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Abstract

Neutrophil proteases, proteinase-3 (PR3) and elastase play key roles in glomerular endothelial cell (GEC) injury during
glomerulonephritis. Endothelial protease-activated receptors (PARs) are potential serine protease targets in glomerulone-
phritis. We investigated whether PAR1/2 are required for alterations in GEC phenotype that are mediated by PR3 or elastase
during active glomerulonephritis. Endothelial PARs were assessed by flow cytometry. Thrombin, trypsin and agonist
peptides for PAR1 and PAR2, TFLLR-NH, and SLIGKV-NH,, respectively, were used to assess alterations in PAR activation
induced by PR3 or elastase. Endothelial von Willebrand Factor (VWF)release and calcium signaling were used as PAR
activation markers. Both PR3 and elastase induced endothelial vVWF release, with elastase inducing the highest response.
PAR1 peptide induced GEC vVWF release to the same extent as PR3. However, knockdown of PARs by small interfering RNA
showed that neither PAR1 nor PAR2 activation caused PR3 or elastase-mediated vVWF release. Both proteases interacted with
and disarmed surface GEC PAR1, but there was no detectable interaction with cellular PAR2. Neither protease induced a
calcium response in GEC. Therefore, PAR signaling and serine protease-induced alterations in endothelial function modulate
glomerular inflammation via parallel but independent pathways.
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Introduction or myeloperoxidase. Binding of target autoantigens at the
neutrophil surface leads to enhanced neutrophil-endothelial
adhesion [9] and protease release [4]. In-vitro treatment of
endothelial cells with serine proteases (1-5 pg/ml) has been shown
release of the serine proteases, PR3 and clastase, and by the to induce a behavioral shift towards to a more pro-adhesive and
formation of serine protease-containing neutrophil extracellular proinflammatory phenotype within endothelial cells and HUVEC
traps (NE'TS) [1]. Clinical and experimental findings also indicate [10]. Taken together, these findings suggest a direct link between

a key role for these released serine proteases during inflammation. serine protease release and renal disease, regulated at the
Elevated plasma levels of PR3 and elastase are detected during the

active inflammatory phase of several chronic diseases [2,3]. Within
the kidney, PR3 and elastase containing NETs have been detected
in human glomeruli, affected by inflammatory processes [4] with
inefficient NET dismantling implicated in renal damage [5]. At
the cellular level, the release of serine proteases potentially induces
injury and/or modulates cell responses via cleavage of soluble,
cell-surface [6] or intracellular proteins [7]. Indeed, infusion of
neutrophil serine proteases, such as elastase, through renal arteries
leads to localization of the enzyme on the glomerular capillaries
and transient proteinuria [8]. Both PR3 and elastase have been
specifically implicated in the glomerular endothelial cell (GEC)
activation/injury that occurs during vasculitic glomerulonephritis.
In this disorder, autoantibodies develop that target neutrophil PR3

Human neutrophils engulf, digest and promote extracellular
killing of invading microorganisms. This function is aided by the

endothelial level.

The purpose of this study was to evaluate the role of protease
activated receptors (PARs) in serine protease mediated responses,
including release of endothelial von Willebrand factor (vVWEF), in
the context of glomerular inflammation. PARs are seven-trans-
membrane G-protein coupled signaling proteins that are activated
by proteolytic cleavage, producing a tethered binding ligand [11].
The original search for PAR1 and PAR?2 receptors was driven by
investigating the cellular actions of thrombin [11,12] and the
PAR1-independent action of trypsin respectively [13]. Thrombin
and trypsin, via PAR activation, have a variety of cellular effects
[14,15], including endothelial stimulation with up-regulated tissue
factor expression and Weibel Palade body mobilization resulting
in surface P-selectin expression and vWF release [16-18]. PAR
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signaling induces this Weibel Palade body exocytosis via a calcium
and cdc42-dependent mechanism [19]. PAR1 protein is expressed
by renal tissue [20] while elevated PAR2 has been detected in
inflamed renal tissue [21]. PAR2 activation can also induce
human proximal tubular cell [22] and mesangial cell proliferation
[23], with the latter implicated in the development of mesangio-
proliferative glomerulonephritis [24]. In-vivo models of crescentic
glomerulonephritis indicate that both PAR1 (—/—) and PAR2
(—/—) deficient mice have reduced crescent formation and serum
creatinine concentrations [25,26].

