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Abstract

Background: Farnesoid X Receptor (FXR) is a member of the nuclear receptor superfamily and is a ligand-activated
transcription factor essential for maintaining liver and intestinal homeostasis. FXR is protective against carcinogenesis and
inflammation in liver and intestine as demonstrated by the development of inflammation and tumors in the liver and
intestine of FXR knock-out mice. However, mechanisms for the protective effects of FXR are not completely understood.
This study reports a novel role of FXR in regulating expression of Sqstm1, which encodes for p62 protein. p62 plays an
important role in maintaining cellular homeostasis through selective autophagy and activating signal transduction
pathways, such as NF-kB to support cell survival and caspase-8 to initiate apoptosis. FXR regulation of Sqstm1 may serve as
a protective mechanism.

Methods and Results: This study showed that FXR bound to the Sqstm1 gene in both mouse livers and ileums as
determined by chromatin immunoprecipitation. In addition, FXR activation enhanced transcriptional activation of Sqstm1
in vitro. However, wild-type mice treated with GW4064, a synthetic FXR ligand, showed that FXR activation induced mRNA
and protein expression of Sqstm1/p62 in ileum, but not in liver. Interestingly, FXR-transgenic mice showed induced mRNA
expression of Sqstm1 in both liver and ileum compared to wild-type mice.

Conclusions: Our current study has identified a novel role of FXR in regulating the expression of p62, a key factor in protein
degradation and cell signaling. Regulation of p62 by FXR indicates tissue-specific and gene-dosage effects. Furthermore,
FXR-mediated induction of p62 may implicate a protective mechanism of FXR.
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Introduction

Autophagy was strictly thought of as a bulk protein degradation

pathway until the discovery that it also performs selective

degradation of polyubiquitinated proteins via sequestosome-

1(Sqstm1), which encodes for p62 protein. p62 is often found in

cellular protein aggregates because it interacts with ubiquitinated

proteins through its C-terminal ubiquitin associated (UBA) domain

[1]. p62 also interacts with microtubule light chain 3 (LC3), an

autophagy protein, via its LC3 interacting region (LIR). In

addition to protein aggregates, recent studies indicate that p62 is

also recruited to damaged mitochondria via binding to ubiquiti-

nated outer mitochondrial membrane proteins, although this role

of p62 in mitophagy is controversial [2,3]. Therefore, p62 may

serve as an autophagy receptor for ubiquitinated proteins and

damaged mitochondria.

In addition to its role in autophagy, p62 also has a role in signal

transduction and aids in a cell’s decision to undergo apoptosis or

survival through its organization of signaling complexes in the

cytoplasm [1,4,5]. Upon cytokine stimulation, p62 is able to

activate the nuclear factor kappa-light chain-enhancer of activated

B cells (NF-kB) pathway [5–7]. Activated NF-kB induces the

expression of pro-survival genes, such as anti-apoptosis and cell

proliferation genes. Activated NF-kB also induces the expression

of inflammatory genes such as cytokines, chemokines, and

adhesion molecules [8]. In addition, p62 activates nuclear factor

erythroid 2-related factor 2 (Nrf2) by binding to kelch-like ECH-

associated protein 1 (Keap1), which is important for inducing

expression of genes involved in the oxidative stress response [9–

11]. Finally, p62 is able to fully activate caspase-8 in the extrinsic

apoptosis pathway, which results in the initiation of apoptosis and

cell death [4]. Ultimately, p62 helps maintain cellular homeostasis

through its participation in autophagy and signal transduction.

Therefore, a defect in autophagy can cause an accumulation of

damaged organelles and p62-bound protein aggregates or defects

in signal transduction, which can lead to tissue injury and disease.
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Farnesoid X Receptor (FXR) is a ligand-activated transcription

factor and a member of the nuclear receptor superfamily. FXR is

highly expressed in liver and intestine [12]. FXR can be activated

by bile acids, which are its endogenous ligands [13–15], or by

synthetic ligands such as GW4064 [16]. FXR activation is essential

in maintaining bile-acid homeostasis via transcriptional regulation

of nuclear receptors, bile-acid transporters, and the hormonal

fibroblast growth factor Fgf15/19 [17].

