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Abstract

Complex genetic disorders often involve products of multiple genes acting cooperatively. Hence, the pathophenotype is
the outcome of the perturbations in the underlying pathways, where gene products cooperate through various
mechanisms such as protein-protein interactions. Pinpointing the decisive elements of such disease pathways is still
challenging. Over the last years, computational approaches exploiting interaction network topology have been successfully
applied to prioritize individual genes involved in diseases. Although linkage intervals provide a list of disease-gene
candidates, recent genome-wide studies demonstrate that genes not associated with any known linkage interval may also
contribute to the disease phenotype. Network based prioritization methods help highlighting such associations. Still, there
is a need for robust methods that capture the interplay among disease-associated genes mediated by the topology of the
network. Here, we propose a genome-wide network-based prioritization framework named GUILD. This framework
implements four network-based disease-gene prioritization algorithms. We analyze the performance of these algorithms in
dozens of disease phenotypes. The algorithms in GUILD are compared to state-of-the-art network topology based
algorithms for prioritization of genes. As a proof of principle, we investigate top-ranking genes in Alzheimer’s disease (AD),
diabetes and AIDS using disease-gene associations from various sources. We show that GUILD is able to significantly
highlight disease-gene associations that are not used a priori. Our findings suggest that GUILD helps to identify genes
implicated in the pathology of human disorders independent of the loci associated with the disorders.
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Introduction

Genetic diversity is augmented by variations in genetic

sequence, however not all the mutations are beneficial for the

organism. Coupled with environmental factors these variations

can disrupt the complex machinery of the cell and cause functional

abnormalities. Over the past few decades, a substantial amount of

effort has been exerted towards explaining sequential variations in

human DNA and their consequences on human biology [1].

Linkage analysis [2], association studies and genome-wide

association studies (GWAS) [3] have achieved considerable success

in identifying causal loci of human disorders, albeit with

limitations [1,4].

Complex genetic disorders implicate several genes involved in

various biological processes. Interactions of the proteins of these

genes have helped extend our view of the genetic causes of

common diseases [5–7]. Genes related to a particular disease

phenotype (disease genes) have been demonstrated to be highly

connected in the interaction network (e.g., in toxicity modulation

[8] and cancer [9,10]). Yet, rather than having random

connections through the network, the interactions of proteins

encoded by genes implicated in such phenotypes involve partners

from similar disease phenotypes [11–13].

Linkage analysis typically associates certain chromosomal loci

(linkage interval) with a particular disease phenotype. Such

analysis produces a set of genes within the linkage interval. Recent

studies have confirmed the usefulness of network-based approach-

es to prioritize such candidate disease genes based on their

proximity to known disease genes (seeds) in the network. These

studies can be distinguished by the way they define proximity

between the gene products in the network of protein-protein

interactions. Thus, proximity is defined by considering direct

neighborhood [14–18], or by ranking with respect to shortest

distance between disease genes [17,19–21] or using methods based

on random walk on the edges of the network [19,22,23]. Making

use of the global topology of the network, random walk based

methods have been shown to perform better than local approaches

[19,22,24].

Two inherent properties of available data on protein-protein

interactions (PPI) that affect the prioritization methods are

incompleteness (false negatives) and noise (false positives). The

bias towards highly connected known disease nodes in protein

interaction networks has recently motivated statistical adjustment

methods on the top of the association scores computed by

prioritization algorithms where node scores are normalized using

random networks [25]. Furthermore, taking network quality into

consideration, several approaches incorporate gene expression and
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data on functional similarity in addition to physical PPIs [20,26–

31]. Gene prioritization is then based on the integrated functional

network, redefining ‘‘gene-neighborhood’’ at the functional level.

Network-based approaches can also aid in identifying novel

disease genes, even when the associated linkage intervals are not

considered, for instance, to prioritize genes from GWAS

[28,32,33]. In fact, using the whole genome to prioritize disease-

gene variants is expected to produce more robust results in

identifying modest-risk disease-gene variants than using high-risk

alleles [34]. Nonetheless, existing prioritization methods substan-

tially suffer from a lack of linkage interval information [24] and

depend on the quality of the interaction network [25]. Thus, to

identify genes implicated in diseases, stout methods that exploit

interaction networks to capture the communication mechanism

between genes involved in similar disease phenotypes are needed.

Available network-topology based prioritization methods treat

all the paths in the network equally relevant for the pathology. We

hypothesize that the communication between nodes of the

network (proteins) can be captured by taking into account the

‘‘relevance’’ of the paths connecting disease-associated nodes.

Here, we present GUILD (Genes Underlying Inheritance Linked

Disorders), a network-based disease gene prioritization framework.

GUILD proposes four topology-based ranking algorithms: Net-

Short, NetZcore, NetScore and NetCombo. Additionally, several

other state-of-the-art algorithms that use global network topology

have been included in GUILD: PageRank with priors [35] (as used

in ToppNet [23]), Functional Flow [36], Random walk with

restart [19] and Network propagation [22]. The framework uses

known disease genes and interactions between the products of

these genes. We show the effectiveness of the proposed prioriti-

zation methods developed under the GUILD framework for

genome-wide prioritization. We also use several interaction data

sets with different characteristics for various disease phenotypes to

evaluate the classifier performance of these methods. As a proof of

principle we use GUILD to pinpoint genes involved in the

pathology of Alzheimer’s disease (AD), diabetes and AIDS.

GUILD is freely available for download at http://sbi.imim.es/

GUILD.php.

