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Abstract

Adult neurogenesis is restricted to specific brain regions. Although involved in the continuous supply of interneurons for
the olfactory function, the role of neural precursors in brain damage-repair remains an open question. Aiming to in vivo
identify endogenous neural precursor cells migrating towards a brain damage site, the monoclonal antibody Nilo2
recognizing cell surface antigens on neuroblasts, was coupled to magnetic glyconanoparticles (mGNPs). The Nilo2-mGNP
complexes allowed, by magnetic resonance imaging in living animals, the in vivo identification of endogenous neural
precursors at their niche, as well as their migration to a lesion site (induced brain tumor), which was fast (within hours) and
orderly. Interestingly, the rapid migration of neuroblasts towards a damage site is a characteristic that might be exploited to
precisely localize early damage events in neurodegenerative diseases. In addition, it might facilitate the study of
regenerative mechanisms through the activation of endogenous neural cell precursors. A similar approach, combining
magnetic glyconanoparticles linked to appropriate antibodies could be applied to flag other small cell subpopulations
within the organism, track their migration, localize stem cell niches, cancer stem cells or even track metastatic cells.
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Introduction

In spite of new advances in understanding the biology of

embryonic stem cells and induced pluripotent stem cells, tissue-

specific stem cells remain the most promising cells for regenerative

medicine, due to their ability to self-renew and differentiate into

the distinct cell types that constitute a particular tissue. Neural

precursors are mainly localized in the subventricular zone (SVZ) of

the lateral ventricles and the subgranular zone (SGZ) of the

hippocampus dentate gyrus [1–4]. In the adult SVZ, neural stem

cells (B1 astrocytes) generate through different intermediates,

neuroblasts and glial precursors, which differentiate into neurons

and glia, respectively [1,5–7]. It is known that neurogenesis in the

adult brain plays an important role maintaining the homeostasis,

such as in the olfactory bulb where a continuous supply of

migrating neuroblasts is required for the generation of periglo-

merular interneurons. Indeed, neuroblasts migrate from the SVZ

to the olfactory bulb through the rostral migratory stream (RMS)

[8–12] as recently confirmed by magnetic resonance imaging

(MRI) analyses of migrating endogenous neural cells with in situ

endocytosed nanoparticles [13–17]. In addition, experiments using

in vivo BrdU-labeled cells [18–21], or in vitro labeled cells

subsequently grafted in a recipient brain [22–33] have shown

that in response to brain insults, cells migrate towards the lesion

site. MRI combined with contrast agents has been widely used as a

noninvasive technique to study cell migration of grafted cells with

an efficient labeling without impairment on cell survival,

proliferation, self-renewal or multipotency [34]. Taken together,

these data suggest migration of neural cells to damage sites,

although without direct evidence for migration of any particular

endogenous progenitor subpopulation, and allow envisaging the

possibility that in response to brain damage there is neurogenesis

in the adult brain.

To in vivo track an endogenous neural cell subpopulation

migrating towards a brain damage site, we took advantage of the

monoclonal antibody Nilo2, recognizing live neuroblast cells [35],

which was coupled to recently developed magnetic glyconano-

particles (mGNPs) [36]. The Nilo2-mGNP conjugates were

suitable for magnetic resonance imaging detection and were used

to analyze in vivo neuroblast cell niches, as well as the migration of

specifically labeled endogenous neuroblasts from their niche

towards an astrocytoma lesion site.

Materials and Methods

Animals
Experiments were performed in compliance with the European

Union and Spanish laws (Council Directive 86/609/EEC) and

approved by the Committee of Animal Experimentation of the

CSIC. For these experiments 6–8 week old FVB or C57Bl/6

animals, bred and housed in our animal facility under standard
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conditions were used. All surgery was performed under anesthesia,

and efforts were made to minimize suffering.

Antibodies
Nilo2 mAb was generated by the fusion of hamster B cells and

the mouse myeloma X63Ag8, as described [35]. Purified Nilo2

was from Immunostep Inc. (Salamanca, Spain). Commercial

antibodies and other reagents are described in Table 1.

Synthesis and Characterization of the Protein G-magnetic
Glyconanoparticles (mGNPs)

Water soluble magnetic glyconanoparticles consisting on a 4 nm

magnetic core covered with a 1 nm gold shell coated with

carbohydrates and an amphiphilic linker with an end-position

carboxyl group were prepared and characterized as previously

described [36]. Covalent immobilization through the carbonyl

groups of a recombinant and commercially available protein G

enables capture of IgG antibodies on the nanoparticles [37,38].

Lyophilized nanoparticles (1.0 mg) were dissolved in 1 ml of

PBS. The carboxyl groups were activated by adding a solution of

N-ethyl-N9-(3-dimethylaminopropyl) carbodiimide hydrochloride

(EDC) (40 mg, 0.21 mmol) and N-hydroxysuccinimide (NHS)

(36 mg, 0.31 mmol). This mixture was shaken for 90 min, diluted

to 3 ml of PBS and shaken for 3 hours at 10uC with protein G

(161 ml, 1 mg/ml in PBS, Southern Biotech) on a 5:1 (protein G:

nanoparticles) ratio. The mixture was immediately centrifuged at

14000 6 g for 90 min at 4uC. Uncoupled protein G was

eliminated following washes in PBS. The resulting pellet was

suspended in 25 mM Tris pH 9, 100 mM glycine. Protein G-

glyconanoparticles (mGNPs) were characterized by MALDI-TOF

spectrometry. The amount of coupled protein G was quantified by

the Bradford method. Iron content was evaluated by induced

coupled plasma optical atomic spectroscopy (ICP-OAS) estimating

that 1.5 mg mGNPs contained 48 mg Fe. The relaxivity values r2
of the mGNPs (137 mM21s1 in PBS at 37uC, 1.4 Teslas) did not

change in comparison to the precursor glyconanoparticles [36].

Core size of the protein G-glyconanoparticles, estimated from the

TEM micrographs, was the same as those of the glyco-ferrites.