In addition to its function in maintaining bile-acid homeo-

stasis, FXR regulates lipid metabolism [18,19], cholesterol

metabolism [20,21], liver regeneration [22], and glucose

metabolism [23]. Recent studies also indicate a role for FXR

in regulating innate immunity and inflammation [24–27].

Although the exact role of FXR in regulating tissue homeostasis

is not clear, FXR deficiency leads to development of various

disease states such as hepatocellular carcinoma [28,29], intes-

tinal tumorigenesis [30–32], intestinal inflammation [24,26,33],

cholestasis [34], nonalcoholic steatohepatitis (NASH) [35] and

gall stone formation [36].

A possible new role for FXR has been revealed through our

discovery of a novel binding site within the Sqstm1 gene in liver and

ileum by genome-wide analysis [37]. However, it is unknown

whether FXR can functionally regulate expression of the Sqstm1

gene. If this hypothesis is verified, it may represent a mechanism

by which FXR maintains tissue homeostasis and regulates

inflammation. Therefore, the purpose of this study was to

determine if binding of FXR to the Sqstm1 gene in the liver and

ileum produces a functional binding site capable of inducing

transcriptional activation of the Sqstm1 gene. Our findings indicate

that FXR binds to the Sqstm1 gene in both liver and ileum.

However, activation of FXR only induces Sqstm1 expression in the

ileum but not in the liver, suggesting complex regulation of Sqstm1

gene transcription in a tissue-specific manner. In addition, FXR-

mediated induction of p62 may be a potential protective

mechanism of FXR.

Materials and Methods

Animals and Treatment
Animals for Chromatin Immunoprecipitation (ChIP) studies

were treated as previously described [37]. Briefly, 10-week old

FXR knockout (FXR2/2) and wild-type (WT) mice with a

C57BL/6 background were fasted overnight and then given a

one-time treatment of vehicle (PBS with 1%Tween-20 and 1%

methylcellulose) or GW4064 (75 mg/kg) by oral gavage for four

hours before harvesting of their livers or two hours before

harvesting of their ileums for ChIP-Seq analysis. For mRNA

and protein level studies, ten to twelve-week old FXR2/2 and

WT mice were fasted overnight and received a one-time

treatment of GW4064 (150 mg/kg) or vehicle by oral gavage

for either 4 or 16 hours before harvesting of their livers and

ileums for RNA and protein extraction. The VP-FXR

transgenic mice were generated as previously described [38].

Briefly, constitutively active FXR was overexpressed in the liver

and intestine using the tetracycline-inducible transgenic system.

VP-FXR was generated by fusing the VP-16 transactivation

domain from the herpes simplex virus to the 59 end of the FXR

cDNA. FXR2/2 mice were generated as previously described

[34]. All animal protocols were approved by the University of

Kansas Medical Center Animal Care and Use Committee

(protocol number 2010-1947), and the mice were cared for

according to standard guidance. All efforts were made to

minimize suffering.

ChIP-Seq
Chromatin immunoprecipitation (ChIP) followed by massive

parallel sequencing (ChIP-seq) analysis was performed as previ-

ously reported [37]. Briefly, cross-linked sonicated genomic DNA

extracted from ten week-old fasted WT and FXR2/2 male

mouse livers or ileums gavaged with vehicle or GW4064 for 2

hours (ileum) or 4 hours (liver) were immunoprecipitated with

antibody against FXR. Immunoprecipitated DNA fragments were

then prepared for massive parallel sequencing analysis as

previously described [37]. Enriched intervals, referred to as peak

values, were identified when a given genomic region containing

more than one enriched interval overlapping by at least one base

pair appeared more than 20 times. Histograms of FXR binding to

the Sqstm1 gene in liver and ileum were generated by loading

sequencing BAR files into Affymetrix Integrated Genome Browser

(IGB) [39].