PARI signaling in the context of pro-inflammatory role of
thrombin-mediated effects has been extensively studied. However,
recent studies have demonstrated important roles in resolution
such that anti-inflammatory, antithrombotic and renoprotective
activity results from an association of activated protein C (APC), its
endothelial-bound receptor (EPCR) and surface PAR1 [27-29]).
PR3 has been shown to inactivate, endothelial-bound EPCR [30],
but the exact nature of any direct interaction of PR3 or elastase
with surface PAR1 on glomerular endothelial cells has not been
clearly defined. Thus, this study investigated the influence of PR3
and elastase on proteolytic cleavage of glomerular endothelial
PAR-mediated vVWF release.

Materials and Methods

Ethics Statement

The protocol used for this study was approved by South
Birmingham Research Ethics Committee and Walsall Local
Research Ethics Committee.

Materials

Specific PAR agonist peptides for (i) PAR1 (TFLLR-NHy) or (i)
PAR2 (SLIGKV-NH,) were supplied by Peptide International.
The serine proteases used were PR3, elastase, thrombin and
trypsin. PR3 was used at concentrations between 1-5 pg/ml
(RMM =29 kd, 34.5-172.4 nM), Athens Research and Technol-
ogy Cat. no. 16-14-161820. The specific activity of PR3 was
16 umol of p-nitrophenol/mg of PR3/min at room temperature
using t-butyloxy carbonyl p-nitrophenylester (Boc-Ala-OPhNOy)
as a substrate. Human neutrophil elastase was also used at
concentrations between 1-5 pg/ml (RMM=29.5 kd, 33.9-
169.5 nM), Calbiochem Cat. no. 324681. The specific activity
was 20 units/mg of elastase, where one unit is defined as the
amount of enzyme that will hydrolyze 1 umol of MeO-Suc-Ala-
Ala-Pro-Val-pNA (Cat. no. 454454) per min at 25°C, pH 8. The
same concentration range of PR3 and elastase stated above was
used in a parallel study [10]. Thrombin from human plasma was
used at =10 or 100 nM (RMM = 37.4 kd, 10 units/ml, therefore
1 unit/ml =10 nM), Sigma Cat. no. T6884. Thrombin concen-
tration was determined using platelet P-Selectin expression and
EC vWF release. The specific activity for thrombin was
2,000 NIH units/mg of protein. Trypsin was used at 50 nM
(RMM = 23.8 kd, ~23.8 units/ml, therefore 1 unit/ml
~2.1 nM), Sigma Cat. no. T0303. 50 nM produced a rapid,
detectable, reproducible and sub-maximal response and was
therefore chosen for subsequent experiments. The specific activity
of trypsin-1G Type IX-S was between 13,000-20,000 BAEE
units/mg of protein. One BAEE unit will produce a AAgss of
0.001 per min at pH 7.6 at 25°C using BAEE as substrate.

Antibodies used were PE-labeled SPAN12 (Cat. no. IM2583)
and WEDE15 (Cat. no. IM2584) monoclonal antibodies (Im-
munotech, Beckman Coulter ‘CoulterFlow’), anti-PAR2 antibody,
SAMI11 (Santa Cruz) and rabbit anti-human vWF polyclonal
antibodies (DAKO). Stealth"™ RNAi used were PAR1 (F2R code:
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HSS103468) and/or PAR2 (F2RL1 code: HSS103471) or
negative control non-silencing Stealth™ RNAi (siRNA control).
All siRNA reagents were supplied by Invitrogen.

Cells

Umbilical cords were obtained with informed consent from
Birmingham Women’s Hospital. Human umbilical vein endothe-
lial cells (HUVEC) were then isolated and cultured as described
[31]. Conditionally immortalized human glomerular endothelial
cells (GEC) were maintained in supplemented endothelial basal
medium-2 (Lonza) (a gift from Dr S. Satchell, Bristol, UK) [32].
Human embryonic kidney cells, HEK-293 were an established cell
line [33]. These cells were maintained in 10% FBS (Sigma), 2 mM
glutamine and 100 U/ml penicillin and 100 pg/ml streptomycin
(Invitrogen). HEK-293 were used because they constitutively
express both PAR2 and PARI and produce a PAR agonist-
mediated calcium signal, then rapidly (<10 min) replenish their
intracellular calcium stores [34].

Real Time RT-PCR

RNA was isolated from cells using a Qiagen RNeasy Mini Kit
50 (Qiagen) and real-time RT-PCR was performed using a
QuantiTect probe RT-PCR kit according to the manufacturer’s
recommendations (Qiagen). Briefly, RNA (10 ng) was added to:
QuantiTectTM probe and reverse transcriptase master-mixes; -
actin  VIC-labeled primers/probes (Applied Biosystems); with
either PAR1 (Assay ID: Hs00169258_ml) or PAR2 FAM labeled
primers/probes (Assay ID: Hs00608346_ml Applied Biosystems).
Samples were amplified for 35 cycles and analyzed using a 7500
Real-Time PCR machine (Applied Biosystems). The relative
expression units (REU) were determined using B-actin as a control.
Changes in mRNA expression in treated cells relative to their
controls (Relative quantity, RQ) were also determined.

