for

pseudoabsence generation seems reasonable, it generally has

not been used [4].

Modelers need to be aware of potential outcomes that can result

due to choice of pseudoabsence strategy. In part because there

have not been many comparisons among strategies, results are

variable and in disagreement. Mateo et al. [4] compared ‘‘target-

group’’ absences (i.e., absences from surveyed plots) to random

pseudoabsences and found generally greater accuracy of the

target-group absences. In contrast, Lütolf et al. [11] determined

that models based on random pseudoabsences were more accurate

than models based on pseudoabsences from surveyed sites without

the species. One common method of pseudoabsence generation is

through profile models, such as ecological niche factor analysis, to

determine probable absences. Wisz and Guisan [8] found this

strategy to be less accurate than random pseudoabsences and

conversely, Engler et al. [12] found this strategy to be more

accurate than random pseudoabsences.

Therefore, we compared some of the current strategies for

pseudoabsence generation to examine their impacts on models.

We modeled tree species distributions using pseudoabsences

randomly selected 1) from the entire study area, 2) from plots

surveyed without detection of species presence, 3) a two-step

process (mimicking profile models) by selecting first from

generated pseudoabsences, followed by selection for pseudoab-

sences from the areas with low predicted probability, 4) a two-step

process selecting first from pseudoabsences from the plots surveyed

without detection of species presence, followed by selection for

pseudoabsences from the areas with low predicted probability. We

used Random Forests, an ensemble classifier, as our statistical

method and relevant environmental variables to model predictive

surfaces for the most common tree species from FIA tree surveys

(2004–2008) in the Laurentian Mixed Forest province of

Minnesota. Our study will contribute to the discussion of

pseudoabsence generation strategies.

Figure 1. Study area with soils surveys (in black) in the Laurentian Mixed Forest (black and grey) of Minnesota.
doi:10.1371/journal.pone.0044486.g001
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Methods

Study Area
The study extent includes about 4.9 million ha of the

Laurentian Mixed Forest province of Minnesota, which covers

about 9.4 million ha (Figure 1). The Laurentian Mixed Forest has

a cool temperate climate, with precipitation increasing from west

to east and with temperature increasing from south to north.

Elevation ranges from 200 to 700 m. The Laurentian Mixed

Forest contains wetlands intermixed with sandy soils on till plains

and moraines. The dominant species (trees over 7.6 cm in

diameter) of the Laurentian Mixed Forest is quaking aspen

(Populus tremuloides), which makes up about 20% of forest

composition. Black spruce (Picea mariana), northern white cedar

(Thuja occidentalis), balsam fir (Abies balsamea), tamarack (Larix

laricina), paper birch (Betula papyrifera), and black ash (Fraxinus nigra)

each contribute 6 to 11% of forest composition.

Spatial Units (Grain) and Environmental Variables
Our spatial units were Soil Survey Geographic (SSURGO)

Database (Natural Resources Conservation Service, http://

soildatamart.nrcs.usda.gov) polygons, attributes of which are

grouped by map units (polygons with similar soil characteristics

in a county). We removed water and miscellaneous areas disturbed

by human development (e.g., mines, pits, dumps). Also, soils

surveys have not been completed in seven counties: Cook, Crow

Wing, Isanti, Koochiching, Lake, Pine, and part of St. Louis. After

processing, there were about 310,000 polygons with a mean

polygon area of 16 ha (SD = 92).

We used sixteen predictor variables that characterize tree

occurrence (Table 1). Seven variables were from the soil tables

by map unit for each county (i.e., polygons with similar soil

characteristics in a county). Categorical soil variables were 1)

drainage class (very poorly drained to excessively drained) and

2) hydric soil presence class. For map units with more than one

soil component (soil series), we used the categorical variable

from the dominant component. We determined depth (cm) to

either the bottom of the soil profile or to a soil restriction. We

then calculated five continuous soil variables, 1) mean water

holding capacity (cm/cm), 2) pH, 3) organic matter (%), 4) clay

(%), and 5) sand (%) to the depth, and weighted values by

component percentage. From a 30 m DEM (digital elevation

model), we calculated seven continuous terrain variables: 1)

elevation (m), 2) slope (%), 3) transformed aspect (1+sin(aspect/

180*3.14+0.79); [13]), 4) solar radiation (0700 to1900 in 4 hour

intervals on summer solstice for re-sampled 60 m DEM), 5)

topographic roughness [14], 6) wetness convergence (T. Dilts,

http://arcscripts.esri.com), and 7) topographic position index.