T2* estimation of mGNPs was calculated from phantom data.

Phantoms were prepared on agar supplemented with copper

sulfate with different concentrations of iron from dextran coated

commercial nanoparticles EndoremTM (Guerbert Laboratories) or

protein G functionalized nanoparticles (mGNPs). Measurements

were carried out with a Bruker Biospec 70/20 scanner (7T) using a

linear coil resonator, employing a multiple gradient echo sequence

(parameters: TR 1500 ms, TE 4 to 53 ms, echo spacing 7 ms),

from where the T2* map was calculated. Similar ROIS were

traced on each image and their mean values were normalized to

Table 1. Commercial antibodies used in flow cytometry, immunocytochemistry, immunohistochemistry and immunoblotting.

PRIMARY ANTIBODIES

Antibody Host Source Clone or Cat. # Ab Dilution

SOX2 Rabbit, polyclonal Chemicon AB5603 1:400

DCX Goat, polyclonal Santa Cruz Biotech. Sc-8066 1:200

PSA-NCAM Mouse, monoclonal Chemicon MAB5324 1:400

PSA-NCAM Mouse, monoclonal (IgM) Abcys online AbC0019 1:1000

CD4 Rat, monoclonal BD Pharmingen 553043 1:200

CD4-FITC Rat, monoclonal BD Pharmingen 553055 1:200

CD8-FITC Rat, monoclonal BD Pharmingen 553031 1:200

CD11b Rat, monoclonal BD Pharmingen 553308 1:100

GFAP Rabbit, polyclonal Neomarkers RB-087-A1 1:200

hup53 Rabbit, polyclonal Cell Signalling Tech. 2521S –

CD3e Hamster, monoclonal BD Pharmingen 553058 –

SECONDARY ANTIBODIES AND REAGENTS

Antibody Host Source Clone or Cat. # Ab Dilution

Anti-hamster IgG-HRP Mouse BD Pharmingen 554012 1:5000

Anti-hamster-FITC Mouse BD Pharmingen 554011 1:100

Anti-mouse IgG-Texas Red Goat Molecular Probes T-862 1:400

Anti-mouse IgM A546 Goat Invitrogen A-21045 1:400

Anti-rat Alexa Fluor 647 Goat Invitrogen A-21247 1:400

Anti-rabbit IgG-Cy3 Goat Jackson ImmunoResearch 111-165-003 1:400

Anti-goat 594 Chicken Invitrogen A21468 1:400

Anti-hamster biotin Mouse BD Pharmingen 550335 1:100

Streptavidin Alexa Fluor 647 – Invitrogen S32357 1:400

Streptavidin Alexa Fluor 488 – Invitrogen S32354 1:400

Streptavidin Texas Red – Invitrogen S872 1:400

doi:10.1371/journal.pone.0044466.t001
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the background value. These values were represented versus iron

concentration.

Nilo2 Binding to Magnetic Nanoparticles
Protein G-magnetic glyconanoparticles (mGNPs) (100 mg) were

incubated 5 h at 4uC with Nilo2 mAb (135 mg) in 0.1 M glycine

buffer pH 9.0 on a final volume of 50 ml. After three PBS washes,

nanoparticles were isolated by centrifugation and solubilized in

30 ml of PBS. The amount of Nilo2 mAb bound to the mGNPs

was determined by western blot using SDS-PAGE and a

secondary antibody antiHa-HRP (1:5000). Purified Nilo2 mAb

(0.75 mg) was used as standard and different volumes (1–3 ml) of

the Nilo2-mGNPs suspension were loaded corresponding to 3.5–

10.5% of the volume sample. Quantification by densitometry

allowed to estimate that Nilo2-mGNPs contained 0.20 mg/ml

Nilo2 (1.82 mg Nilo2/mg Fe).

Size and morphology of the Nilo2-mGNPs were estimated by

transmission electron microscopy (TEM). Nilo2-mGNPs were

dissolved in 20 mM Tris-HCl pH 7.4, 200 mM NaCl and applied

during 1 min to a carbon-coated Cu-Pd grid with glow-discharge.

After negative staining with 2% uranyl acetate for 40 s, samples

were observed using a JEOL 1230 transmission electron micro-

scope operated at 100 kV.

Neurosphere Preparations and Cell Culture
Neurospheres for in vitro experiments were prepared from the

SVZ of 6- to 8-week old FVB mice or from E13.5 C57Bl/6

olfactory bulbs as described [35]. Alternatively, for in vivo

experiments with grafted cells, GFP+ neurospheres were obtained

from b-actin EGFP transgenic mice (C57Bl/6 background) [39].

CT-2A mouse astrocytoma (gift from Prof. T.N. Seyfried, Boston,

MA, USA), and GFP-CT-2A (gift from A. Martinez, I. Cajal,

CSIC, Madrid, Spain) [40], were grown in RPMI medium, 10%

heat-inactivated fetal bovine serum in 5% CO2 at 37uC and 95%

humidity.

Intracranial Surgery
C57BL/6J mice were anaesthetized intraperitoneally with

100 mg/kg of ketamine and 10 mg/kg of xylacine. The mice

heads were immobilized in a stereotaxic frame and intracranially

injected with 1 ml of Nilo2-mGNPs in the striatum at coordinates

+0.9 mm anterior, +0.75 mm lateral, 22.75 mm ventral from the

bregma point. As control, PBS was used. Brain fixations were

performed on anesthetized mice by transcardiac perfusion with

4% paraformaldehyde (PF) in 0.1 M phosphate buffer (fixation

buffer). Brains were extracted and post-fixed overnight at 4uC in

fixation buffer and cryoprotected in fixation buffer with 30%

sucrose for two days at 4uC before freezing at 280uC. Fixed brains

were cut in cryostat at 25 mm and slices maintained at 220uC in

glycerol/etilenglycol buffer until analyzed.