ChIP-quantitative PCR (ChIP-qPCR)
ChIP was performed as previously described [37]. Briefly, ChIP

assay was performed using anti-FXR antibody (H-130, Santa

Cruz, CA), and immunoprecipitated DNA was analyzed by

quantitative PCR (qPCR) using SYBR Green chemistry (Fermen-

tas, Glen Burnie, Maryland). QPCR was performed to amplify

FXR binding sites located in the Nr0b2 and Ostb genes, which are

positive control regions for FXR binding, as well as for the novel

FXR binding site in the Sqstm1 gene. A novel FXR binding site

identified by ChIP-seq analysis was located 13.1 kb downstream of

the Sqstm1 transcription start site (TSS). This site was amplified by

ChIP qPCR analysis using primers: Nr0b2 39 binding site F: 59-

CAGTCCACGCCCTCAGCCC-39 and R: 59-GGCAGGAG-

GAGGTCTGAAAGC-39, Ostb F: 59-CCGCAATGGCAGAT-

CATAC-39 and R: 59-GTGAATGACCCCACGAATG-39, and

Sqstm1 F: 59-CACTGCACATGTGTGTTTCTGTGT-39 and R:

59-AGGGTGTGGACAGTGTTGAAGACA-39. ChIP-qPCR re-

sults were normalized to input and expressed as fold over IgG

negative controls.

RNA Isolation and Real-Time qPCR
RNA was isolated using TRI Reagent (Ambion, Applied

Biosystems, Austin, TX) according to the manufacturer’s instruc-

tions, and RNA concentration was determined by spectropho-

tometry. cDNA was generated using standard RT-PCR protocols,

and qPCR was performed using SYBR Green chemistry. The

following primers were used for Real-Time qPCR: Shp F: 59-

CGATCCTCTTCAACCCAGATG-39 and R: 59-AGGGCTC-

CAAGCATTCACACA-39, Ibabp F: 59-GGTCTTCCAGGA-

GACGTGAT-39 and R: 59-ACATTCTTTGCCAATGGTGA-

39, and Sqstm1/p62 F: 5’-AGAATGTGGGGAGAGTGTG-39

and R: 5’-TCGTCTCCTCCTGAGCAGTT-39. Real-time

qPCR results were normalized to 18 s and expressed as fold over

WT vehicle control.

Construction of Plasmids
A 2 kb region of the Sqstm1/p62 gene containing a FXR

response element, which is an inverted repeat separated by one

nucleotide (IR1), was cloned into a PGL4-TK luciferase vector.

This IR1 was located 13.1 kb downstream of the Sqstm1/p62 gene

TSS. The cloned construct was confirmed by DNA sequencing,

and the new plasmid was named PGL4-p62-TK luciferase vector.

This IR1 was mutated in the PGL4-p62-TK vector using a

QuikChange II XL Site-Directed Mutagenesis Kit (Stratagene, La

Jolla, CA) according to the manufacturer’s instructions utilizing

the following primers: F:59-GCAATCCTACGTTGGCCC-

Tissue Specific Induction of p62/Sqstm1 by FXR
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CAAGTTCACTGATGTGGTGTTCAAAGTTGTC-39 and R:

59-GACAACTTTGAACACCACATCAGTGAACTTGGGGC-

CAACGTAGGATTGC-39. These primers generated an IR1

mutant by changing the IR1 sequence 59-CGGTCACTGACCT-

39 to the mutant sequence 59-AGTTCACTGATGT-39. The

mutated base pairs are underlined in the original sequence. The

mutation was confirmed by DNA sequencing, and the mutated

plasmid was named p62-M.

Cell Culture, Transient Transfection, and Luciferase
Reporter Gene Assay

HepG2 cells, purchased from the American Type Culture

Collection (Manassas, VA), were cultured in DMEM supple-

mented with 10% fetal bovine serum (Omega Scientific,

Tarzana, CA) and 1% penicillin/streptomycin in a 5% CO2

humidified atmosphere at 37uC. Cells were plated at a density

of 5,000 cells per well in 200 mL medium in a 96-well plate and

incubated overnight. Transient transfection was performed as

previously described [40]. Briefly, cells were transfected with

0.2 mg plasmid per well containing either PGL4-p62-TK or

p62-M along with human FXR, human RXRa and PCMV-

renilla luciferase vector (Promega, Madison, WI) using Turbo-

Fect in vitro transfection reagent (Fermentas, Glen Burnie,

Maryland) according to the manufacturer’s instructions. The

previously described PGL4-Shp-TK plasmid [40] was used as a

positive control for FXR activation. Six hours after transfection,

medium was changed and cells were treated with 1 mM

GW4064 or 0.1% DMSO as a control. Thirty six to forty

eight hours later, firefly and renilla luciferase activities were

measured using a Dual-Glo Luciferase Assay kit (Promega,

Madison, WI). Firefly luciferase activity of each well was

normalized as a ratio to that of renilla luciferase and expressed

as fold over PGL4-TK empty vector control.