PAR1 or PAR2 Knockdown by siRNA Treatment

Confluent EC were incubated for 4 hr in: (i) Optimem medium
alone or Optimem medium containing (i) 0.2% Lipofectamine
RNAiMax (LF control) plus 20 nM of Stealth™ RNAi for
silencing (iii) PARI1 and/or (iv) PAR2 or (v) non-silencing
Stealth™ RNAi. After siRNA treatment, the medium was
replenished with an equal volume of supplemented Medium 199
without antibiotics. Cells were then incubated in this medium for
48-72 hr before use in subsequent assays.

Endothelial Cell vWF Expression

Isolated or cultured EC were shown to express von Willebrand
Factor (VWF) [35]. VWF release was assessed by sandwich ELISA
using anti-vWF antibodies for both capture (unconjugated) and
detection (HP-conjugated).

Calcium Measurement by Fluorescent Microscopy

GEC were seeded into gelatin-coated 8-well borosilicate
chambered coverglass wells (Thermo Fisher Scientific) at 4x10*
GEC/well. Confluent cells were labeled with 40 uM fura-2-AM
ester for 40 min and then washed with HBSS with 1% HEPES
buffer (HBH). Pairs of fluorescence images at two excitation
wavelengths (high calcium-380 nm) and (no calcium-340 nm)
produced a fluorescence ratio image as a direct measure of
cytoplasmic calcium changes. Pairs of images were recorded at 3 s
intervals for 60 s before the addition of a stimulus to produce a
baseline value, then recorded every 1-3 s for a further 6 min.
Mean fluorescence ratios for 30 adherent cells per treatment were
calculated from the 340/380 nm ratio after outlining of each cell.
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Peak rise data for each cell were calculated by subtracting a
baseline value for each ratio. Mean peak rise values for all 30 cells
were calculated to produce peak rise per condition. The calcium
concentration (nM) was then determined from the peak rise values.
Fluorescent images were captured and analyzed using a fluores-
cent inverted microscope (Leica) and SimplePCI software
(Hamamatsu Corp.).

Calcium Measurement by Spectrofluorimetry

Adherent EC were incubated for 2 hr in Medium 199+0.15%
BSA alone or 5 ug/ml of PR3 or elastase. Cells were loaded with
1 uM Indo-1 AM ester (Invitrogen) for 40 min and then harvested
and resuspended at 1x10° cells/ml in Ca?* Hanks’ balanced salt
solution (HBSS Sigma) +25 mM HEPES buffer (Sigma). The ratio
of the fluorescent intensity at the two emission wavelengths
(495 nm (Ca®" free) and 405 nm (Ca®") was observed for 120 s
producing a stable baseline, and then a stimulus was added
through a stopper in the top of the fluorimeter. After addition of
the stimulus, the trace was observed until a stable plateau response
was achieved. The ratio of fluorescence intensity for maximum
and minimum calcium response was determined using ionomycin
(5.6 uM) and EGTA (3 mM), respectively, allowing the generation
of individual calibration files for cach experiment to calculate Ca**
mobilization as previously described [36]. The change in
intracellular calcium levels induced by a particular stimulus was
determined by subtracting the baseline value (mean calcium value
over first 110 s) from all calcium values. Data were recorded using
a luminescence spectrofluorimeter and FL. Winlab software (Perkin
Elmer). Note: Calcium data were expressed as either calcium
concentration in nM in cells in suspension or as fluorescence ratio
(340/380 nm) peak rise data or as a percentage of the fluorescence
ratio produced by a positive control.

Flow Cytometry

Cells were harvested with cell dissociation buffer (Sigma) and
resuspended at 1x10° cells in PBS with 5% FBS. Surface PAR1
protein expression was assessed using PE-labeled SPAN12 and
WEDEI15 mouse monoclonal antibodies with an appropriate PE-
labeled isotype control. The SPANI2 monoclonal antibody
recognized amino acid residues 35NATLDPRy;/45SFLLRg,
spanning the PARI1 thrombin cleavage site [37]. SPANI12
therefore detected only uncleaved PARI1 receptors. WEDELS
monoclonal antibody recognized the site 5 KYEPFWE-
DEEKNESg, where thrombin binds to PAR1 [38]. Reduced
WEDE binding indicates removal of either (i) the thrombin
binding site or (ii) the entire receptor from the cell surface.