In vivo identification of Nilo2+ cells in their niches was done

injecting 1 ml of purified Nilo2 (0.25 mg) at stereotaxic coordinates

+0.9 mm anterior, +0.75 mm lateral, 22.75 mm ventral refereed

to bregma point. Mice (n = 4) were perfused 24 h later.

For neurosphere-EndoremTM graft experiments, neurospheres

from E13.5 olfactory bulb embryos were disaggregated and

incubated with EndoremTM nanoparticles (136104 cells with

50 mg/ml Fe or 36104 cells with 5 mg/ml Fe) for 48 h at 37uC.

Collected cells were PBS washed and stereotaxically injected into

the right (2 ml with 46103 cells from low iron content) or the left

(2 ml with 36104 cells from high iron content) lateral ventricles at

positions +0.14 anterior, +/20.75 lateral, 22.25 ventral respect to

bregma point. With these conditions the maximum iron injected

was 0.22 mg Fe in the right or 17 mg Fe in the left lateral ventricles.

Next day, MRI was performedon anesthetized mice (n = 2).

Tumor mice model was generated by intracranial graft of

102226105 CT-2A or GFP-CT-2A cells in 1 ml of PBS at

stereotaxic coordinates +0.1 mm anterior, 22.25 mm lateral,

22.70 mm ventral into the right caudate putamen.

In GFP+-neurosphere graft experiments used to study migration

kinetics of exogenous cells in response to an induced tumor, SVZ

neurospheres (46104 cells) from adult EGFP-transgenic mice

(n = 6) were injected at stereotaxic coordinates +0.14 anterior, +0.6

lateral, 22.25 ventral respect to bregma point (into the right

lateral ventricle). CT-2A cells (16104 cells) were injected into the

left striatum of mice (n = 3) three days later at position +0.1 mm

anterior, 22.25 mm lateral, 22.70 mm to induce a tumor. Mice

were sacrificed next day to analyze the location of GFP+ cells.

Magnetic Resonance Imaging
MRI studies were performed in a Bruker Biospec 70/20 scanner

using a combination of a linear coil (for transmission) with a mouse

head phase array coil (for reception). Animals were anesthetized

with sevofluorane (5% for induction and 2% for maintenance) and

placed in an MRI-adapted stereotaxic holder. Respiration and

body temperature were continuously monitored. MRI acquisition

protocol included an initial flash sequence (repetition time:

100 ms, echo time: 6 ms, field of view: 4 cm, matrix: 1286128)

to center the Field of View (FOV), followed by a shimming

procedure applied to a region of interest covering the head

(FOV = 36262 cm, matrix = 64664664) and based on a Field

Map sequence (TR = 20 ms, TE = 1.43 and 5.42 ms).

As an anatomical reference we used a T2-weighted coronal

image (TR = 2500 ms; TE, 33 ms; a= 180u; FOV = 262 cm;

matrix = 2566256; slice thickness = 0.5 mm) and nanoparticles

were detected and tracked with a 3D multi gradient echo (MGE)

sequence (TR = 200 ms; 8 echoes, TE = 10 to 45 ms; echo

spacing = 5 ms; a= 15u; FOV = 1.661.661.5 cm; ma-

trix = 192696696).

To increase the signal-to-noise ratio (SNR) and improve image

contrast, the different echo images were added (in magnitude). To

display the results, the tumor area was manually segmented on the

T2 scans and spatially aligned with the MGE image.

Figure 1. Identification of neuroblasts with Nilo2 monoclonal antibody. A, Immunohistochemistry of subventricular zone fixed brain
sections double stained for Nilo2 (green) and DCX, PSA-NCAM, SOX2 or GFAP (red) detected by confocal microscopy. B–C, In vivo identification and
characterization of Nilo2+ neural precursors surrounding a tumor induced after injection of CT-2A cells in the left striatum, following intraperitoneal
injection one week latter of purified Nilo2 mAb, which was revealed in tissue sections with a secondary biotinylated anti-hamster Ig antibody and the
appropriate fluorochrome. B. GFP- CT-2A cells were used (GFP+ in green), Nilo2+ cells were identified with streptavidin-Texas Red at low (left) and
high (right) magnification. C, CT-2A cells were injected using the same protocol as in B. Nilo2+ cells in these tissue sections were identified with
streptavidin-A488 (green) simultaneously with the neuroblast markers DCX or PSA-NCAM (red). Confocal microscopy analyses demonstrate that the
Nilo2+ cells surrounding the tumor were DCX+ and PSA-NCAM+, indicating that these cells correspond to neuroblasts. DAPI was used to stain nuclei
(blue). Scale bars: A, 25 mm; B, 100 mm; C, 45 mm; AH, anterior horn.
doi:10.1371/journal.pone.0044466.g001
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Figure 2. Physicochemical and functional characterization of Nilo2-mGNPs. A, Transmission electron microscopy (TEM) of mGNPs (left
panel) or Nilo2-mGNPs (right panel) showing that both remained disperse in aqueous solution. Size distribution of glyconanoparticles before
coupling to protein G was determined from TEM images. Data were fitted to a Gauss distribution (black line) (central panel). B, Phantoms from
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Immunological Analyses and Staining Procedures
Neurosphere adherent cultures were performed on Matrigel

Basement Membrane Matrix Growth Factor Reduced (BD

Pharmingen) pre-coated coverslips with 1:20 dilution in culture

media. Cells were fixed with 4% PF in PBS buffer for 15 min at

RT. Quenching was performed by adding 0.1 M glycine pH 7.4

for 15 min at RT. After three PBS washes, blocking was

performed by incubating the coverslips with 10% mouse serum

in PBS during 1 h at RT. Fixed cells were incubated overnight

with Nilo2-nanoparticles (5 ml/well) mAb at 4uC. After three PBS

washes, cells were incubated with the secondary antibody (anti-

Ha-FITC 1:100, or anti-Ha-Cy5.5 1:500) for 1 h.