Western Blot
Cytoplasmic extracts from FXR 2/2 and WT mouse liver and

ileum were isolated using a NE-PER kit (Thermo Scientific,

Fremont, CA) according to the manufacturer’s instructions.

Protein concentration was measured using BCA assay (Thermo

Scientific, Fremont, CA). Western Blot was performed using 20 mg

of protein separated on a 10% SDS/PAGE gel and transferred to

a 0.45 mm PVDF membrane (Millipore, Billerica, MA). The

membrane was blocked with 5% non-fat milk in TBS before

adding p62 antibody (1:1000, Abnova, Walnut, CA). A chloro-

quine-treated HeLa cell lysate sample was used as a positive

control for p62 labeling (molecular weight 62 kDa), and b-Actin

(molecular weight 42 kDa) was used as a loading control. Band

density was determined using ImageJ software.

Statistics
A student’s t-test was used to determine statistical significance

for samples that demonstrated equal variance. A Mann-Whitney

Rank Sum test was used to determine statistical significance for

samples that did not demonstrate equal variance. A p-value of

Figure 1. ChIP-sequencing results for FXR binding to Sqstm1. 10-week old WT mice were fasted overnight and then given a one-time
treatment of vehicle or GW4064 (75 mg/kg) for four hours (liver) or two hours (ileum). Cross-linked sonicated genomic DNA extracted from livers and
ileums were immunoprecipitated with antibody against FXR. ChIP-seq analysis revealed that FXR binds to two locations within the 39 end of the
Sqstm1 gene in the liver and ileum as shown by two binding peaks located 13.1 kb and 15.8 kb downstream from the TSS of Sqstm1 on chromosome
11. These peaks represent binding abundance. The highest binding peak in the intestine is represented by a peak value of 815, and the highest
binding peak in the liver is represented by a peak value of 755. The 13.1 kb site contains a classical IR1, and the 15.8 kb site does not. The location
within chromosome 11 is indicated for the IR1 at the 13.1 kb binding site along with the IR1 sequence. N = 3–4 mouse livers or ileums per group.
doi:10.1371/journal.pone.0043961.g001
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,0.05 was considered statistically significant. A p-value of ,0.05

is indicated by * and a p-value of ,0.01 is indicated by **.

Results

FXR Binding to the Sqstm1 Gene in Mouse Liver and
Ileum

Binding of FXR to two regions at the 39 end of the Sqstm1

gene in the liver and ileum was discovered by our genome-wide

ChIP-seq analysis [37]. These two FXR binding sites were

located 13.1 and 15.8 kb downstream of the Sqstm1 TSS on

chromosome 11. Abundance of FXR binding to novel and

known target genes in the liver and ileum in ChIP-seq results

were interpreted by a binding peak value. The peak value of

FXR binding to the Sqstm1 gene at the 13.1 kb site was 755 in

liver and 815 in ileum (Figure 1). The peak value of FXR

binding to the Sqstm1 gene at the 15.8 kb site was 330 in liver

and 500 in ileum (Figure 1). Binding of FXR to the 13.1 kb site

of the Sqstm1 gene represented one of the highest peak values

detected by ChIP-seq analysis, and it is relatively high

compared to FXR binding to other known FXR target genes.