Results

Comparison of GUILD with the state-of-the-art of
network-topology based prioritization methods

We tested the prioritization algorithms in GUILD using three

sources of gene-phenotypic association and the largest connected

components of five different protein-protein interaction networks

(see ‘‘Methods’’ for details and names of these sets). The area

under ROC curve (AUC) was used to compare each ranking

method (four novel methods NetScore, NetZcore, NetShort and

NetCombo; and four existing state-of-the-art methods, Functional

Flow, PageRank with priors, Random walk with restart and

Network propagation). The AUCs for each method averaged over

all disorders in different disease data sets (OMIM, Goh and Chen)

and interaction data sets (Goh, Entrez, PPI, bPPI, weighted bPPI)

are given in Table 1 (see Table S1 for the AUC values averaged

over diseases on each interaction network separately). We also

compared the ratio of seeds covered (sensitivity) among the top 1%

predictions of each method (Table 1).

In general, our methods produced more accurate predictions

and better sensitivity in genome-wide prioritization than the up-to-

date algorithms with which we compared. NetCombo, the

consensus method combining NetScore, NetZcore and NetShort,

proved to be an effective strategy of prioritization independent of

the data set used. NetCombo produced significantly better

predictions than Network Propagation, the best of the state-of-

art tested approaches, on each data set (P#5.7e-6, see Table S2 for

associated p-values). Also the improvement of NetScore versus

Network Propagation was significant in Goh and Chen data sets

(P#8.2e-5). Figure S1 compares the significant improvements in

AUC.

We also tested alternative ways to combine prioritization

methods. However, none of the combinations using other methods

proved as effective as combining the three methods included in

NetCombo. Details showing the average AUC and sensitivity

among the top 1% high scoring genes of each disorder for each

prioritization method using OMIM, Goh and Chen data sets on

each interaction network can be found in Tables S3 and S4.

In order to avoid bias towards highly studied diseases we used

equal number of gold standard positive and negative instances via

grouping all the non-seed scores in k groups, where k is the number

of seeds associated with the disease under evaluation (see

‘‘Methods’’). Considering that the distribution of disease associated

genes among all the genes is not known a priori, this assumption

provided a fair testing set to compare different prediction methods

than using all non-seeds as negatives or using only a random

subsample of non-seeds. We also compared the prioritization

methods when all non-seeds were assumed as negatives. The AUC

values increased for all methods on all data sets (up to 10%). In all

tests NetCombo and NetScore outperformed existing prioritiza-

tion methods (see Table S5).

Effect of the quality of the interaction network on
discovering novel disease-genes

The prediction performance of these methods depended on the

topology of the network and the quality of the knowledge of

protein-protein interactions in regards to size and reliability. We

grouped the AUCs of all disorders by network type to test these

dependencies (see ‘‘Methods’’ for network definitions). The

distribution of AUCs for each interaction data set using OMIM,

Goh and Chen data sets is given in Figure 1 (see Figure S2 for the

distribution of sensitivity values with the top 1% predictions).

Interestingly, most of the methods produced their best results with

the weighted bPPI network, which used the scores from the

STRING database [37] to weight the edges (see Table S1 for the

average AUC). The improvement of the prediction performance

using edge confidence values from STRING was significant for

most methods (with the exception of NetShort and Random walk

with restart algorithms, for which the performance improved but

not significantly). These results justify the importance of network

quality (i.e. using reliable binary interactions).

Furthermore, we hypothesized that removing interactions

detected by pull down methods, such as Tandem Affinity

Purification (TAP), would filter the noise produced by false binary

interactions, consequently increasing the AUC and the sensitivity

among top ranked predictions when the bPPI network was used

instead of the PPI network (see Table S1).

Our results indicated that the network size was relevant too

when binary interactions were used. The Goh network, which was

smaller than the bPPI network, produced significantly lower AUC

values for the majority of prioritization methods (all but NetShort).

Thus, the use of the largest possible network with assessed binary

interactions could improve the predictions. Based on the AUC

values for each phenotype when the bPPI network is used,

NetCombo, NetScore, NetZcore, and NetShort were significantly

better than Functional Flow, PageRank with priors and Random

walk with restart. NetCombo had an average AUC of 74.7% using

the bPPI network on OMIM data set and this was the only

method over 70% AUC (Table S1). However, when the weighted
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bPPI network was used to study the same data set, the AUCs of

NetScore and NetZcore methods also surpassed this limit, with

values around 74% and 72% respectively (NetCombo achieved

76.5% AUC in this case).

Dependence on the connectivity between disease-
associated genes

Next, we questioned whether the prediction methods depended

on the connectivity between seeds using OMIM, Goh and Chen data

sets. Table 2 shows the correlation between the average AUC of the

prioritization methods and the graph features involving seeds of each

disease phenotype in the bPPI network (number of seeds, number of

neighboring seeds, and average shortest path length between seeds).

A small inverse correlation was found between the average length of

the shortest paths connecting seeds and the prediction capacity for all

methods. This correlation was observed when using any of the

interaction networks; therefore, it was independent of the underlying

network. Average number of neighboring seeds also correlated with

prediction performance, but less than the average length of the

shortest paths connecting the seeds.

Dependence on the quantity of disease-associated genes
We questioned whether our methods depended on the number

of seeds associated with a disorder using OMIM, Goh and Chen

Table 1. 5-fold AUC (%) and sensitivity (%) at top 1% for each method averaged over all diseases within the data set and all
interaction networks.*

Data Set Metric NetScore NetZcore NetShort NetCombo Func. Flow PageRank
Random
Walk Network Prop.