To assess whether MRI signals corresponded to labeled

neuroblasts, mouse brains from animals used in MRI analyses

were fixed and cryopreserved for cryostat sectioning in a parallel

plane to that of axial MR imaging. Serial 20–25 mm thick frozen

sections were collected through the entire mouse brain. Anatom-

ical landmarks such as corpus callosum, anterior commisure of the

brain and lateral ventricles opening and shape, were used for the

spatial alignment of MRI and immunohistochemical sections.

Brain sections of mice intracranially injected with Nilo2 or with

Nilo2-mGNPs were blocked with 10% mouse serum in PBS

during 1 h at RT and stained with anti-Ha-FITC (1:100).

Alternatively, anti-Ha biotin (1:100) and streptavidin-A488

(1:400) or streptavidin-Texas Red (1:400) were used to amplify

the signal. Coverslips were mounted in DAPI/Mowioll and

analyzed in a Nikon Eclipse 80 i fluorescence microscope or a

LEICA TCS-SP2-AOBS confocal microscope.

For in vivo identification of Nilo2+ cells surrounding the brain

tumor, mice were intraperitoneally injected with Nilo2 ascites at

10 mg/g of body weight one week after the stereotaxic injection of

100 CT-2A cells. Next day, mice were euthanized and 25 mm

sections of fixed brains were analyzed using Cy5.5-labeled anti-

hamster antibody.

In neurosphere cultures incubated with EndoremTM, iron from

nanoparticles was reduced with acid solution of potassium

ferrocyanide and the blue pigment formed (Prussian Blue) was

detected with bright field microscopy.

Flow Cytometry
Single cell suspensions from neurospheres were obtained by

mechanical disaggregation. Unspecific antibody binding was

blocked with PBS, 10% mouse serum, 3% BSA, 0.0025% NaN3

for 30 min at 4uC. An excess of Nilo2-mGNPs coupled to

nanoparticles was added to the cell suspension and incubated for

1 h at 4uC. Cells with Nilo2 undiluted hybridoma were incubated

as a control. After PBS washes, cell suspensions were stained with

anti-Ha-FITC (1:100 diluted in PBS, 5% BSA, 0.025% NaN3).

Following additional PBS washes, cells were resuspended in 300 ml

cold PBS until FACS measurements (Epics XL, Coulter).

Propidium iodine was added (25 mg/ml) to each sample to gate

on living cells.

Results

Nilo2 Coupled to Magnetic Nanoparticles Identified
in vivo Neuroblasts in Neurogenic Niches

The monoclonal antibody Nilo2, recently developed and

characterized in our laboratory, was chosen for this study since

it identifies, in living cells surface, antigens on subventricular zone

(SVZ) neural precursors [35]. In fixed brain sections, double

stainings revealed that Nilo2+ cells were positive for neuroblast

markers and negative for neural stem cell markers (DCX+, PSA-

NCAM+, GFAP2 or SOX22) (Figure 1A). To ascertain whether

Nilo2 could be used for the in vivo identification of neuroblasts at

their niches, Nilo2 (0.25 mg) was intracranially injected into the

right striatum, mice were sacrificed 24 h after and the fixed tissue

was incubated with a secondary antibody recognizing hamster

IgG, to reveal binding of Nilo2 mAb. These experiments allowed

the identification of Nilo2+ cells either in the ipsi- or the

contralateral SVZ, with respect to the injection site (data not

shown), demonstrating that Nilo2 can identify its specific antigens

in vivo. In addition, stereotaxic transplantation of mouse GFP+CT-

2A cells generated an astrocytoma at the graft site in few days [40],

where the tumor cells could be identified as GFP+. Taking

advantage of the blood-brain barrier breakdown induced by the

brain tumor [41], Nilo2 mAb was intraperitoneally injected one

week after grafting the GFP+CT-2A cells and the animals were

sacrificed by transcardiac perfusion 24 hours later. Staining of

fixed brain tissue sections with an anti-Nilo2 fluorescent-labeled

secondary antibody revealed that the growing tumor mass was

surrounded by Nilo2 positive cells (Figure 1B). These cells were

further characterized as bona fide type I neuroblasts (neural

progenitors) since they were also positive for DCX and PSA-

NCAM (Figure 1C). Appearance of Nilo2+ cells surrounding the

tumor was concomitant with a strong reduction in Nilo2 staining

of the contiguous anterior horn of the lateral ventricle (white

arrowhead, Figure 1B). The presence of Nilo2+ cells at the damage

site, away from their niche, opened up the possibility to use this

mAb as a marker for in vivo analyses of endogenous neuroblasts in

pathophysiological conditions.

To explore the in vivo behavior of endogenous neuroblasts in

response to local brain damage, Nilo2 monoclonal antibody was

coupled to magnetic glyconanoparticles (Nilo2-mGNPs). This

approach allowed the in vivo identification of neuroblasts, following

their migration by magnetic resonance imaging (MRI). The

magnetic glyconanoparticles were composed of a magnetite core

covered by a gold shell bearing sugars and carboxyl-ending linkers

[36], to which protein G was coupled, allowing them to bind

antibodies (Figure 2). Magnetic glyconanoparticles were charac-

EndoremTM and mGNPs at different iron concentrations (top) allowed to estimate the transverse relaxation time constant T2* (bottom) represented
as mean 6 s.d. mGNPs (filled), EndoremTM (empty). C, Iron detection by Prussian blue staining on neurosphere cells preincubated with EndoremTM