For example, the peak value of FXR binding to the Nr0b2 gene

encoding small heterodimer partner (Shp) was 498, and the

peak value of FXR binding to the Ostb gene encoding organic

solute transporter b (Ostb) was 572 [37]. Furthermore, sequence

analysis of the 13.1 kb FXR binding site within the Sqstm1 gene

by NUBIScan [41] revealed the presence of a classical IR1. The

chromosomal location of this IR1 and its sequence are shown in

Figure 1. The 15.8 kb binding site did not have an IR1 present

according to NUBIScan [41]. Therefore, the 13.1 kb site was

further analyzed as a functional FXR binding site.

The binding results from ChIP-seq were confirmed by ChIP-

qPCR as shown in Figure 2. Vehicle-treated WT mice showed

binding of FXR to Sqstm1/p62 in both liver (126-fold) and

ileum (18-fold) when compared to IgG controls. This binding

was reduced to IgG control levels in liver and ileum for vehicle-

treated FXR 2/2 mice (Figure 2A). Ostb is a known FXR

target gene and was used as a positive control for FXR binding

in both liver and ileum with a 36-fold and a 32-fold increase in

binding in the liver and ileum, respectively, compared to IgG

controls (Figure 2A). This binding was also reduced to IgG

control levels in liver and ileum of vehicle-control treated FXR

2/2 mice (Figure 2A). Furthermore, treatment of WT mice

with a FXR synthetic agonist, GW4064, increased FXR binding

to the Sqstm1 gene in both mouse liver and ileum (Figure 2B).

In liver, there was an increase in FXR binding to the Sqstm1/

Figure 2. ChIP-qPCR results to confirm FXR binding to Sqstm1/p62 in liver and ileum. 10 to 12-week old FXR2/2 and WT mice were fasted
overnight and then given a one-time treatment of vehicle or GW4064 (75 mg/kg) for four hours (liver) or two hours (ileum). ChIP assay was
performed using an antibody against FXR, and immunoprecipitated DNA was analyzed by qPCR. A: Vehicle-treated WT mice showed binding of FXR
to Sqstm1/p62 in both liver (126-fold) and ileum (18-fold) when compared to IgG controls. This binding was reduced to IgG control levels in liver and
ileum for vehicle-treated FXR 2/2 mice. Ostb was used as a positive control for FXR binding in both liver and ileum. In the liver, there was a 36-fold
increase in binding to Ostb compared to IgG controls, and there was a 32-fold increase for binding to Ostb in the ileum compared to IgG controls. This
binding was reduced to IgG control levels in liver and ileum of vehicle-control treated FXR 2/2 mice (*indicates p,0.05, N = 3 WT and 4 FXR2/2
mouse livers or ileums). B: Treatment of WT mice with the FXR agonist GW4064 increased FXR binding to the Sqstm1/p62 gene in both mouse liver
and ileum. In liver, there was a 40-fold increase in FXR binding to the Sqstm1/p62 gene. The FXR target gene Nr0b2/Shp was used as a positive control
for liver and showed a 2.5-fold increase after GW4064 treatment. In ileum, there was a 10-fold increase in FXR binding to Sqstm1/p62 with GW4064
treatment. The FXR target gene Ostb was used as a positive control for ileum and showed a 4-fold increase after GW4064 treatment (*indicates
p,0.05, **indicates p,0.01, N = 4 mouse livers or ileums per group).
doi:10.1371/journal.pone.0043961.g002
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p62 gene (40-fold, p,0.05) and to the Nr0b2/Shp gene (2.5

fold, p,0.01) with GW4064 treatment for 4 hours. In ileum, 2-

hour GW4064 treatment resulted in an increase in FXR

binding to both Sqstm1/p62 and Ostb genes (10-fold and 4-fold,

respectively).

Activation of FXR Enhances Transcriptional Activation of
Sqstm1 as Revealed by the Luciferase Reporter Gene
Assay

A luciferase reporter assay was performed to determine if FXR

binding to the Sqstm1/p62 gene was functional in enhancing

transcription. Activation of FXR by GW4064 increased the

luciferase activity of p62 3 to 7 fold (p,0.01, Figures 3A and 3B)

when driven by an IR1 FXR response element (59-CGGTCACT-

GACCT-39) found 13.1 kb downstream of the Sqstm1/p62 gene

TSS compared to PGL4-TK vector control (Figure 3A). In

addition, mutation of this FXR response element (p62-M, 59-

AGTTCACTGATGT-39) reduced luciferase activity to levels

similar to the PGL4-TK vector control (Figure 3B). As a positive

control, activation of FXR by GW4064 significantly enhanced

luciferase activity approximately 3 to 4 fold (p,0.01) when driven

by a FXR response element identified in the Nr0b2/Shp gene

regulatory region (Figures 3A and 3B).