OMIM AUC 67.49 62.99 65.63 72.09 58.55 57.03 55.36 65.97

Sens. 20.69 19.62 15.41 21.46 22.31 10.76 14.64 23.24

Goh AUC 67.32 61.45 55.36 67.08 54.78 52.39 49.35 54.74

Sens. 11.61 11.05 4.88 11.34 6.22 4.00 5.69 8.66

Chen AUC 75.92 72.80 63.11 78.41 63.56 65.30 61.78 69.07

Sens. 18.89 12.84 9.06 17.51 12.43 6.00 9.64 15.30

*Results are averaged over the interaction networks: Goh, Entrez, PPI, bPPI and weighted bPPI. OMIM, Goh and Chen denote the prioritization using data from OMIM,
Goh et al. and Chen et al. respectively as explained in the text. The highest value in each row is highlighted.
doi:10.1371/journal.pone.0043557.t001

Figure 1. Prediction performance of GUILD approaches on each interaction network over all phenotypes of OMIM, Goh and Chen
data sets. The distribution of AUCs for different phenotypes in each network is represented with a box-plot of different color. Color legend: red, Goh
network; yellow, Entrez network; green, PPI network; blue, bPPI network; purple, weighted bPPI network.
doi:10.1371/journal.pone.0043557.g001
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data sets. We addressed the dependence on the number of seeds by

splitting all disorders into two groups with respect to the number of

seeds (i.e. using the median of the distribution of the seeds

associated with the diseases). There were 65 disorders with less

than 23 seeds (the median number of seeds) and 67 disorders with

at least 23 seeds (2 disorders had exactly 23 seeds). Figure 2 shows

the AUC distribution for the eight methods studied for these two

groups using bPPI network. In general, the AUCs were similar in

the two groups, supporting the lack of correlation between the

number of seeds and AUC in Table 2. The differences between

AUCs of the two groups were only significant for NetCombo,

NetShort and Network propagation (all associated p-values are less

than 0.009, assessed by non-paired Wilcoxon test). This was

consistent with the anti-correlation observed between the number

of seeds and AUC for these methods.

Investigating the prioritized genes in Alzheimer’s
Disease, diabetes and AIDS

Using disease-gene association information in OMIM data set

and the proposed consensus prioritization method (NetCombo) on

the human interactome, we calculated the disease-association

scores of all genes in the network for Alzheimer’s Disease (AD),

diabetes and AIDS, three phenotypes with relatively high

prevalence in the society. In order to check the validity of these

scores, we used disease-gene associations from the Comparative

Toxicogenomics Database (CTD) [38], the Genetic Association

Database (GAD) [39] and available expert curated data sets (see

Methods for details). Moreover, we analyzed the GO functional

enrichment of the top-ranking genes.

First, we used the disease-gene associations in CTD [38] to

confirm the biological significance of the scores calculated by the

prioritization method in these three diseases. We retrieved direct

and indirect disease-gene associations in CTD. We compared the

distribution of the scores assigned by NetCombo in the ‘‘direct

association group’’ with the distribution of these scores in the ‘‘no-

association group’’ and with the distribution in the ‘‘indirect

association group’’ (see methods for details). In the three examples,

the scores were significantly higher for the direct disease-gene

associations than indirect-associations or no-associations (see

Figure 3 and Table S6). In the analysis of AD and AIDS, more

than 40% of the CTD disease-genes had NetCombo score higher

than 0.1. Moreover, only around 5% of the genes in the no-

association group for each disease had scores higher than 0.1 and

the mean of the direct association group was significantly higher

than the mean of the indirect association group (Table S6).

Second, we checked how many of the gene-disease associations

in GAD coincided with the top-ranking genes for each phenotype

(AD, diabetes and AIDS). The top-ranking genes covered

significant number of genes in GAD (Table 3). The rankings of

the highest scoring genes for AD, diabetes and AIDS are given in

Table S7. Then, we checked the GO functions enriched among

the top-ranking genes (Table S8). GO enrichment in the

subnetwork induced by the top-ranking genes in AD highlighted

the role of the Notch signaling and amyloid processing pathways. The

link between these pathways and the pathology of AD has been

demonstrated recently [40]. The enrichment of GO functions

among the prioritized genes for AIDS and diabetes showed the

relevance of biological process triggered by inflammatory

response, such as cytokine and in particular chemokin activity.

This result was also consistent with the literature [41,42].

Finally, we further analyzed in detail the results for AD, showing

that some well-ranked top genes were out of any known linkage

interval associated with AD and still played a relevant role.

Figure 4 shows the top-scoring genes for AD and the subnetwork

induced by the interactions between their proteins. The 17 AD

seeds (disease-gene associations from OMIM) and the 106 genes

prioritized by NetCombo involved several protein complexes and

signaling pathways such as the gamma-secretase complex, serine

protease inhibitors, the cohesin complex, structural maintenance

of chromosome (SMC) family, the short-chain dehydrogenases/

reductases (SDR) family, adamalysin (ADAM) family, cytokine

receptor family and Notch signaling pathway. Some genes within

these families have been demonstrated to be involved in AD

pathology [43–45]: ADAM10 (ADAM family), HSD17B10 (SDR

family), and PSENEN, APH1A, APH1B, and NCSTN (gamma-

secretase complex). It is worth mentioning that AD has been

central to recent research efforts, but mechanisms underlying the

disorder are still far from understood. The accumulation of senile

plaques and neurofibrillary tangles is postulated as the main cause

of the disease. The gamma-secretase is involved in the cleavage of

the amyloid precursor protein. This process produces the amyloid

beta peptide, the primary constituent of the senile plaques in AD.

Interestingly, the six genes predicted by the method (pointed by

arrows in Figure 4) were not associated with AD in OMIM.