We calculated the mean value for each topographic variable by

a zone (mean area of 210 ha) of soil map unit, land type

association (an ecological classification), and bedrock geology,

which contained spatially distinct soil polygons. We also joined

two more categorical variables to each spatial unit: 1)

subsection, which is an ecological subdivision of continuous

areas within larger ecological provinces [15] and there are 12

subsections within the study area, and 2) bedrock geology.

Tree Surveys
The U.S. Forest Service Forest Inventory and Analysis (FIA)

surveys fixed plots, consisting of four subplots that are each 7.3 m

in radius (i.e., each subplot is 167 m2), during a five year cycle. We

used FIA plots from the latest complete cycle during 2004–2008.

The available FIA plot locations are fuzzed (i.e., location moved)

and swapped to protect landowner privacy. For a rough idea of

tree location, we used available plots downloaded from FIA

DataMart (www.fia.fs.fed.us/tools-data). For modeling and pre-

diction, the USDA Forest Service joined our predictor variables to

Table 1. Environmental variables for modeling.

Type Predictor

Edaphic drainage class

hydric soil presence

water holding capacity

pH

% organic matter

% clay

% sand

Topographic elevation

slope

aspect

solar radiation

topographic roughness

wetness convergence

topographic position

Spatial location based on ecological grouping subsection

Substrate bedrock geology

doi:10.1371/journal.pone.0044486.t001

Table 2. The AUC values using reserved polygons without
present cases as pseudoabsences, for models with random
pseudoabsences (rand), random pseudoabsences followed by
pseudoabsences with probabilities ,25% (rand_2),
pseudoabsences from surveyed plots (surv), surveyed
pseudoabsences followed by pseudoabsences with
probabilities ,25% (surv_2).

AUC

Species rand rand_2 surv surv_2

ashes 0.96 0.81 0.86 0.77

aspens 0.93 0.78 0.80 0.84

balsam fir 0.94 0.75 0.95 0.69

basswood 0.98 0.90 0.96 0.89

birch 0.93 0.78 0.98 0.80

elms 0.89 0.77 0.95 0.84

jack pine 0.99 0.97 0.99 0.97

maples 0.97 0.89 0.96 0.89

red oaks 0.96 0.89 0.97 0.92

red pine 0.99 0.96 0.98 0.95

spruces 0.97 0.91 0.96 0.91

tamarack 0.98 0.95 0.98 0.94

white cedar 0.99 0.96 0.98 0.96

white oaks 0.95 0.88 0.97 0.90

white pine 0.93 0.88 0.97 0.84

yellow birch 0.92 0.86 0.89 0.76

mean 0.95 0.87 0.95 0.87

doi:10.1371/journal.pone.0044486.t002

Pseudoabsence Generation
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plots in a table based on accurate spatial locations. There were

3994 plots, containing 94644 trees, which intersected with our

spatial units. Although we knew if a tree species was present at a

plot, we did not know the exact location (i.e., geographic

coordinates, which we did not need for modeling) of the plot or

if there were unrecorded species outside of the FIA plot but within

our spatial units. No specific permits were required for the

described field studies.

We selected the most common overstory trees, about 93,000

trees for 16 species or genus groups. We grouped these species into

the following categories: American Basswood (Tilia Americana);

ashes (Fraxinus nigra, F. pennsylvanica, F. Americana); aspens (Populus

tremuloides, P. grandidentata, P. balsamifera), balsam fir (Abies balsamea),

birches (Betula papyrifera, B. cordifolia), eastern white pine (Pinus

strobes), elms (Ulmus americana, U. rubra, U. thomasii), jack pine (Pinus

banksiana), maples (Acer rubrum, A. saccharum, A. saccharinum),

northern white cedar (Thuja occidentalis), red oaks (Quercus nigra, Q.

ellipsoidalis, Q. rubra), red pine (Pinus resinosa), spruces (Picea mariana,

P. glauca), tamarack (Larix laricina), white oaks (Quercus alba, Q.

macrocarpa), and yellow birch (Betula alleghaniensis).