Activation of FXR Induces mRNA Expression of Sqstm1 in
Ileum but not in Liver

Binding of FXR to the Sqstm1 gene does not guarantee

activation of the gene’s transcription because many factors are

involved in gene transcriptional activation. Therefore, Sqstm1/p62

mRNA expression levels were determined following FXR activa-

tion using Nr0b2 or Fabp6 as positive controls. Fabp6 is the gene

encoding for ileum bile acid binding protein (Ibabp). Shp is a

classical target gene of FXR in the liver, and Ibabp is a direct

target gene of FXR in the ileum. A significant GW4064-mediated

induction of Shp mRNA was observed in both the 4- (2.8-fold) and

16-hour (2.4-fold) treatment groups for WT mouse livers (P,0.01),

as shown in Figure 4A. However, no induction of Sqstm1/p62

mRNA was seen for either time point in WT mouse livers

(Figure 4A).

In contrast to results seen in the liver, a GW4064-mediated

induction of both Ibabp and Sqstm1/p62 mRNA was observed in

the 4- and 16-hour GW4064 treatment groups for WT mouse

ileum when compared to vehicle controls (Figure 4B). Treatment

with GW4064 resulted in a significant 2.5 and 6.9-fold induction

of Ibabp (p,0.05) and a 1.6 and 1.7-fold induction in Sqstm1/p62

mRNA in the 4 and 16-hour treatment groups in WT mouse

ileum, respectively. Only the 4-hour GW4064 treatment group

induction of Sqstm1/p62 mRNA was statistically significant

(p,0.05).

We then used FXR2/2 mice to confirm that the GW4064-

mediated induction of Sqstm1 gene expression was due to FXR

activation. As shown in Figure 4A, a significant decrease in

baseline Shp expression levels in liver was seen in both vehicle-

and GW4064-treated FXR 2/2 mice for the 4- and 16-hour

treatment groups when compared to WT vehicle controls

(p,0.01). However, FXR deficiency did not seem to affect

Sqstm1/p62 baseline expression in mouse livers. For mouse ileums,

a significant decrease in baseline Ibabp expression was seen in

both vehicle- and GW4064-treated FXR 2/2 mice in the 4- and

16-hour treatment groups when compared to WT vehicle controls

(p,0.01, Figure 4B). In addition, FXR 2/2 mice showed a

baseline decrease in Sqstm1/p62 expression in ileum in both 4- and

16-hour GW4064 treatment groups, but this finding was only

statistically significant for the 16-hour treatment group (p,0.05,

Figure 4B).

Protein Expression of p62 in Mouse Liver and Ileum
It is known that p62 is expressed in intestinal epithelia [42].

After we observed induction of Sqstm1/p62 mRNA by FXR

activation in ileum, we determined whether increased mRNA

levels translated into protein induction. As shown in Figure 5,

GW4064 treatment significantly increased p62 protein expression

2-fold (p,0.05) over vehicle controls in mouse ileum. Further-

more, the GW4064-mediated induction of p62 protein expression

was abolished in FXR2/2 mouse ileums. However, there was no

effect of GW4064 treatment on p62 protein expression in mouse

liver.