nanoparticles; 136104 cells with 50 mg/ml Fe, (left) or 36104 cells with 5 mg/ml Fe (right). D, Representative coronal MRI views from a mouse brain
injected with iron-preloaded cells from (C) into the right lateral ventricle (low iron content) or into the left lateral ventricle (high iron content). The
images correspond to two different slices from the same brain. E, Cartoon representing Nilo2-mGNPs. F, Western blot of Nilo2-mGNPs suspension
used to estimate the amount of Nilo2 bound to mGNPs. Purified Nilo2 mAb (0.75 mg) was used as standard (lane 1). Different volumes (1–3 ml) of the
suspension were loaded on lanes 3–5. Lane 2 was empty. The amount of Nilo2 mAb bound to the mGNPs was estimated by densitometry (1.82 mg
Nilo2/mg Fe). G, Flow cytometry analyses of SVZ-derived neurosphere cells stained with Nilo2-mGNPs or Nilo2 alone, both revealed with a fluorescent
secondary antibody. H, Fluorescence microscopy of Nilo2-mGNPs labeled neurosphere cells (green) grown in Matrigel. I–K, In vivo identification of
neural precursors in mice intracranially injected with Nilo2-mGNPs (1 ml, 0.2 mg Nilo2 coupled to 0.11 mg Fe) either (I) contralaterally or (J, K)
ipsilaterally to the injection site. Since Nilo2 antibody had already been injected in vivo, the brain sections were incubated with a secondary
biotinylated anti-hamster Ig antibody and revealed with streptavidin-A488 (H–K) and analyzed by confocal microscopy. A scheme of the SVZ area
analyzed is shown. DAPI was used to stain nuclei (blue). Scale bars: A, 25 nm; C, H–K, 50 mm. LV, lateral ventricle; AH, anterior horn.
doi:10.1371/journal.pone.0044466.g002
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Figure 3. Nilo2-mGNPs allowed to reveal MRI hypointense signals in brain damage sites. A, Schematic representation of the injection
sites in the brain for the CT-2A astrocytoma cells (left hemisphere, d 0) and Nilo2-mGNPs (contralaterally in a more rostral position). B, Experiment
schedule, Nilo2-mGNPs injection day is indicated with an arrowhead, MRI acquisitions are shown with asterisks, before (empty) or after nanoparticle
injection (filled). C, Representative MRI analyses of mice injected with GFP-CT-2A cells (d 0) and either Nilo2-mGNPs (n = 4), or anti-human p53-mGNPs
(n = 4). Axial and coronal views on the day before (d+12), or either one (d+14) or five (d+18) days after nanoparticle injection. Arrowheads indicate the
hypointense signals at the tumor site. Arrows indicate the absence of hypointense signals in hp53-mGNPs injected mice at the tumor location. Mice
were sacrificed on day d+20. Insets in axial views from hp53-mGNPs and Nilo2-mGNPs injected mice show the signals due to nanoparticles at the
injection site. D, MRI tumor localization. T2 acquisitions showing the tumor localization on sections corresponding to the T2* MRI images shown in
(C). Tumor sites, defined by hyperintense signals are surrounded by a dotted line (white).
doi:10.1371/journal.pone.0044466.g003

Figure 4. Hypointense MRI signals at the tumor site correspond to neuroblasts. Immunohistochemical analyses of fixed brains from the
mice analyzed in Figure 3. A, Tissue sections from animals injected with Nilo2-mGNPs incubated with a fluorescent secondary antibody (left) or with
additional Nilo2 mAb (right) did not show differences neither in the number nor in the intensity of labeled cells (top). Confocal analyses confirmed
that the hypointense signals in the tumor site (T, GFP+ cells) correspond to neuroblasts (Nilo2+DCX+) (bottom). Inset, detail of the cell labeled by the
arrowhead. B, Specificity was shown on hp53-mGNPs injected mice using a fluorescent secondary anti-human p53 mAb, which did not reveal
migration of hp53-mGNPs-labeled cells (left), although Nilo2+ cells migrated towards the tumor (GFP+ cells) (right). Scale bars: 50 mm.
doi:10.1371/journal.pone.0044466.g004
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terized by transmission electron microscopy before and after

protein G coupling, measuring the size distribution (,6 nm

diameter) (Figure 2A). The Nilo2-mGNP complexes were highly

stable, monodisperse nanostructures with magnetic properties

comparable to commercial nanoparticles as revealed by phantom

analyses (Figure 2B). The minimal iron concentration that could

be detected with our MRI equipment was estimated from

phantom data as 0.5 mg/ml. Neurospheres pre-loaded with 50

or 5 mg/ml iron using EndoremTM nanoparticles (Figure 2C) were

grafted intra ventricles and subsequently detected by MRI, with

different hypointensities, depending on the iron concentration

(Figure 2D). From these data, a detection limit of #0.22 mg of iron

(right hemisphere) was estimated. Complexes Nilo2-mGNPs

contained 0.11 mg/ml of iron and 0.20 mg/ml of Nilo2 and the

mAb retained its specificity, since they identified in vitro cells from

neurosphere cultures (Figure 2E–H). In addition, Nilo2-mGNPs

identified in vivo Nilo2+ neural precursors in their neurogenic

niches after intracranial injection into the right hemisphere (1 ml of

Nilo2-mGNPs containing 0.20 mg Nilo2 and 0.11 mg iron)

(Figure 2 I-K) as uncoupled Nilo2 (0.25 mg, 1 ml) did. This was

Figure 5. Nilo2-mGNPs identify neuroblasts in the main neurogenic niches. A, Experimental schedule, Nilo2-mGNPs injection day is
indicated with an arrowhead, MRI acquisition days are shown with asterisks. B, Axial views at different rostrocaudal positions of a representative MRI
at different time points after the injection of PBS (1 ml, n = 2), Nilo2-mGNPs (n = 2) or CD3e-mGNPs (n = 2) into the right hemisphere in the absence of
tumor induction. Arrowheads indicate the hypointense signals in neuroblasts niches.
doi:10.1371/journal.pone.0044466.g005
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Figure 6. Migration kinetics of Nilo2-mGNPs labeled cells in response to damage. A, Experimental schedule, Nilo2-mGNPs injection day is
indicated with an arrowhead, MRI acquisition days are shown with asterisks, day 0 represents the day in which the CT-2A injury was generated.
Asterisk on day 20 indicates an ex-vivo MRI of fixed brain before immunohistochemical analysis. B, Axial, coronal and sagittal views of a representative
MRI one day before (d21), or one (d+1) to18 (d+18) days after the injection of tumor cells in the left hemisphere (n = 6) showing the Nilo2-mGNPs
injection site (Nilo2-mGNPs site) and CT-2A injection site (CT-2A site). Arrowheads indicate the hypointense signals detected at the tumor vicinity. C–
E, Axial MRI acquisitions from three additional mice, the day before (d21), one (d+1), four (d+4) or 18 (d+18) days after tumor cell injection.
doi:10.1371/journal.pone.0044466.g006

In Vivo Tracking of Endogenous Neural Progenitors

PLOS ONE | www.plosone.org 10 September 2012 | Volume 7 | Issue 9 | e44466



shown by staining fixed brain sections from these mice sacrificed

one day after surgery, with an appropriate secondary antibody.