Remarkably, only APH1A (1q21–q22), and PSENEN (19q13.13)

lied either under or close to a linkage interval associated with AD

(i.e. 1q21, OMIM:611152; and 19q13.32, OMIM:107741) and none

of the remaining four genes lied under or close to a known linkage

interval associated with AD. Moreover, the subnetwork of top-

ranking AD genes covered several genes in the expert curated data

Table 2. Correlations between prediction performances of methods, measured as the average AUC over phenotypes, and seed
connectivity values (associated p-values are included in parenthesis).

Number of seeds
Average number of neighboring
seeds

Average shortest path length
between seeds

NetScore 20.01 (0.86) 0.41 (1.1e-6) 20.43 (2.1e-7)

NetZcore 20.04 (0.65) 0.45 (6.7e-8) 20.54 (2.1e-11)

NetShort 20.38 (7.7e-6) 0.30 (4.8e-4) 20.65 (6.6–17)

NetCombo 20.22 (0.01) 0.31 (2.5e-4) 20.56 (4.9e-12)

Func. Flow 20.07 (0.43) 0.49 (1.8e-9) 20.46 (2.4e-8)

PageRank 20.10 (0.24) 0.53 (8.3e-11) 20.58 (4.0e-13)

Random Walk 20.14 (0.12) 0.53 (4.4e-11) 20.51 (5.1e-10)

Network Prop. 20.31 (2.5e-4) 0.43 (3.5e-7) 20.55 (1.3e-11)

doi:10.1371/journal.pone.0043557.t002
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set reported by Krauthammer et al. [46] such as APBB1, VLDLR,

SERPINA1 and BACE1 (p-value associated with this event,1.3e-3).

Discussion

The main contributions of this paper are twofold. First, we

presented four novel methods that are comparable to, or

outperform, state-of-the-art approaches on the use of protein-

protein interactions to predict gene-phenotype associations at

genome-wide scale, extending the set of relevant genes of a

phenotype. Second, we demonstrated to which extent these

prioritization methods could be used to prioritize genes on

multiple gene-phenotype association and interaction data sets.

We investigated the prediction capacity and robustness of the

approaches by testing their performance against the quality and

number of interactions. Typically, network-based methods con-

sider the paths between nodes equally relevant for a particular

disease. The prioritization methods proposed in this study differ

from others in the way the information is transferred through the

network topology. NetShort considered a path between nodes

shorter if it contained more seeds (known-disease gene associa-

tions) in comparison to other paths. NetScore accounted for

multiple shortest paths between nodes. NetZcore assessed the

biological significance of the neighborhood configuration of a node

using an ensemble of networks in which nodes were swapped

randomly but the topology of the original network was preserved.

Our results demonstrated that combining different prioritization

methods could exploit better the global topology of the network

than existing methods. The prediction performance of the

prioritization methods depended on the quality and size of the

underlying interaction network. Yet, this dependence affected the

performance of the methods similarly. The improvement of the

network quality also improved the predictions for all methods. On

the other hand, the prediction accuracy of the prioritization

methods showed a large variation depending on the phenotype in

consideration, but this variation was reduced when a consensus

method was used (NetCombo).

On average, the prediction performance was better on Chen

and OMIM data sets compared to the Goh data set. It can be

argued that this is because the Goh data set contains gene-

phenotype associations where the phenotype is defined in a

broader sense (i.e. the physiological system affected). Still, the

AUC values were consistent among different data sets for all the

prioritization methods. Although network-based prioritization of

whole genome provides a ranking of genes according to their

phenotypic relevance, the interplay between genes in many

diseases might not be captured by solely the PPI information. In

fact, for several phenotypes in OMIM data set such as amyloidosis,

myasthenic, myocardial and xeroderma the genes associated with the

disease were predicted with high accuracy in our analysis, whereas

for mitochondrial, osteopetrosis and epilepsy phenotypes, the network-

based prioritization was less successful.

The best AUC and coverage of disease genes among high-

scored gene-products were obtained with the largest and highly

confident network (in which interactions integrated from public

repositories were filtered out if detected by TAP and edges were

positively weighted using the scores provided by STRING

database). This improvement was significant for all proposed

approaches. The increased coverage and AUC when the bPPI

network was used instead of the Goh and Entrez networks showed

Figure 2. Dependence on the number of seeds. Tests and evaluations were performed using the human bPPI network and genes from OMIM,
Chen and Goh disease phenotypes. Box plots of the AUCs are based on the predictions of disease-gene associations for disorders with less than 23
seeds (light gray) and disorders with at least 23 seeds (dark gray) using each prioritization method.
doi:10.1371/journal.pone.0043557.g002
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Figure 3. Cumulative percentage of disease-genes with direct associations in CTD (dark gray) and non associated genes (light gray)
as a function of the NetCombo score for Alzheimer’s disease (A), diabetes (B), and AIDS (C).
doi:10.1371/journal.pone.0043557.g003

Table 3. Number of genes (excluding seeds) in the top 1% using NetCombo score and its significance with respect to the number
of genes in GAD and in the network.

Number of top-ranking
genes (predictions)

Number of top-ranking
genes in GAD

Number of GAD genes
in the network

Number of genes
in the network P-value (P#p)

AD 89 13 107 9469 1.6e-11

Diabetes 56 5 183 9432 4.5e-03

AIDS 102 3 11 9477 1.9e-04

doi:10.1371/journal.pone.0043557.t003
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the benefit of integrating information from various data sources.