mRNA Expression of Sqstm1 in FXR Transgenic Mouse
Liver and Ileum

We used VP-FXR transgenic mice to determine whether

genetically constitutive activation of FXR could also regulate the

expression of Sqstm1/p62. As shown in Figure 6, Sqstm1/p62

mRNA expression was significantly increased in both liver and

ileum from VP-FXR transgenic mice when compared to WT

controls (p,0.05). Shp and Ibabp were used as positive controls

and were also significantly increased in VP-FXR transgenic mouse

Figure 3. Activation of FXR enhanced Sqstm1/p62 transcrip-
tional activation as revealed by luciferase assay. HepG2 cells
were transfected with plasmid DNA containing either the PGL4-Shp-TK
plasmid as a positive control or the plasmid DNA containing the 2 kb
fragment of Sqstm1/p62 with the FXR IR1 (A) or the mutant IR1 (p62-M)
(B). These plasmids were transfected along with human FXR, human
RXRa and PCMV-renilla luciferase vector before the cells were treated
with 1 mM GW4064 or 0.1% DMSO control for 36 to 48 hours. Firefly
luciferase activity of each well was normalized as a ratio to that of renilla
luciferase and expressed as fold over PGL4-TK empty vector control. The
FXR target gene Shp was used as a positive control (**indicates p,0.01,
N = 6 wells per treatment).
doi:10.1371/journal.pone.0043961.g003
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liver and ileum, respectively, when compared to WT mice

(p,0.05).

Discussion

p62 is the protein encoded by the Sqstm1 gene and has

important cellular functions. In addition to the well-known role of

p62 in facilitating selective autophagy, p62 also activates NF- kB

[5–7], which is well known for its regulation of genes needed to

promote cell survival and inflammation. In addition, p62 activates

apoptosis to promote cell death [4] and activates the Nrf2 pathway

to respond to oxidative stress [9–11].

FXR is a nuclear receptor suspected to have a role in the

regulation of homeostasis in both liver and intestine. In the current

study, we revealed that Sqstm1 is a bona fide FXR target gene by

showing a novel FXR binding site located within the Sqstm1 gene

in mouse liver and ileum using ChIP-seq analysis (Figure 1). In

addition, treatment with the synthetic ligand of FXR, GW4064,

increased binding of FXR to this novel target gene in both liver

and ileum, and this binding was significantly reduced in FXR2/2

mice (Figure 2). Furthermore, binding of FXR to the Sqstm1 gene

regulatory region led to increased transcriptional activation as

confirmed by luciferase reporter assay, and this transcriptional

activation was abolished when the IR1 FXR response element was

mutated (Figure 3). However, it appears that induction of Sqstm1 is

tissue-specific because mice treated with GW4064 to activate FXR

only had an induced expression of Sqstm1 in the ileum but not in

the liver (Figure 4). The results from this study provide a potential

mechanism by which FXR regulates the inflammatory response

and/or promotes cellular homeostasis by inducing transcription of

p62.

The tissue-specific induction of Sqstm1/p62 mRNA, despite the

fact that FXR binds to a gene regulatory region of Sqstm1 in both

liver and ileum, is an intriguing observation. This suggests that p62

is regulated by multiple transcription factors. For example,

another known transcriptional regulator of p62 is Nrf2, which is

important for regulating the oxidative stress response [9].

Therefore, the presence and/or balance of these various

transcription factors, and possible inhibitory factors, that regulate

p62 expression may determine whether FXR binding will be

translated into transcriptional activation of the Sqstm1 gene. In

addition, the fact that Sqstm1/p62 expression is not induced in the

liver with FXR activation could be due to higher basal expression

of Sqstm1/p62 in the liver than in the ileum.

Even though induction of Sqstm1 mRNA expression and p62

protein expression was only seen in mouse ileum and not in mouse

liver after FXR activation (Figures 4 and 5), there was an increase

in Sqstm1 mRNA expression in both the liver and ileum of the VP-

FXR transgenic mice (Figure 6). This increase in Sqstm1 mRNA

Figure 4. Relative mRNA expression levels of Sqstm1/p62 determined by quantitative PCR in WT and FXR2/2 mouse liver (A) and
ileum (B) after treatment with GW4064 for 4 or 16 hours. Ten to twelve week-old WT and FXR2/2 mice were fasted overnight and received a
one-time treatment of GW4064 (150 mg/kg) or vehicle for either 4 or 16 hours before removal of their livers and ileums for RNA isolation. Sqstm1/p62
mRNA expression was induced in WT ileum upon FXR activation with GW4064 but not in liver. In addition, basal expression levels of Sqstm1/p62
decreased in FXR2/2 mice in ileum but not in liver. FXR target genes Shp and Ibabp were used as positive controls for liver and ileum, respectively.
Expression of Shp and Ibabp was induced by GW4064 treatment in WT mice, and basal expression of these target genes decreased in FXR2/2 mice
as expected. Real-time qPCR results were normalized to 18 s and expressed as fold over WT vehicle control (*indicates p,0.05 and **indicates
p,0.01, N = 5 for WT and N = 4 for FXR2/2 mouse livers or ileums).
doi:10.1371/journal.pone.0043961.g004
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expression in the liver of VP-FXR transgenic mice could be due to