PAR2 protein expression was determined by using a Fixation/
Permeabilization buffer (eBioscience), followed by (i) SAMI1I1, a
mouse anti-PAR2  monoclonal antibody, raised against
379LIGKVDGTSHVTG;, or (i) an isotype control antibody,
diluted in a permeabilization buffer (eBioscience). 10,000 events
were acquired using a BD FACS Calibur. Data were analyzed
using Cell Quest software (BD biosciences).

Detection of PAR1 Internalization Using Flow Cytometry

Adherent HUVEC were pre-incubated in Medium 199 with
0.15% BSA for 30 min with 0.02%v/v DMSO (vehicle) or with an
internalization inhibitor: Dynasore (50 pM, Sigma). http://www.
ncbi.nlm.nih.gov/pubmed/16740485Dynasore inhibits endocyto-
sis by acting on a small GTPase called dynamin, which normally
releases endocytic vesicles from the cell membrane [39].
Internalization was also inhibited by maintaining cells at 4°C.
HUVEC were then incubated in the presence of Dynasore (37°C)
or on ice with 5 pg/ml of either PR3 (172 nM) or elastase
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(169.5 nM) for 2 hr. Thrombin (10 U/ml) induced PARI
internalization was used as a positive control. The extent to which
PR3 and elastase removed surface PAR1 by internalization was
detected by WEDE antibody binding using flow cytometry (see
above), under these inhibitory conditions.

Statistical Analysis

Graphs were produced and statistical analysis performed using
GraphPad Prism software. Paired T-tests were used to compare
two matched variables. Differences among groups were analyzed
using one-way analysis of variance, followed by Dunnett post tests
and, where appropriate, two-way analysis of variance was also
used. A probability of 0.05 or less was considered significant. Data
were expressed as means * standard error of the mean for at least
three independent experiments.

Results

Endothelial vWF Release Induced by PR3, Elastase or
Specific PAR-ap’s

Using endothelial vWF release from viable cells as a read-out,
we determined whether the cleavage of PAR by serine proteases
directly activated GEC. Both PR3 (1 pg/ml) and the PARI
agonist peptide (PAR1ap; TFLLR-NHy; 100 uM), induced vWF
release that was more than double the release observed with
controls, (n =4; paired t-tests p=0.0073 for PR3 and p =0.0338
for PAR1ap (Fig. 1A)). PAR2 agonist peptide (PAR2ap; SLIGKV-
NHy; 100 uM) induced vWF but this was not statistically
significant.

Despite the equivalent GEC responses to PAR1ap and PR3 as
shown in Fig. 1A, siRNA knock-down of PARI, PAR2 or both
PAR1 and PAR2 did not alter either PR3-or elastase-induced
vWF release (Fig. 1B). There was no detectable effect of siRINA
treatment on endothelial monolayer integrity (Fig. SIA). Success-
ful PAR1 and PAR2 knockdown was confirmed at the transcrip-
tional levels by RT-PCR (Fig. S1B) and translational levels by flow
cytometry (Fig. S1C for PAR1 and Fig. SID for PAR2). PAR
knockdown was also confirmed by loss of PAR agonist peptide
activity (Fig. S1E). PAR-ap-induced vWT release was also reduced
after PAR knockdown (data not shown). Elastase-and PR3-
induced vWF release was abolished in the presence of the serine
protease inhibitor, alpha-1 anti-trypsin (Fig. S2) indicating that
serine protease induced VWY is solely dependent on proteolytic
activity. These data indicate that both PAR agonists and leukocyte
proteases induced vWF release, but via independent mechanisms.