Pseudoabsence Generation
We generated pseudoabsences using four strategies. We selected

from 1) rand, random pseudoabsences from the entire study

extent, without exclusion of polygons with tree presence (presence

was unknown for the entire extent but known for the polygons that

intersected FIA plots), 2) rand_2, a two-step process selecting first

from randomly generated pseudoabsences, followed by selection

for pseudoabsences from the areas with predicted probability

,25%, 3) surv, plots surveyed without detection of species

presence, 4) surv_2, a two-step process selecting first for

pseudoabsences from the plots surveyed without detection of

species presence, followed by selection for pseudoabsences from

the areas with predicted probability ,25%.

For each species or species group, we joined the points to the

soil polygons. Due to limits on records for modeling, we then

selected a proportionate number of presences relative to the

number of pseudoabsences to reduce the inequality between the

number of samples with and without the tree species for the

modeling dataset. We randomly selected 67% of polygons with the

species, up to 2500 polygons, for modeling, and held back the rest

for validation. For pseudoabsences, we then randomly selected

either 1) 2500 polygons from the entire study extent or 2) 67% of

polygons without the species, up to 2500 polygons, for modeling

and held back the rest for validation. After modeling, for the two-

step processes, we selected 2500 polygons from the areas with low

predicted probability after either pseudoabsence generation from

3) the entire study extent or 4) the surveyed plots without present

cases.

Modeling and Prediction
Decision trees are nonparametric options to linear models based

on partitioning into classes. Random Forests [16–17], improves on

decision trees by growing multiple trees grown in parallel and

using random subsets of both predictor variables and training

data. Classification results from bootstrap aggregation (bagging) by

the majority vote of the many trees. We used the randomForest

package [18] in R statistical software (R development core team

2010) with the sampsize option (which is sampled without

replacement), where we set the bag fraction, or subsampling rate,

Figure 2. The AUC values compared to area (fraction of total area) predicted as present by species. Random pseudoabsences (rand) had
high AUC values and little difference in area by species albeit extremely parsimonious areas, whereas both random pseudoabsences followed by
pseudoabsences with probabilities ,25% (rand_2) and surveyed pseudoabsences followed by pseudoabsences with probabilities ,25% (surv_2) had
a range of AUC values and area predicted as present although all predicted areas were large, and pseudoabsences from surveyed plots (surv) had a
range of AUC values and area predicted as present.
doi:10.1371/journal.pone.0044486.g002

Pseudoabsence Generation
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at 67% of the selected polygons with the species. To focus

modeling on prediction of presence more than absence, we then

specified a modeling prevalence, or ratio of present cases to total

cases, of 0.8. We set the number of trees at 1000 and the number

of variables randomly sampled at each split as the square root of

the number of predictors.

Validation
We did not rely only on standard assessments. We used the

reserved sample with recorded species (33% of the data) and

instead of (unknown) true absences, the reserved sample of

surveyed sites without recorded species to calculate AUC values

for predicted probabilities (ROCR package [19] in R). Because the

decision of the threshold dividing predicted presence and absence

of species is complicated and unresolved, with many justifiable

choices (e.g., [20–24]) that can affect comparisons among

pseudoabsence generation strategies, we did not use true positive

rate and true negative rates. Although there are problems with

AUC values as well, the point of all these values is only to show

that the models are accurate when comparing predictions with

observations. We calculated the mean of predicted probabilities.

We grouped the predictions into 4 bins, 0–,25%, $25–,50%,

$50–,75%, $75–100%, and designated the 75–100% bin as

probable presence (i.e., we established the division between

presence and absence of species at a value close to the modeling

prevalence [25]). We then determined the area of probable

presence as a fraction of the total area.

Although predicted probabilities are for presence, there should

be some apparent difference between models for species based on

abundance. That is, the most abundant species should not have a

distribution that resembles the extent for a relatively rare species.

We ran a simple regression (Proc Reg; SAS software, Version 9.1,

Cary, North Carolina, USA) to look for a relationship between the

count of the tree species and either the mean predicted probability

or area of predicted presence. We correlated predicted probabil-

ities among the pseudoabsence generation strategies by species and

determined statistical difference using Kruskal-Wallis and AN-

OVA (Proc npar1way) tests. Lastly, we mapped and visually

compared the distributions.