the presence of constitutively active FXR, which is not present in

WT mice treated with GW4064 to activate FXR. Assuming the

inability of FXR activation to induce Sqstm1 expression in the liver

is due to the presence of a co-repressor or inhibitory transcription

factor, then constitutively active FXR in the transgenic mice might

be strong enough to remove or override a competing transcription

factor or co-repressor bound to the Sqstm1 promoter, and

therefore, promotes transcription of the gene.

The specific IR1 sequence found in mouse is not conserved in

human. However, there are several IR1 sites located within this

downstream region on Chromosome 5 in human according to

analysis by NUBIScan [41]. FXR may regulate Sqstm1 gene

expression in human by binding to one of these IR1 response

elements. Furthermore, the ileum-specific regulation of Sqstm1/

p62 by FXR may have an implication in intestinal diseases. FXR

deficiency has been shown to cause intestinal injury and disease

such as inflammation [24,26,33] and tumorigenesis [30–32]. In

addition, FXR has been shown to play a role in maintaining

intestinal epithelial cell proliferation to protect against tumorigen-

esis [31,32]. Therefore, it is possible that FXR regulates the

expression of the Sqstm1 gene in the ileum in order to mediate

selective autophagy or signal transduction to maintain cellular

homeostasis, regulate the inflammatory response, and/or conduct

tissue repair. If FXR is indeed regulating Sqstm1/p62 expression

for these processes, then tissue-specific drug development of a

synthetic activator of FXR in the intestine could be beneficial for

treating or preventing intestinal diseases. This tissue-specific role of

FXR in Sqstm1 gene regulation is a novel finding and subsequent

studies will further investigate the role of FXR in the regulation of

Sqstm1/p62.

In conclusion, it is known that both p62 and FXR have

beneficial effects in maintaining cellular homeostasis and prevent-

ing disease. We have shown that FXR transcriptionally regulates

p62 expression in the intestine. Understanding the role of FXR’s

regulation of p62 may further advance our understanding of p62

function, as well as the underlying molecular mechanism of FXR

targeted pathways.
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Figure 5. Western blot for p62 in mouse liver and ileum (A)
with band density normalized to b-actin (B). WT and FXR2/2
mice were treated with GW4064 (150 mg/kg) or vehicle for 16 hours
before removal of their livers and ileums. Cytosolic extracts were used
to determine p62 protein expression by western blot (A), and band
density values were normalized to b-Actin (B). Protein expression of p62
increased in ileum upon FXR activation, but activation of FXR had no
effect on p62 protein expression in the liver. The samples used for the
blot shown are pooled liver and ileum samples from three mice. The
error bars in the graph indicate results from the individual mouse livers
and ileums run on separate blots, which are not shown. Band density
was determined using ImageJ software (*indicates p,0.05, N = 3 mouse
livers or ileums, + represents chloroquine treatment, which is a positive
control for p62 expression).
doi:10.1371/journal.pone.0043961.g005

Figure 6. p62 mRNA expression in VP-FXR transgenic mouse
liver (A) and ileum (B). Expression of Sqstm1/p62 mRNA was
determined in VP-FXR transgenic mouse livers and ileums. Ibabp and
Shp were used as positive controls for ileum and liver, respectively.
Expression of Sqstm1/p62 mRNA was induced in both VP-FXR
transgenic mouse liver and ileum compared to WT controls. Expression
of positive control Shp and Ibabp mRNA was induced in transgenic
mouse liver and ileum, respectively, when compared to WT controls
(*indicates p,0.05, **indicates p,0.01, N = 5 mouse livers or ileums).
doi:10.1371/journal.pone.0043961.g006
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