PAR1 Cleavage from the Endothelial Surface by PR3 or
Elastase

After detecting PR3-or elastase-mediated endothelial vWF
release which was independent of PARI (and PAR2) signaling,
we investigated whether these proteases were (as predicted) directly
interacting with glomerular endothelial PAR1. Cleavage of PAR1
by PR3 and elastase on the surface of GEC was assessed by flow
cytometry. Elastase (tested at 1-5 pg/ml) directly interacted with
and cleaved GEC PARI resulting in a loss of SPAN antibody
binding (the thrombin cleavage site), and also a loss of downstream
WEDE antibody binding (Fig. 2A and 2B). This reached
significance at 2.5 pg/ml (n = 3, one-way ANOVA with Dunnett’s
post test p<0.05 for cleavage and p<<0.001 for total surface
expression). GEC were also sensitive to cleavage by PR3 (tested at
1-5 pg/ml) causing a predominantly ‘thrombin-like’ PARI
cleavage with loss of SPAN binding that was significant at 5 pg/
ml (n =3, one-way ANOVA, p=0.0012 with Dunnett’s post test
p<<0.001 for cleavage 5 pg/ml vs. control; Iigs. 2A and 2B). Using
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Figure 1. PR3 and elastase induce vVWF release via a PAR-independent mechanism. vVWF release from untreated GEC in medium alone and
endothelial cells after exposure for 2 hr to 100 uM PAR1ap (TFLLR-NH,) or 100 uM PAR2ap (SLIGKV-NH,) or 1 pg/ml (34.5 nM) PR3 was measured
(Fig. 1A). Data were expressed as mean * SEM, n=4. Statistic tests used for Fig. 1A were paired T-tests. For the siRNA knockdown experiments of
Fig. 1B, confluent GEC were incubated for 4 hr. Three controls were used (1) Optimem medium (Medium alone; open bars) or (2) Optimem medium
containing 0.2% Lipofectamine RNAiMax without siRNA (Control LF; diagonal line bars) or with (3) 20 nM non-silencing scrambled Stealth™ RNAi
(Control siRNA; horizontal line bars). PAR expression was silenced by using 20 nM of Stealth™ RNAi against PART (PAR1 siRNA; black bars), or PAR2
(PAR2 siRNA; cross-hatched bars), or both PAR1 and PAR2 (PAR1+2 siRNA; vertical line bars). The vWF release induced by 1 ug/ml PR3 (34.5 nM) or
elastase (33.9 nM) were assessed 48 hr after siRNA treatment (Fig. 1B). Statistic test used for Fig. 1B was a Two-way ANOVA p=0.0001 comparing
VWF release from untreated cells vs. cells treated with PR3 and elastase under all four siRNA conditions.

doi:10.1371/journal.pone.0043916.g001

this flow cytometric methodology, thrombin (10 U/ml, ~100 nM)
produced a similar pattern of SPAN and WEDE antibody binding
as PR3 (5 ug/ml, 172 nM; Fig. 2A and 2B).

To determine whether any loss in WEDE antibody binding to
surface PAR1 was due to receptor internalization or extensive
cleavage, PARI internalization was inhibited (i) under cold

PLOS ONE | www.plosone.org

conditions at 4°C or (i) with a 30 min pre-incubation with
Dynasore (50 uM, an inhibitor of dynamin-regulated endocytosis
[40,41]). Inhibiting internalisation with temperature (4°C) abol-
ished the PR3-induced loss in WEDE antibody binding to surface
PARI. This indicates that PR3 (5 pg/ml, 172 nM) treatment
induced cleavage of surface PAR1 and internalisation of the
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Figure 2. PAR1 cleavage from the endothelial surface by PR3 or
elastase. Cleavage of GEC surface PART was detected using two
specific antibodies SPAN (Fig. 2A) and WEDE (Fig. 2B) on cells harvested
after 2 hr exposure to thrombin (1 U/ml, =10 nM) or 1-5 pg/ml (34.5-
172 nM) of PR3 or 1-5 ug/ml elastase (33.9-169.5 nM). Data were
expressed as mean = SEM, n=3. One-way ANOVAs with Dunnett’s post
tests were employed to assess statistical significance.
doi:10.1371/journal.pone.0043916.g002

receptor (Fig. 3A). In contrast, elastase (5 pg/ml, 169.5 nM) was
able to reduce WEDE binding even under conditions where the
internalization process was impaired. This suggests that elastase
treatment also induced internalisation of the PAR1 receptor but a
component of elastase-mediated removal of WEDE binding was
due to extensive cleavage (Fig. S3A). Dynasore, an inhibitor of a
later stage of the internalisation, partially inhibited protease-
induced loss in WEDE binding to surface PAR1 (Fig. S3B).

Effect of PAR Peptides or Leukocyte Proteases on EC
Calcium Signaling

To determine whether PR3 or elastase induced downstream
signaling processes, we measured changes in cytoplasmic calcium
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in response to the proteases in unstimulated ECs. In addition we
assessed the ability of these proteases to alter subsequent PAR1 or
PAR2 receptor activation with cells in suspension and adhered to a
surface using spectrofluorimetry and fluorescent microscopy.
Neither PR3 nor elastase induced downstream calcium signaling
in either GEC (Fig. 3A) or HUVEC (Fig. 3B) in suspension or in
adherent GEC (Fig. 3C). The inability of PR3 or elastase to induce
a calcium signal was not restricted to EC, as they were also unable
to provoke a calcium response in human kidney cells, HEK-293
(data not shown).