Brain Tumors Induce Endogenous Neuroblast Migration
The CT-2A astrocytoma was chosen as a model due its high

reproducibility on tumor development. GFP+CT-2A cells were

grafted into the mice brain left hemisphere by stereotaxic surgery.

These cells generated a tumor over the following 10–12 days

(Figure 1B, and Figure 3). At this time point, Nilo2-mGNPs were

stereotaxically injected in a more rostral position of the right

hemisphere and contralaterally to the tumor site, without any

detectable ventricle damage. Comparison of the T2* MRI

measurements the day before (d+12) and the day after Nilo2-

mGNPs injection (d+14) showed the appearance of hypointense

signals (black dots) at the tumor graft site (arrowheads in

Figure 3C), which were undetectable before nanoparticles

injection (d+12), although at this time-point the T2 images

indicated that the tumor was already formed (Figure 3D). In

addition, hypointense signals also appeared in both the cerebro-

spinal fluid and the lateral ventricle walls (Figure 3C, d+14). These

hypointense signals increased in the region surrounding the

damage site with time. Black spots in the left lateral ventricle

(d+14 in Figure 3C) reached the tumor site (arrowhead, coronal

view on Figure 3C) four days later (d+18 in Figure 3C), indicating

an accumulation of Nilo2-mGNPs at the tumor site concomitant

with tumor growth (hyperintense signals in Figure 3D). The

hypointense signals detected by MRI at the nanoparticles injection

site show that both Nilo2-mGNPs and hp53-mGNPs were injected

at the striatum (insets Figure 3C). The nanoparticles were not in

direct contact with the cerebrospinal fluid, thus minimizing the

passive diffusion effects. A control mAb (anti-human p53) coupled

to the same mGNPs failed to generate a signal at the tumor

vicinity (arrow) or within the ventricles, although the T2 MRI

signals demonstrated that the tumor was formed (Figure 3C, D).

Unlike Nilo2-mGNPs, hp53-mGNPs were exclusively detected at

the injection site (Figure 3C), indicating that the migration

specificity of the Nilo2-mGNPs was given by the Nilo2 mAb. To

confirm that the MRI signals corresponded to Nilo2-mGNPs,

mice were then sacrificed (d+20 in Figure 3B) and the fixed brain

sections directly labeled with an anti-Nilo2 secondary fluorescently

labeled antibody. These analyses allowed to verify that the MRI

hypointense signals surrounding the tumor site corresponded to

Nilo2+ cells (Figure 4A). The Nilo2+ cells surrounding the GFP-

tumor were also DCX+ cells (Figure 4A), indicating that they

correspond to bona fide neuroblasts. These results have been

confirmed by additional stainings of Nilo2-mGNPs in vivo together

with DCX (see below Figure 7C–G). When these tissue sections

were incubated with additional Nilo2 mAb, we failed to detect an

increase of the number of Nilo2+ cells, suggesting that most of the

neuroblasts were already labeled with Nilo2-mGNPs. Immuno-

histochemical analyses corroborated that hp53-mGNPs remained

undetectable either at the vicinity of the tumor or scattered

through the parenchyma (Figure 4B), although it was still detected

by MRI at its injection site (Figure 3C). It should be noted that in

the hp53-mGNPs injected animals, neuroblasts surrounded the

tumor as shown by the staining with Nilo2 mAb (Figure 4B).

Aiming to favor recognition of the neuroblast niches by the

Nilo2-mGNPs, the immunonanoparticles were injected into right

SVZ before tumor induction, without any detectable ventricle

damage. Indeed, in these mice hypointense signals in the principal

neurogenic niches were detected, which were stable during 26

days in the absence of tumor (Figure 5). Conversely, mice injected

with the same volume of PBS failed to produce any hypointense

signal due to hemorrhage (Figure 5B, d+2 to d+14). Specificity was

corroborated using mGNPs coupled to an isotypic control anti-

mouse CD3e hamster mAb, where the detectable MRI signals

were restricted to the SVZ injection site, even 26 days after

injection (Figure 5B, d+2 to d+26). These data allowed to discard

that appearance of hypointense signals surrounding the tumor in

Nilo2-mGNP injected animals were due to passive diffusion of the

nanoparticles. In the presence of tumor induction due to the graft

of CT-2A cells, 72 h after the injection of Nilo2-mGNPs, results

comparable to the ones shown in Figure 3 were obtained

(Figure 6A). Indeed, in these experiments, Nilo2-mGNPs labeled

the neuroblast niches, as demonstrated by MRI analyses preceding

the graft of the tumor cells. Furthermore, hypointense signals near

the damage site were detected by MRI as soon as 24 h after tumor

injection (arrowheads, Figure 6, d+1). These hypointense signals

increased and accumulated surrounding the tumor (Figure 6B, C)

and corresponded to endogenous Nilo2+ DCX+ cells (Figure 7).