Results

All the strategies were accurate and similar in accuracy. Mean

AUC values using surveyed pseudoabsences were slightly lower for

the two-step strategies than the one-step strategies. Mean AUC

values were 0.87 for both two-step strategies compared to 0.95 for

Table 3. Count of FIA surveys (2004–2008), mean predicted probabilities, and area (fraction of total area) of polygons with
predicted probabilities $75% for models with random pseudoabsences (rand), random pseudoabsences followed by
pseudoabsences with probabilities ,25% (rand_2), pseudoabsences from surveyed plots (surv), surveyed pseudoabsences
followed by pseudoabsences with probabilities ,25% (surv_2).

Mean predicted probability Area of $75% bin

Species FIA count rand rand_2 surv surv_2 rand rand_2 surv surv_2

ashes 8092 0.40 0.62 0.64 0.90 0.14 0.67 0.35 0.84

aspens 29904 0.45 0.67 0.73 0.88 0.22 0.76 0.55 0.77

balsam fir 7682 0.31 0.45 0.43 0.51 0.16 0.59 0.30 0.55

basswood 2923 0.33 0.49 0.49 0.58 0.12 0.41 0.25 0.43

birch 6419 0.41 0.62 0.62 0.83 0.20 0.75 0.37 0.73

elms 1179 0.54 0.85 0.65 0.82 0.19 0.83 0.33 0.66

jack pine 3147 0.21 0.29 0.27 0.33 0.07 0.22 0.12 0.24

maples 7038 0.35 0.51 0.56 0.69 0.12 0.48 0.32 0.55

red oaks 1917 0.38 0.55 0.54 0.65 0.07 0.29 0.12 0.25

red pine 3219 0.21 0.30 0.29 0.34 0.14 0.43 0.24 0.44

spruces 7525 0.25 0.37 0.35 0.42 0.14 0.46 0.22 0.46

tamarack 5391 0.19 0.26 0.28 0.33 0.13 0.30 0.21 0.34

white cedar 4329 0.15 0.22 0.19 0.23 0.09 0.31 0.11 0.26

white oaks 2716 0.40 0.61 0.60 0.73 0.15 0.50 0.33 0.54

white pine 510 0.41 0.59 0.47 0.65 0.16 0.50 0.13 0.51

yellow birch 186 0.52 0.69 0.57 0.73 0.21 0.57 0.21 0.55

mean 0.35 0.51 0.48 0.60 0.14 0.51 0.26 0.51

doi:10.1371/journal.pone.0044486.t003

Table 4. Correlation (all species combined) among predicted
probabilities for models with random pseudoabsences (rand),
random pseudoabsences followed by pseudoabsences with
probabilities ,25% (rand_2), pseudoabsences from surveyed
plots (surv), surveyed pseudoabsences followed by
pseudoabsences with probabilities ,25% (surv_2).

rand rand_2 surv surv_2

rand 1.00 0.87 0.69 0.58

rand_2 0.87 1.00 0.67 0.62

surv 0.69 0.67 1.00 0.79

surv_2 0.58 0.62 0.79 1.00

doi:10.1371/journal.pone.0044486.t004
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Figure 3. Predicted probabilities (black indicates areas of $75% predicted probability) for uncommon yellow birch (black circles
indicates approximate location) by models with a) random pseudoabsences, b) random pseudoabsences followed by
pseudoabsences with probabilities ,25%, c) pseudoabsences from surveyed plots, d) surveyed pseudoabsences followed by
pseudoabsences with probabilities ,25%.
doi:10.1371/journal.pone.0044486.g003

Pseudoabsence Generation
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both one-step strategies using the reserved polygons without

present cases as the pseudoabsences (Table 2).