Both endothelial types, HUVEC and GEC, produced compa-
rable calcium signals, when stimulated by PARIap and PAR2ap
(Fig. 3A and 3B). The magnitude of EC response induced by
specific PARlap was greater than that induced by PAR2ap
(Fig. 3A and 3B). Using EGTA to remove extracellular calcium
indicated that these PAR1/2ap-induced signals were partly due to
mobilization of intracellular calcium stores (data not shown).

Pre-treatment of GEC with either PR3 or elastase (1-5 pug/ml
for 10 min) induced a concentration-dependent inhibition of
thrombin-mediated PAR1 receptor activation (Fig. 4A). Elastase
induced a greater inhibition of subsequent thrombin activation
than PR3 at 5 pg/ml, after 10 min (Fig. 4A). However, elastase, at
this early time point, did not alter PARlap-mediated PARI
receptor activation (Fig. 4B), indicating that elastase induced early
removal of the thrombin cleavage site, without affecting the
agonist peptide binding site. Neither PR3 nor elastase caused
immediate inhibition of trypsin-mediated PAR2 receptor signaling
indicating that trypsin cleavage site of PAR2 was unaffected by
these proteases (Fig. 4C).

Persistent exposure to either PR3 or elastase (5 ug/ml for 2 hr)
resulted in partial inhibition of PARIlap-induced GEC PARI
receptor signaling (Fig. 5A and 5C), indicating that both proteases
(over longer periods) were able not only to remove the thrombin
cleavage site but also to reduce agonist peptide binding, consistent
with the flow cytometry observations using antibody detection of
SPAN and WEDE binding sites. Conversely, neither PR3 nor
elastase, over a 2 hr period, inhibited GEC PAR2ap-induced
PAR2 receptor activation (Fig. 5B and 5C).

Discussion

PR3 and Elastase Disarm Glomerular Endothelial PAR1
Receptor

In the kidney, activation of PAR1 is known to either induce
cellular injury via pro-inflammatory signaling or cytoprotection by
promoting an anti-inflammatory pathway [26-28]. Here we have
demonstrated PR3-and elastase-induced vWF release which was
independent of PAR activation. This was shown by siRNA
knockdown experiments. As observed in other cell types [34],
these proteases also negatively regulated glomerular endothelial
PARI signaling. This was demonstrated by their failure to elicit
calcium signals in GEC and also by their ability to block PAR1
activation by its agonists, thrombin and activating peptide. The
cleavage and inactivation of PAR1 by elastase and PR3 were both
time-and concentration-dependent. The mability of PR3 or
elastase to induce VWF release via PAR cleavage may be due to
the absence of a calcium signaling. This is supported the
Klarenbach 2003 study which demonstrated that PARlap-and
PAR2ap-induced vWF release is calcium dependant [19].

The region of the PAR1 extracellular domain that was close to
the thrombin cleavage site was most susceptible to cleavage by
elastase and PR3; this was demonstrated by initial inhibition of the
thrombin response, followed by inhibition of the peptide agonist
response. However, we do not anticipate cleavage of the thrombin
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Figure 3. Effect of PR3 or elastase on EC Ca>" signaling. Fig. 3 shows the inability of 5 ug/ml of PR3 (172 nM) or elastase (169.5 nM) to induce
a calcium signal in endothelial cells in suspension whether GEC (Fig. 3A), HUVEC (Fig. 3B) or adherent GEC (Fig. 3C). The presence of functional PAR
receptors on the surface of these cells was confirmed using PAR1ap and PAR2ap were used as positive controls (Fig. 3A-C). Fig. 3A& B show
representative traces from a single experiment. Fig. 3C shows data from 7-10 independent experiments (mean * SEM).

doi:10.1371/journal.pone.0043916.9g003

activation site (R**S*") by these proteases as this cleavage would
release a new tethered ligand, starting with SFLLR, that would
result in receptor activation [42]. Identification of the precise
cleavage site(s) would require a site-directed mutagenesis ap-
proach, similar to the one used for PAR2, to clucidate this [43].
Both PR3 and PARIlap triggered equivalent levels of vWF
release, which compliments previous observations by Steppich
et al (2008) in which PAR 1ap appeared to mimic the effect of PR3
in triggering tissue factor mRNA expression [4]; comparable levels
of PR3 and elastase mediated cleavage of endothelial PARI
receptors were also obtained [4]. Serine proteases bind to their
target protein and cause either cleavage at a specific site resulting
in activation or, alternatively, inappropriate or multiple site
cleavage resulting in disarming of the receptor [44]. Steppich
etal (2008) and our current findings could, therefore, be
interpreted in three ways: (1) PR3, but not elastase, resulted in
activatory PAR1 receptor cleavage; (i) PR3, but not elastase-
mediated PAR1 cleavage produced a free activating peptide,
capable of activating other PAR1 receptors or (iii) both PR3 and
elastase caused inhibition of subsequent receptor signaling, in the
absence of an initial signal, (i.e. receptor disarming (Fig. S4)).
Using calcium signaling, we have clearly demonstrated that the
cleavage of glomerular endothelial PAR1 receptors by both PR3