These cells migrated from the lateral ventricles through different

structures including the highly dense corpus callosum (CC)

(Figure 7A, B). In addition, Nilo2-mGNPs identified bona-fide

neuroblasts in subependymal patches on the lateral ventricle and

the anterior horn of the contralateral ventricle with respect to

tumor localization, since all the Nilo2+ cells were also DCX+

(Figure 7C–G). Immunohistochemical analyses on fixed brain

sections from MRI-analyzed animals corroborated that Nilo2

mAb remained coupled to the mGNPs in vivo for at least 23 days,

as shown by the co-localization of the nanoparticles with Nilo2

(Figure 7H–J). In tissue sections from these animals, Nilo2-mGNP+

cells were co-stained with specific antibodies recognizing glial cells

(GFAP), activated microglia cells (CD11b) or T lymphocytes

(CD4, CD8). The absence of double stained cells allowed to

formally exclude that the hypointense signals surrounding the

tumor were due to cells that, after unspecifically engulfing the

Nilo2-mGNPs, migrated to the damage site (Figure 7K–O), in full

agreement with the experiments using hp53 or CD3e control

antibodies coupled to the mGNPs (see above).

Migration of Neural Precursors Starts in a Few Hours, is
Fast and Orderly

From these MRI experiments, migration rates were estimated in

150 mm/h, and were equivalent to the migration rates (less than

24 h) detected for exogenous GFP+-neurosphere-derived cells

following brain injury (Figure 8). The position of the tumor graft

determined the time for Nilo2-mGNP-labeled cells to reach the

damage site, increasing in grafts localized in more lateral positions

(Figure 6E, d+4). Further MRI analyses on animals where Nilo2-

mGNPs were injected before contralaterally grafting CT-2A

tumor cells revealed the detection of the first hypointense signals

in the tumor region as early as five hours after graft injection,

resulting on an estimated migration rate of 700 mm/h. These

signals were maintained for at least 27 hours, where the presence

of Nilo2+ cells around the CT-2A tumor was confirmed by

immunohistochemistry (Figure 9). We also detected additional

Nilo2+ cells in the corpus callosum and the area between this

structure and the tumor (Figure 9C). Since Nilo2+ cells in wild-type

animals are mostly restricted to their niche in the lateral ventricle

[35], their presence in the highly dense corpus callosum, together

with their morphology with elongated nuclei and cytoplasmic

projections [42,43], reinforce the notion that these cells represent

actively migrating neuroblasts from their niche towards the

damage site induced by the tumor.
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Figure 7. Nilo2-mGNPs specifically label Nilo2+ neuroblasts migrating towards the tumor site. A, B, Immunohistochemical analyses of
the brain from Figure 6B with a fluorescent secondary antibody demonstrating the migration of Nilo2+ cells (red) towards the tumor area (GFP+) (A),
or migrating from the contralateral ventricle through the RMS and the CC (B). C–G, The complexes Nilo2-mGNPs targeted Nilo2+ DCX+ cells in the
contralateral ventricle to the tumor site (C), in subependymal positions of the lateral ventricles (D) or surrounding the GFP-CT-2A tumor (green) (E–
G). H, Bright field microscopy showing nanoparticles in black. I, Nilo2 mAb coupled to mGNPs was revealed with a fluorescent secondary antibody
(red). J, Merge from (H) and (I) indicating that Nilo2 mAb was still coupled to the mGNPs 23 days after intracranial injection. K–O, Nilo2-mGNPs were
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not engulfed by astrocytes (GFAP+), microglia (CD11b+) nor T lymphocytes (CD4+, CD8+). Mice were injected with Nilo2-mGNPs (K) in the absence or
(L–O) in the presence of GFP-CT-2A tumor cells (green). DAPI was used to stain nuclei. Scale bars: A, B, 50 mm; H–M, O, C, 45 mm; N, D–G, 20 mm.
LV, lateral ventricle; CC, corpus callosum; RMS, rostral migratory stream.
doi:10.1371/journal.pone.0044466.g007

Figure 8. Exogenous GFP+ neural precursors migrated to the damage site in less than 24 hours. A–F, control or G–M, CT-2A injected
animals were subsequently injected by stereotaxic surgery with SVZ-derived GFP+-neurosphere cells in the contralateral striatum. Mice were sacrificed
24 hours after injection of the CT-2A cells and brain tissue sections were analyzed by either (A–D, G–J) stereo microscopy or (E, F, K–M) confocal
microscopy. Migrating GFP+ cells in (B, H) cortex; (D, E) injection site of neurosphere cells; (C, E, F) in CC; (I, K, L) injection site of tumor CT-2A cells;
(J, M) CC in a caudal position respect to both injection sites. Scale bars: E, F, 150 mm; K, L, 50 mm; M, 75 mm.
doi:10.1371/journal.pone.0044466.g008
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Discussion

The monoclonal antibody Nilo2 was described as recognizing

surface antigens from mouse type I neuroblasts and in immuno-

histochemistry identifies cells within the anterior horn of the lateral

ventricle [35]. We have substantiated these data and in addition

we show that Nilo2 mAb is able to identify these cells in vivo,

following intracranial injection of the antibody. We confirmed the

identity of the labeled cells in vivo by immunohistochemistry with

other neuroblast type I markers such as DCX and PSA-NCAM.

Our data also show that following the local injection of CT-2A

cells, which generated an astrocytoma at the graft site, Nilo2+ cells

could be detected surrounding the tumor. As the detection of

Nilo2+ cells surrounding the tumor was concomitant with a strong

reduction in their number in the contiguous lateral ventricle niche,

suggested that Nilo2+ cells might migrate from their niche towards

the tumor graft site. This allowed us to envisage the possibility of

using this mAb as a marker for endogenous neuroblast migration

analyses in living animals. The concept of endogenous neuroblasts

migrating in response to damage, although not formally demon-

strated yet, had been already suggested on the basis of

immunohistochemistry and MRI analyses using transplanted cells.