Prioritization algorithms rely on the topology of the network; thus,

increasing the number of known interactions should improve

coverage. Nonetheless, interaction data integrated in this manner

is prone to include false positives, and filtering possible non-binary

interactions (e.g., complexes identified by TAP) can improve the

use of integrated data. The hypothesis that we required the largest

reliable set for the study of gene prioritization was supported by

the increase of AUC when the bPPI network was used instead of

the PPI network.

The AUC values over dozens of different phenotypes that vary

in number of initial gene-phenotype associations showed the

applicability of the methods independent of the number of genes

originally associated with the phenotype. Moreover, having more

number of seeds associated with a pathophenotype did not

necessarily improve the prediction accuracy. Most prioritization

methods achieved better performance for disorders with low

number of seeds. This difference in performance was significant

for NetCombo, NetShort and Network propagation. In fact, the

accuracy of the predictions was rather correlated with the average

shortest path length between seeds, which shows the importance of

the topology of the network.

We applied the prioritization methods to study the implication

of genes in AD, diabetes and AIDS. We claimed that the genes

discovered in the high scoring portion of the network would be

more likely to be involved in the pathology of these diseases.

Therefore, we further analyzed the genes prioritized by Net-

Combo using the human bPPI network. We verified that some of

these predictions were consistent with the literature and the scores

assigned by GUILD distinguished between the genes associated

with a specific disease and the rest of genes. We have to note that

we merged the entries for diabetes type 1 and type 2 in OMIM

and defined it as ‘‘diabetes phenotype’’. This may explain why 1)

the top-ranking genes predicted for diabetes covered relatively less

genes in GAD (assessed by hypergeometric p-value) than AD and

AIDS; and 2) the genes with direct-associations were more easily

segregated by NetCombo-scores for AD and AIDS than diabetes.

Furthermore, we showed that the groups of genes predicted to be

associated with these three phenotypes were enriched in biological

processes related to the disease. In AD, top-ranking genes formed

a subnetwork implying the Notch and amyloid pathways, while

top-ranking genes for diabetes and AIDS were involved in the

inflammatory response mechanisms. Our analysis on these

diseases suggested that our approach in whole genome prioritiza-

tion was a competent way to discover novel genes contributing to

the pathology of diseases.

Based on this study, we have shown that the new approaches

(NetCombo, NetShort, NetScore, and NetZcore) improved the

results of state-of-the-art algorithms, such as Functional Flow,

PageRank with priors, Random walk with restart and Network

propagation. It is worth mentioning that PageRank with priors

and Random walk with restart have been adopted to address

genome-wide disease-gene prioritization previously [24,28]. Fur-

thermore, a variation of Random walk with restart algorithm that

Figure 4. Alzheimer’s disease-associated top-scored proteins and their interactions. AD-implicated proteins identified using NetCombo
method on the weighted bPPI network with OMIM AD data. High-scored proteins were selected at the top 1% level using NetCombo scores. Proteins
are labeled with the gene symbols of their corresponding genes. Edge thickness was proportional to the weight of the edge (assigned with respect to
STRING score). Red nodes are associated with AD. Diamond and round rectangle nodes come from the OMIM AD set (seeds). Round rectangle and red
circle nodes have been associated with AD using the analysis of differential expression. The nodes highlighted with arrows (ADAM10, HSD17B10,
PSENEN, APH1A, APH1B, NCSTN) have been recently reported in the literature to be involved in the pathology of AD.
doi:10.1371/journal.pone.0043557.g004
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incorporates phenotypic similarity was recently proposed [47].

Since our aim was to compare the algorithms with each other,

here, we evaluated them on the same benchmarking data set using

only the initial disease-gene associations and the interaction

network. Finally, we made all eight methods publicly available in

the GUILD framework.

Overall, our results suggest that human diseases employ

different mechanisms of communication through their interac-

tions. Our analysis reveals a collective involvement of sets of genes

in disorders and could be extended to identify higher order

macromolecular complexes and pathways associated with the

phenotype. However, the use of a single and generic prioritization

scheme may not be sufficient for completing the set of pathways

affected by a disease and may require the use of more than one

method. Furthermore, network-based prioritization methods that

use only PPI information fail to identify the disease-genes whose

proteins do not interact with other proteins. Therefore, towards a

comprehensive understanding of biological pathways underlying

diseases, the network-based prioritization methods suggested here

can be complemented by incorporating gene expression, func-

tional annotations or phenotypic similarity profiles and by using

functional association networks rather than PPI networks.

Methods

Protein-protein interaction data sets
We used three human interactomes: i) Goh network, the PPI

network from the work of Goh et al. [13] in which data was taken

from two high quality yeast two-hybrid experiments [48,49] and

PPIs obtained from the literature; ii) Entrez network, a compilation

of interactions from BIND and HPRD provided by NCBI (ftp://

ftp.ncbi.nih.gov/gene/GeneRIF/interactions.gz); and iii) PPI net-

work, the set of experimentally known PPIs integrated as in Garcia-

Garcia and colleagues using BIANA [50] (see Methods S1 on the

details of the integration protocol). Considering that high

throughput pull down interaction detection methods introduce

many indirect relationships (such as being involved in the same

complex) in addition to direct physical interactions, we removed

the subset of interactions obtained by TAP, resulting in the bPPI

network. Furthermore, we have incorporated edge scores for the

interactions between two proteins in this network using STRING

database [37]. We refer this network as weighted bPPI network. In all

other networks, the edge weights have the default value of 1. When

edge weights from STRING were used (in weighted bPPI

network), the scores given by STRING were rescaled to range

between 0 and 1 and then added to the default value of 1.