PLOS ONE | www.plosone.org

and elastase resulted in PARI receptor disarming that was both
time-and concentration-dependent. Short term exposure of GEC
to either protease (1-5 pg/ml, (=172 nM), 10 min) caused the
removal of the PAR1 activating peptide sequence for a minority of
cells without affecting the binding site of that activating peptide.
Long term exposure to elastase and PR3 (5 ug/ml, (=172 nM),
2 hr), resulted in reduced PAR lap-mediated signaling, indicating
that after more prolonged exposure the proteases affected not only
the thrombin cleavage site of the PAR1 receptor but also affected
the binding of the free activating peptide. It is important to put
these observations in context and not over emphasis our findings.
Recent studies have suggested that the regulation of PARs is not
straightforward and is both agonist-dependent and cell type—
specific [45]. PARs have the ability to regulate opposite effects
dependent on their agonist, location (i.e. within caveolae) and
associated binding partners (Biased signaling) [46]. Others have
shown serine protease-induced apoptosis potentially triggered by
PARI signaling [47]. These findings may therefore imply the
mhibition of one major calcium dependent PARI signaling
pathway but not the destruction of all potential PAR1 signaling
routes.

In a wider context, PR3 and elastase appear not only to directly
affect PAR1 activity, but also increase coagulation in-vivo [48] by
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Figure 4. The immediate effect of PR3 or elastase on PAR signaling induced by other stimuli. Fig. 4A-C show the effect of a 10 min pre-
treatment of GEC with PR3 (34.5 nM=1 pg/ml PR3(1) or 172 nM=5 nug/ml PR3(5)) or elastase (33.9 nM=1 ug/ml HNE(1), or 169.5 nM=5 pg/ml
HNE(5)), on subsequent PAR1 calcium signaling induced by either thrombin (Fig. 4A) or PAR1ap (Fig. 4B) and on subsequent trypsin activation of
PAR2 (Fig. 4C). Baseline calcium levels in untreated cells were recorded (control). The bars marked ‘HBH’ show responses after addition of buffer alone
(Hanks balanced salt solution +20 mM HEPES) in the absence of any protease during a 10 min pre-treatment period, followed by stimulation of the
cells with either thrombin (Fig. 4A) or PAR1ap (Fig. 4B) or PAR2 (Fig. 4C) were used as positive controls for each experiment. Fig. 4A-C show data

from 3-4 independent experiments (mean = SEM).
doi:10.1371/journal.pone.0043916.9g004

removing cell-surface tissue factor pathway inhibitor (TTPI) [49].
PR3 can also cleave endothelial surface-bound EPCR, reducing
APC generation. This targeting of both PARI and its anti-
inflammatory regulators, EPCR and APC, would abrogate the
PAR 1-dependent barrier-protective response in endothelial cells
[50], potentially resulting in a shift away from resolution and
towards persistent inflammation.

In this study, the neutrophil serine proteases PR3 and elastase
did not regulate PAR2 calcium mobilization within GEC that
express functional PAR2, as indicated by the failure of these
proteases to either activate or disarm PAR2. Elegantly designed
studies by Ramachandran and colleagues indicated an alternative
route of PAR2 activation, circumventing calcium signaling but
activating MAP kinase signaling [51,52]. They observed both
PAR?2 disarming and the capacity of elastase (but not PR3) to
activate this alternative pathway [51]. PAR surface expression,
cleavage and regulation of signaling (e.g. protease-induced
disarming) can also be affected by the factors such as N-linked