Pseudoabsence generation completely affected the probability of

occurrence and the area (fraction of total area) that species were

predicted as present, designated by the $75% bin (Table 3,

Figure 4. Predicted probabilities (black indicates areas of $75% predicted probability) for widespread aspens by models with a)
random pseudoabsences, b) random pseudoabsences followed by pseudoabsences with probabilities ,25%, c) pseudoabsences
from surveyed plots, d) surveyed pseudoabsences followed by pseudoabsences with probabilities ,25%.
doi:10.1371/journal.pone.0044486.g004

Pseudoabsence Generation
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Figure 5. Predicted probabilities (black indicates areas of $75% predicted probability) for jack pine by models with a) random
pseudoabsences followed by pseudoabsences with probabilities ,25% and b) pseudoabsences from surveyed plots.
doi:10.1371/journal.pone.0044486.g005

Pseudoabsence Generation
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Figure 6. Predicted probabilities (black indicates areas of $75% predicted probability) for white cedar by models with a) random
pseudoabsences followed by pseudoabsences with probabilities ,25% and b) pseudoabsences from surveyed plots.
doi:10.1371/journal.pone.0044486.g006

Pseudoabsence Generation
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Figure 7. Predicted probabilities (black indicates areas of $75% predicted probability) for balsam fir by models with a) random
pseudoabsences followed by pseudoabsences with probabilities ,25% and b) pseudoabsences from surveyed plots.
doi:10.1371/journal.pone.0044486.g007

Pseudoabsence Generation
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Figure 2). The random pseudoabsence strategy performed well

considering the parsimonious predictions; mean predicted prob-

ability was 0.35 (range of 0.15 to 0.54) and mean $75% bin area

was 0.14 (with a narrow range of 0.07 to 0.22). The surveyed

pseudoabsence strategy had a mean predicted probability of 0.48

(range of 0.19 to 0.73) and a mean $75% bin area of 0.26 (range

of 0.11 to 0.55). The two-step strategy with a random

pseudoabsence first step had an overall mean predicted probability

of 0.51 (range of 0.22 to 0.85) and for the $75% bin, a mean bin

area of 0.51 (range of 0.22 to 0.83). The two-step strategy with a

surveyed pseudoabsence first step had a mean predicted proba-

bility of 0.60 (range of 0.23 to 0.90) and a mean $75% bin area of

0.51 (range of 0.24 to 0.84). Compared to the $75% bin area of

the two-step pseudoabsence strategies, the random pseudoabsence

strategy produced about 28% of the area and the surveyed

pseudoabsence strategy had about 52% of the area.

The original selection of pseudoabsence generation, either

randomly or by survey, preserved the greatest correlation among

strategies (r = 0.87 for the one-step and two-step random

pseudoabsence strategies and r = 0.79 for the one-step and two-

step surveyed pseudoabsence strategies; Table 4). All other

correlations between strategies of different pseudoabsence strate-

gies had correlation values that ranged from 0.58 to 0.69.

Correlation p values were ,0.0001 for all species. Kruskal-Wallis

and ANOVA (Proc npar1way) tests to compare predicted

probabilities by species also showed differences were significant

among pseudoabsence generation strategies for all species (p values

were ,0.0001 for all species).

We determined some discrimination for absence through a

relationship between density (count of each species for the survey

area) and mean predicted probability and area for the 75–100%

predicted probability bin. Of course, there are species with

restricted ranges and greater density within the range, such as

white cedar, which had a moderate abundance but the lowest

predicted probabilities and counts for the 75–100% predicted

probability bin. The R2 values for a polynomial regression

(y = a+b1X+b2X2) between count and 1) area predicted as present

and 2) predicted probabilities were 0.86 and 0.61, respectively, for

the one-step strategy based on surveyed pseudoabsences. The R2

values were #0.30 for the other three pseudoabsence strategies.

One main product of species distribution modeling is the

species distribution map, which provides an important assess-

ment. The distribution maps showed over-prediction (relative to

the known frequency in the landscape) for uncommon yellow

birch by the two-step strategies, particularly the two-step

strategy with a surveyed pseudoabsence first step (Figure 3).

Conversely, the random pseudoabsence strategy produced

under-prediction for widespread aspens compared to predictions

for rarer species (Figure 4). A closer look at the two strategies

with moderate predicted probabilities, the surveyed pseudoab-

sence strategy and the two-step strategy with a random

pseudoabsence first step, demonstrated similar patterns between

the two strategies, but the surveyed pseudoabsence strategy

produced a smaller area of predicted probabilities $75% (see

jack pine, white cedar, and balsam fir examples for moderate

counts of 3000 to 8000 individuals; Figures 5–7). Consequently,

maps from surveyed pseudoabsence strategies had more

variation at finer scales and were more likely to avoid

commission (false positive) errors.