We have to note that the algorithms being studied depend solely

on the topology of the network, implying that unconnected nodes

and very small components cannot effectively transfer the relevant

information along the network. Consequently, only the largest

connected component of the network was used for the evaluation

(see Table S9 for the sizes of the remaining components in the

interaction networks). Hereafter, the term ‘‘network’’ refers to the

largest connected component of the network unless otherwise

stated. See Table S10 for a summary of the data contained in these

interaction networks.

Gene–phenotype associations
Genes and their associated disorders were taken from: 1) Online

Mendelian Inheritance in Man (OMIM) database [51], 2) Goh

et al. [13] (referred as Goh data set throughout the text), and 3)

Chen et al. [52] (referred as Chen data set throughout the text).

OMIM is one of the most comprehensive, authoritative and up-to-

date repositories on human genes and genetic disorders. The

information in OMIM is expert curated and provides the

mutations on the genes associated with the disorders. Phenotypic

associations for genes were extracted from the OMIM Morbid

Map (omim.org/downloads retrieved on November 4, 2011) by

merging entries using the first name as previously done [15,19,24].

A disorder was considered if and only if it had at least 5 gene

products in any of the interaction networks mentioned above (this

data set is referred as OMIM hereafter). Having 5 proteins in the

interaction network was required for a five-fold cross validation

evaluation and also ensured that we tested the capacity to use

global topology (in the case of few genes the amount of annotation

transfer is limited, diminishing the benefit of using network based

methods as opposed to direct neighborhood). In Goh data set [13],

OMIM disorders (from December 2005) were manually classified

in 22 disorder classes based on the physiological system affected

(21 classes excluding the unclassified category). In Chen data set

[52], a total of 19 diseases were collected from OMIM and GAD

See Table S11 for a summary of the diseases used in this study.

Additionally, we used an independent gene-phenotype associ-

ation data set to optimize the required parameters of prioritization

methods (see below) without over-fitting the available gene-disease

associations. This data set contains gene-disease associations

identified by text mining PubMed abstracts using SCAIView

[53] for aneurysm (168 genes, keyword search ‘‘intracranial

aneurysm’’ and restricting the query to include entries with MeSH

‘‘genetics’’ term) and breast cancer (1588 genes, similar to aneurysm

but using ‘‘breast cancer’’ as the keyword). These genes are listed

in Table S12.

Genes associated with a disorder were mapped to their products

(proteins) in the protein-protein interaction network and assigned

an initial score for their phenotypic relevance. Thus, proteins

translated by genes known to be involved in a particular pathology

were termed seeds and have the higher scores in the network. All

other proteins in the network were assigned non-seed scores (lower

scores in the network).

The number of proteins (nodes) and interactions (edges) in all

interaction networks used in this study are given in Table S10.

Table S11 summarizes all diseases used under the context of this

study, the number of genes associated with them and number of

corresponding proteins translated by these genes covered in the

largest connected component of the network.

Network based prioritization algorithms
NetShort is motivated by the idea that a node important for a

given phenotype would have shorter distances to other seed nodes

in the network. As opposed to previous approaches that employ

shortest paths, we incorporate ‘‘disease-relevance’’ of the path

between a node and disease nodes by considering not only the

number of links that reach to the disease-associated node but also

number of disease-associated nodes that are included in the path.

Thus, we modify the length (weight) of the links in shortest path

algorithm such that the links connecting seed nodes are shorter

than the links connecting non-seed nodes. Formally the score of a

node, u, is defined as:

score uð Þ~
X

v[V ,v=u

1

d u,vð Þ

where d(u,v) is the shortest path length between nodes u and v with

weighted edges of graph G(V,E,f). The graph is defined by nodes V,

edges E, and the edge weight mapping function, f, where f is

defined as f : (i,j)?<,V(i,j)[E. The weight f(i,j) is given by the

multiplication of edge score and average of the initial scores of
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both nodes as follows:

f (i,j)~score(i,j) � score0(i)zscore0(j)

2

� �{1

This definition implies that the edge is short when the scores of the

nodes forming the edge are high (e.g. when they are seeds) and

long otherwise.

NetZcore assesses the relevance of a node for a given

phenotype by normalizing scores of nodes in a network with

respect to a set of random networks with similar topology.

Intuitively, NetZcore extends the direct neighborhood approach,

where all the neighbors of the node contribute to the relevance of

the node, to a normalized direct neighborhood. It highlights the

relevance of the node compared to the background distribution of

the relevance of neighboring nodes (using random networks). The

score of a node is calculated as the average of the scores of its

neighboring nodes. This score is then normalized using the z-score

formula:

scorekz1 uð Þ~ scorek uð Þ{mrandom
k

srandom
k

where mrandom
k and srandom

k are the mean and standard deviation of

the distribution of scores in a set of random networks with the

same topology as the original graph. Networks with the same

topology are generated such that a node u having degree d is

swapped with another node v in the network with the same degree

d. In this study, we use a set of 100 random networks. The process

of calculating node scores based on the neighbor scores using

random networks is repeated by a number of times (iterations)

specified by the user in order to propagate the information along

the links of the network. The iteration number (k) varies from 1 to

a maximum (MaxZ). MaxZ is a specific parameter of the method,

and scorek(u) at iteration k is calculated as:

scorek(u)~
1

Nb(u)k k
X

v[Nb(u)

f (u,v) � scorek(v)

where in a graph G(V,E,f) with nodes V, edges E, Nb(u) is the set of

neighbors of node u, and f(u,v) = weight(u,v) is an edge weight

mapping function. Note that, NetZcore incorporates the statistical

adjustment method suggested by Erten and colleagues into the

scoring by both normalizing and propagating scores at each

iteration [25].