Indeed, a strong tropism of neural precursors for glioblastomas has

been described in mice [22,44]. In addition to the migration ability

of exogenous precursors, some studies demonstrated it for

endogenous neural precursors. For example, using a nestin-GFP

transgenic, Glass et al. [44] have shown, in a murine experimental

glioblastoma model, that nestin+ cells originating in the subven-

tricular zone migrated towards the tumor vicinity within 4–14

days. These cells were ki67+, mushashi+, NG-2+, GFAP+, PSA-

NCAM+ or DCX+, indicating the migration of committed and

noncommitted precursors. The absence of unique cell surface

markers for neural stem cells or for neuroblasts has impaired the in

vivo study of particular cell phenotypes migration. Our data show

that by combining the mAb Nilo2 with magnetic glyconanopar-

ticles (Nilo2-mGNPs), the Nilo2 mAb in vivo zeroed in the

complexes on neuroblasts, allowing the selective tracking of

endogenous neuroblast progenitors in vivo by MRI. Indeed,

Nilo2-mGNPs identified neuroblasts within their niches in the

absence of additional damage. In addition, following injection of

CT-2A cells, it also identified neuroblast cells surrounding the

tumor, as demonstrated by MRI and confirmed by immunohis-

tochemistry. The obtained MRI patterns were specific for Nilo2,

since both anti-hp53 and anti-mouse CD3e conjugated to the

same mGNPs failed to show signals on neuroblast niches or

surrounding the CT-2A tumor. In addition, confocal microscopy

showed that the Nilo2-mGNP complexes remained intact in vivo

for at least 23 days.

Complementary experiments in which, Nilo2-mGNPs were

contralaterally injected after generating a tumor, or in which

Nilo2-mGNPs were injected first (favoring binding of the mGNPs

to Nilo2+ cells in their niches), both gave similar results, namely

that Nilo2-mGNPs were detected surrounding the tumor cells after

a short time-period. In addition, in grafts localized in more lateral

positions, the time for the Nilo2-mGNP-labelled cells to reach the

damage site increased. Interestingly, in experiments where binding

of the Nilo2-mGNPs to neuroblasts in their niches was favored,

MRI experiments demonstrated a continuous accumulation of

Nilo2+ cells, starting as early as 5 h following injection of the CT-

2A cells. Furthermore, Nilo2+ cells with migrating cell morphology

(elongated nuclei and cytoplasmic projections) were detected in the

corpus callosum at short times. Taken together, these data indicate

that the accumulation of type I neuroblasts (Nilo2+) surrounding

the tumor cells is due to an orderly migration of these cells from

Figure 9. Endogenous Nilo2+ cells migrate fast and orderly in
response to a tumor. Nilo2-mGNPs were injected into the right
hemisphere and CT-2A cells into the left striatum four days later (n = 8).
A, Nilo2+ cell migration was analyzed using MRI before (0 h), 5 h, 20 h
and 27 h after CT-2A injection. Arrowhead and arrow on each panel
show the positions of the hypointense signals after injection of the
tumor cells (5 h, 20 h and 27 h), and the lack of hypointense signals
before injection of the tumor cells (0 h). Control MRI analyses before the
injection of the Nilo2-mGNPs (no particles) and injection site of these
complexes at 0 h were included. B, C, Immunohistochemical analyses
were performed after the last MRI at 27 h. Some of the migrating cells
had already reached the tumor injection site (T), whereas others were
still migrating through the CC. Nuclei were stained with DAPI (blue).
White arrow in (B) indicates the magnified region in the inset. Scale
bars: B, 75 mm; inset in B, 10 mm; C, 50 mm.
doi:10.1371/journal.pone.0044466.g009
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their brain niches (estimated speed range 150–700 mm/h) towards

the lesion site, implying a fast damage response (less than 24 h),

rather than to migration of brain-scattered neuroblasts or being

the result of cell de-differentiation. The migration occurred either

tangentially with a rostrocaudal pattern, throughout the entire

SVZ, or in a radial pattern through the parenchyma at the

contralateral hemisphere that crosses the high-dense structures of

the corpus callosum.

In contrast to previous reports using in situ injection of a high

concentration micron-sized iron oxide particles (MPIO) [17], and

where only a small percentage of the migrating neuroblasts were

labeled [15,16], in this work, where a monoclonal antibody was

coupled to the contrast agent, most of the resident neuroblasts

were labeled without cellular damage and detected by MRI, even

using a reduced amount of nanoparticles (0.11 mg Fe/mouse). It

should be noted that the amount of Nilo2 used (0.20 mg Nilo2/

mouse) is at least 60 times less than the minimal amount in which

an effect on either neurosphere proliferation or differentiation

in vitro could be detected [35]. These data support the notion that

Nilo2 mAb zeroed in the mGNPs on neuroblast type I cells, which,

as a consequence of a localized damage migrated labeled with

Nilo2-mGNPs.

To exclude that some of the hypointense signals detected by

MRI were background signals due to inflammation, iron

accumulation due to hemorrhage or tumor growth, we included,

in addition to controls with irrelevant antibodies coupled to the

mGNPs (anti-hp53, anti-mouse CD3e) or PBS injection, appro-

priate controls for each animal, namely the MRI data of the same

animal prior to Nilo2-mGNP injection in the contralateral

hemisphere (i.e. d+12 in Figure 3).

These data allowed us to envisage that neuroblast migration in

response to a brain tumor might represent an attempt to repair the

damaged tissue [42,44]. In the CT-2A model used on this work,

however, the fast tumor evolution (mice died within four weeks)

hampered any possible benefit of the migrating neuroblasts.

Preliminary data on epilepsy models (G.E. unpublished results)

suggest that neuroblast migration in response to damage is not

restricted to this tumor model, since it also takes place following

active peaks in some neurodegenerative diseases, opening up the

possibility of using neuroblast migration for the early detection of

brain lesions in neurodegenerative diseases where a link between

damage with the etiopathology has not yet been fully established.

In fact, this correlation could have strong implications in the

prognosis and treatment of these diseases. Moreover, we have

already demonstrated that other Nilo monoclonal antibodies had

the ability to target nanoparticles to a particular cell subpopulation

[45]. Fluorescent-magnetic glyconanoparticles conjugated to

appropriate antibodies have been shown to specifically tag minor

population of leucocytes (0.01%) in the whole human blood [37].

Thus, the use of nanoparticles is not necessarily restricted to the

nervous system and could be used for locating minor populations

such as stem cells in their niches, identification of cancer stem cells,

or tracking migration of other cell types in the body, including

metastatic cells.
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