PLOS ONE | www.plosone.org

glycosylation [53,54]. Those studies are comparable with our
present study, because the same source of trypsin was used;
however, the sources of both PR3 and elastase were different.
Unlike PARI1, we were unable to detect any glomerular
endothelial PAR2 disarming. Initially, we considered that these
observed differences in PAR2 cleavage were due to the use of
synthetic or recombinant polypeptides instead of an intact cell
expression system to study this phenomenon. Further, Al-Ani and
Hollenberg (2003) observed that cellular PAR2 was resistant to
extensive downstream cleavage by serine proteases [43]. However,
cell surface PAR2 disarming has been detected elsewhere. PAR2
inhibition by elastase has been previously reported in epithelial
cells [55], while retracted reports support a role for PR3 in PAR2
receptor signaling in both epithelial [56] and non-epithelial cells
[57]. Epithelial cells express functional PAR1, PAR2 and PAR-4,
with PAR2 acting as the dominant PAR, inducing the strongest
cellular response with respect to cytokine production [58]. In
contrast, we observed that GECs have a higher cellular response to
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Figure 5. The chronic effect of PR3 or elastase on PAR signaling induced by other stimuli. Fig. 5A-C show the effect of a 2 hr pre-
treatment of GEC with 5 pg/ml of PR3 (172 nM) or elastase (169.5 nM, HNE), on subsequent PAR1ap mediated PAR1 signaling (Fig. 5A,C) and PAR2ap
mediated PAR2 signaling (Fig. 5B,C). Fig. 5A& B show representative traces for a single experiment. Fig. 5C shows data from 4 independent

experiments (mean * SEM).
doi:10.1371/journal.pone.0043916.9g005

PARI1 activation than PAR2. Findings of another study in human
and mouse leukocytes also discount a role for PR3 in PAR2
activity [59]. The apparent differences in the outcome of these
studies may be due to the cell types employed.

In conclusion, neutrophil-derived serine proteases PR3 and
elastase bind to, and directly modulate, multiple protein targets on
the surface of GEC including PAR1, with no inhibitory effect on
PAR2, the member of the PAR family upregulated during
inflammation. Calcium signaling-independent modulation of
endothelial function leads to the pro-inflammatory, pro-throm-
botic release of proteins such as vWF, while the disarming of the
glomerular endothelial PARI receptor may abrogate any anti-
inflammatory, protective effects that could be supported by this
receptor. Modulation of serine protease activity, rather than direct
modulation of PAR receptors, could be tissue protective during the
acute phase of some glomerulonephritides, such as vasculitic
diseases where neutrophil activation and protease release is
prominent.

PLOS ONE | www.plosone.org

Supporting Information

Figure S1 PARI1 and PAR2 mRNA and protein knock-
down by siRNA. Iig. SIA shows phase contrast photomicro-
graphs of (i) untreated HUVEC and cells exposed to (ii) non-
targeting siRNA (Control siRNA) and (iii) PAR1 siRNA and (iv)
PAR2 siRNA. PARI (black) and PAR2 (grey) of GEC mRNA
levels were abolished by siRNA treatment. This silencing of PAR
mRNA was detected, 48 hr after a 4 hr siRNA treatment. Data
were expressed as relative expression compared to lipofectamine
treated cells (Fig. S1B n=5-6). The reduction in PAR1 (Fig. S1C
n = 3) and PAR2 (Iig. S1D n = 3) protein levels induced by siRNA
treatment was detected by flow cytometry using WEDE (ant-
PAR1) and SAMI1 (anti-PAR2) antibodies. The reduction in
glomerular endothelial cell PAR1 (Fig. S1E) and PAR2 (Fig. S1F)
calcium signal due to stRNA knockdown was also assessed. These
are representative calcium traces (n = 3, for PAR1 p =0.0493*, for
PAR2 p=0.0081%*).

(TIF)
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Figure S2 PR3 or elastase induced GEC vWF release in
the presence of alpha anti-trypsin. Fig. S2 shows that GEC
vWTY release in response to PR3 or elastase. This 1s abolished in the
presence of alpha anti-trypsin (+otlAT). The statistical symbols
indicated significant difference either compared to *untreated
controls (Cont.) or *compared to protease treatment only (PR3 or
clastase). A similar result was obtained in HUVEC (data not
shown).

(TIF)

Figure S3 Detecting internalization of PAR1 induced by
either PR3 or elastase. Internalization of PARI of surface of
adherent HUVEC was inhibited by temperature (performed on
ice, 4°C), or by pre-incubated cells in Medium 199 containing a
specific inhibitor, Dynasore (50 uM). All experimental conditions
contained 0.02% DMSO (the vehicle for Dynasore). HUVEC
were then treated with 1 or 5 ng/ml PR3 (34.5-172 nM) or 1 or
5 ug/ml elastase (33.9-169.5 nM) or 10 U/ml thrombin. The
extent to which PR3 and elastase removed surface PAR1 by
internalization was detected using a WEDE antibody under these
inhibitory conditions. Fig. S3A shows data from cells maintained
on ice throughout the experiment. Fig. S3B compares the effect of
temperature/chemical inhibition. The statistical symbols indicated
significant difference between *protease treatment compared to
the non-protease treated control or between +protease treatment
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