NetScore is based on the propagation of information through

the nodes in the network by considering multiple shortest paths

from the source of information to the target and ignoring all other

paths between them. To calculate the information passed through

all the shortest paths in between two nodes, NetScore uses a

message-passing scheme such that each node sends its associated

information as a message to the neighbors and then iteratively to

their neighbors (pseudo-code is given in Figure S3). Each message

contains the node identity of the emitter and the path weight

(defined as the multiplication of edge weights of the path that the

message has traveled). Messages are stored in each node so that

only the first messages arriving from a node are considered (i.e. the

messages arriving through all the shortest paths from that node).

At the end of each iteration, the score of a node is defined as the

average score for the messages received. The score carried by a

message is calculated as the score of the emitter multiplied by the

path weight. Thus, at iteration k, a node has the score of the nodes

reaching it from shortest paths of length k (more than once if

multiple shortest paths exist) weighted by the edge weights in these

paths. Considering that storing all the messages coming from the

k-neighborhood introduces a memory and time penalty, we

restrict the number of iterations during score calculation to a

maximum (MaxS). To cover the whole diameter of the network, we

repeat the scoring with updated scores after emptying the message

arrays (resetting the node scores with the scores accumulated in the

last iteration). Therefore, in addition to the number of iterations

(MaxS), NetScore uses the number of repetitions (NR) as

parameters of the algorithm.

NetCombo combines NetScore, NetShort and NetZcore in a

consensus scheme by averaging the normalized score of each

prioritization method. The normalized score of a prioritization

method for a node n is calculated using the distribution of scores

with this method. The mean of the scores of all nodes prioritized

by this method is subtracted from the score of node n and then

divided by the standard deviation of the distribution.

In addition to the four methods above, four state-of-the-art

algorithms have been included in GUILD for prediction

performance comparison purposes. These methods are PageRank

with priors [35] (as used in ToppNet [23]), Functional Flow [36],

Random walk with restart [19] and Network propagation [22].

See Methods S1 for the details of the implementation of these

methods. PageRank with priors has recently been proven to be

superior to available topology-based prioritization methods

[24,28]. The methods based on random walk with restart

proposed by Kohler et al. [19] and propagation algorithm by

Vanunu et al. [22] are both conceptually similar to PageRank with

priors and differ in the way that they incorporate link weights

(edge scores) [22,25]. We also apply Functional Flow, a global

network topology-based method, originally addressed the func-

tional annotation problem [36].

Prediction performance evaluation
To evaluate the prioritization methods, we used five-fold cross

validation on three gene-phenotype annotation data sets men-

tioned above. Proteins known to be associated with a phenotype

(seeds) were split into five groups; four of them were used as seeds

for the prioritization methods and the remaining one group was

used to evaluate the predictions. This process was repeated five

times, changing the group for evaluation each time. The area

under the ROC curve (AUC) and sensitivity were averaged over

the five folds. These averages and their standard deviations were

used to assess the quality of the predictions and compare the

methods. A ROC (receiver operating characteristic) curve plots

true positive rate (sensitivity) against false positive rate (1-

specificity) while the threshold for considering a prediction as a

positive prediction is varied. The AUC is the area under this plot

and corresponds to the probability that a classifier will rank a

randomly chosen positive instance higher than a randomly chosen

negative one. ROCR package [54] was used to calculate these

performance metrics and the selection of positive and negative

instance scores are explained in the next paragraph.

In the context of functional annotation and gene-phenotype

association studies, obtaining negative data (proteins/genes that

have no effect on a disease, disorder, or phenotype) is a challenge.

We tackled this problem with an alternative procedure. First, all

proteins not associated with a particular disease (or phenotype)

were treated as potential negatives. Then, we used a random

sampling (without replacement) of the potential negatives to

calculate an average score. This score was defined as the score of a

negative instance. We calculated as many scores of negative instances as

positive instances (seeds) in the evaluation set. We ensured that each
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of the potential negatives were included in one of the random

samples by setting the sample size equal to the number of all

potential negatives divided by the number of seeds. Using this

procedure, we had the same number of positive and negative

scores, and the probability associated with choosing a positive

instance by chance was 0.5.

We used the aforementioned data sets for aneurysm and

breast cancer to optimize the initial scores of seeds and non-

seeds and the following parameters of the prioritization

methods: MaxZ for NetZcore, MaxF for Functional Flow, and

MaxS and NR for NetScore. For each of these parameters, the

values that result in the largest average five-fold cross validation

AUC were selected. The optimal values for initial scores of seeds

and non-seeds were identified as 1.00 and 0.01 respectively,

among the values we have tested (1.00 or text mining score

associated with the seed, for seeds; and 0.01, 1.0e-3, 1.0e-5 or 0,

for non-seeds). The number of iterations for NetZcore (MaxZ)

and Functional Flow (MaxF) was 5. In the case of Functional

Flow, 5 was also the limit specified by the authors. For NetScore,

the optimized values were two iterations (MaxS) with three

repetitions (NR).

To test the significance of AUC differences between a pair of

networks, or prioritization approaches, the one-sided Wilcoxon

test was used. The alternative hypothesis was that the mean AUC

of the network (or prioritization method) under consideration was

greater than the other network under test (or prioritization

method). No assumption was made regarding the normality of the

distribution of AUCs, and AUCs were paired over the variable in

concern (either network type or prioritization method); thus, a

non-parametric paired test was applied. Alpha values were set to

0.05. The values for the samples of the random variable subject to

the statistical test are given in relevant supplementary tables. R

software (http://www.r-project.org) was used to compute statis-

tics.