Discussion

Pseudoabsence generation may be one of the most important

factors that determine species distribution models, however this

may not be apparent in accuracy assessment metrics. There was

little practical difference, at least between the one-step strategies,

in our accuracy assessment using known presences and surveyed

absences, making it important to evaluate differences in values for

mean predicted probability and areas of predicted probability bins

and examine distribution maps to make sure the coverage was

reasonable. Values for mean predicted probability and area in

each predicted probability bin varied considerably due to

strategies for generating absence. The distribution maps ranged

from prediction of species in small areas (i.e., models based on

random pseudoabsences) to prediction of species in large areas (the

two-step strategies).

Maps based on selecting pseudoabsences from surveyed plots

provided a range in area of probable presence depending on

species abundance. Models using pseudoabsences from surveyed

plots had the strongest relationship between density and both

predicted probability and area of polygons with predicted

probabilities $75%. There was an increase in predicted proba-

bilities and counts for the 75–100% predicted probability bin as

presence counts increased from yellow birch (186 recorded

individuals) to aspens (29904 recorded individuals). Engler et al.

[12] and Hernandez et al. [25] recommended selection of models

that are accurate (low omission) and cover the least area (i.e.,

presumably have the fewest commission errors). Models based on

random pseudoabsences certainly were parsimonious in the area

of high predicted probability compared to accuracy. Nevertheless,

these models also were conservative with little range in area

predicted for each species, suggesting errors of omission in the

species distribution due to conflicting areas with both presence and

absence. Aspen, a widespread and dominant species, was not

assigned great predicted probability except in restricted areas, and

we did not find that a satisfactory distribution for a species that was

at least 3.5 times more common than any other species.

Conversely, two-step strategies, based on pseudoabsences from

low predicted probabilities, assigned a high probability of presence

to areas outside of the narrowly specified environmental conditions

of pseudoabsence. Two-step strategies thus produced too much

environmental distance between the pseudoabsences and recorded

presence of the species, overestimating species presence and

increasing commission errors [2].

Although we reached some of the same conclusions as other

authors, we developed conclusions based on (predicted area of

presence in) distribution maps, one of the end goals of modeling,

rather than relying solely on accuracy metrics. In addition to the

unknown and variable amount of overlap between random

pseudoabsences and true absences, it may be that disagreement

about pseudoabsences is caused in part by reliance on imperfect

accuracy metrics alone [26–29]. Mateo et al. [4], who found

greater accuracy of ‘‘target-group’’ absences than random

pseudoabsences, used AUC (area under the receiver operating

curve, a plot of true positive rate against false positive rate) values.

Lütolf et al. [11], who found random pseudoabsences were more

accurate than pseudoabsences from surveyed sites without the

species, used AUC values, the Kappa statistic, and adjusted D2.

For presence-only data, AUC values are based on pseudoabsences,

which may not represent absences and thus, may confound AUC

values. Modeling with the use of predicted absences from profile

models may produce similar results to our two-step strategies,

namely, over-prediction, due to enhanced separation between

pseudoabsences and presences. Wisz and Guisan [8], who found

random pseudoabsences more accurate than pseudoabsences from

profile models, used AUC values and conversely, Engler et al.

[12], who found pseudoabsences from profile models more

Pseudoabsence Generation

PLOS ONE | www.plosone.org 11 August 2012 | Volume 7 | Issue 8 | e44486



accurate than random pseudoabsences, used a variety of metrics,

including the Kappa statistic and adjusted D2.

Absence, or pseudoabsence, generation greatly affects species

distribution models. Inclusion of pseudoabsence data with

unknown probability of absence can produce poor spatial

representation through either under- or overrepresentation of

the species. Models based on selecting pseudoabsences from

surveyed plots did not restrict either presence (as models based on

random pseudoabsences did) or absence (the two-step models) to

limited areas. Our use of polygons rather than pixels is unusual;

however, using a reduced set of FIA plots (to protect landowner

privacy) associated with predictor variable scaled to 90 m grid

cells, the difference in predicted area of presence persisted

regardless of grain and indeed, the difference was amplified.
Due to the limitations in current accuracy assessment methods,

partial reliance on area and distribution maps to evaluate whether

the species has been sufficiently but not excessively predicted to

occur may help provide the best assessment.
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