Assessing seed connectivity in the network
We investigated the relationship between prediction perfor-

mance of the prioritization methods and the connectivity of seeds

in the network. We calculated the average number of neighbor

seeds and the average shortest path distances between each pair of

seeds for each phenotype as in Navlakha and Kingsford [24]. The

average number of neighbor seeds (Ns) is given as follows:

Ns~

P
s[S

P
u[Nb sð Þ

X (u)

Sk k

where S is the set of seeds, Nb(s) is the set of nodes interacting with

s (neighbors), and X(u) is 1 if u belongs to S and 0; otherwise.

Similarly, the average shortest path distances (Ss) are given by

Ss~

P
V(s,v)[P

d s,vð Þ

Pk k

where P~f(s,v)Ds[S,v[S,s=vg is the set of all seed pairs and d(s,v)

is the shortest distance between s and v.

Analysis of prioritized genes in Alzheimer’s disease,
diabetes and AIDS

We used the weighted bPPI network and products of AD,

diabetes and AIDS seeds according to OMIM to investigate high-

scoring nodes (top 1%) obtained with NetCombo algorithm. We

calculated the scores by applying NetCombo and then selected

113 proteins in the network (top 1% of 11250 proteins in the

network). These proteins were uniquely mapped to their

corresponding gene symbols, yielding 106, 110 and 109 genes

for AD, diabetes and AIDS respectively. Next, we counted how

many of these genes were listed in Genetic Association Database

(GAD) [39] for each phenotype. GAD is a database that catalogs

disease-gene associations curated from genetic association studies

and collects findings of low significance in addition to those with

high significance. We considered only the records in GAD that

reported a positive association and merged the entries using the

first name of the disease as we did for OMIM data set. In this

analysis we excluded the seeds (disease-gene associations in

OMIM). The p-values shown in Table 3 correspond to the

probability of identifying GAD disease-gene associations at the

top-ranking portion of the network assuming a hypergeometric

model. The level of significance was set to 0.05. For AD, we also

checked whether the top-ranking genes covered the expert curated

genes implicated in AD pathology reported in Krauthammer et al.

[46].

We analyzed the GO functional enrichment of the top-ranking

genes using FuncAssociate2.0 [55] web service. The background

consisted of all the genes in the network. A GO term was

associated with a gene set if the adjusted p-value associated with

the term was lower than 0.05.

We used the disease-gene associations in Comparative Tox-

icogenomics Database (CTD) [38] to check the biological

significance of the scores calculated by the prioritization method

of AD, diabetes and AIDS. CTD contains both manually curated

disease-gene associations (direct) and inferred disease-gene associ-

ations (indirect). Again, the entries were merged using the first

name of the disease. The scores of the direct disease-genes, indirect

disease-genes and no-association genes (not found in CTD) were

grouped as direct-association group, indirect-association group

and no-association group. We tested the difference between the

means of the distributions of scores using one tailed Student’s t-test

(assuming higher score for the direct associations and the alpha

value was set to 0.05 as before).

Supporting Information

Methods S1 Supplementary methods.

(PDF)

Figure S1 Comparison of the significance in prediction
performance between prioritization methods. Signifi-

cance of the differences in average AUC performance (averaged

over all interaction networks and disease data sets) is represented

as a heatmap. Dark blue color in a cell (i, j) of the heatmap denotes

that the p-value associated with the one sided Wilcoxon test for the

comparison of AUCs between ith and jth method (where the

alternative hypothesis is that the mean of the first is greater than

the second) is smaller or equal than 0.05.

(TIF)

Figure S2 Ratio of successful predictions among the top
1% scores obtained by each method on each interaction
network over all phenotypes of OMIM, Goh and Chen
data sets. Color legend is same as Figure 1 in the manuscript.

(TIF)

Figure S3 Pseudo-code of the NetScore algorithm. The

repetition part is handled inside the first for-loop where message

arrays are reset. The inside for-loop goes over the iterations,

where only ‘‘new’’ messages are accepted. At the end of each
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iteration, the score of a node is calculated based on the messages

it received.

(TIF)

Table S1 Average AUC of the prioritization methods on
each data set of seeds (OMIM, Goh and Chen) using
different interaction networks (Goh, Entrez, PPI, bPPI
and weighted bPPI).
(DOC)

Table S2 P-values associated with the paired Wilcoxon
signed rank test between Network Propagation and our
two best prioritization methods on each data set using
average AUCs over all networks.
(DOC)

Table S3 AUC of the prioritization methods for each
disorder and network.
(XLS)

Table S4 Sensitivity values at top 1% predictions of the
prioritization methods for each disorder and network.
(XLS)

Table S5 Five-fold AUC (%) for each method averaged
over all diseases within the data set and all interaction
networks considering all non-seeds (genes not associat-
ed with the diseases) as negatives.
(DOC)

Table S6 The average NetCombo scores (the standard
deviation is given in parenthesis) of CTD direct/indirect
disease-genes and the genes with no-association in CTD

and the p-value associated with the difference between
these groups.
(DOC)

Table S7 Top ranking genes in Alzheimer’s Disease
(AD), diabetes and AIDS identified by NetCombo (the
top 1% high scoring genes) using weighted bPPI network
and OMIM associations.
(XLS)

Table S8 Functional enrichment of high scoring com-
mon genes in NetCombo for AD, diabetes and AIDS.
(XLS)

Table S9 Number and size of the connected compo-
nents other than the largest connected component (LCC)
in the network.
(DOC)

Table S10 Interaction data sets used in the analysis.
(DOC)

Table S11 Number of disease-gene associations covered
in each network.
(DOC)

Table S12 Genes used for parameter optimization.
(DOC)
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