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Abstract

DC employ several endocytic routes for processing antigens, driving forward adaptive immunity. Recent advances in
synthetic biology have created small (20–30 nm) virus-like particles based on lipopeptides containing a virus-derived coiled
coil sequence coupled to synthetic B- and T-cell epitope mimetics. These self-assembling SVLP efficiently induce adaptive
immunity without requirement for adjuvant. We hypothesized that the characteristics of DC interaction with SVLP would
elaborate on the roles of cell membrane and intracellular compartments in the handling of a virus-like entity known for its
efficacy as a vaccine. DC rapidly bind SVLP within min, co-localised with CTB and CD9, but not caveolin-1. In contrast,
internalisation is a relatively slow process, delivering SVLP into the cell periphery where they are maintained for a number of
hrs in association with microtubules. Although there is early association with clathrin, this is no longer seen after 10 min.
Association with EEA-1+ early endosomes is also early, but proteolytic processing appears slow, the SVLP-vesicles remaining
peripheral. Association with transferrin occurs rarely, and only in the periphery, possibly signifying translocation of some
SVLP for delivery to B-lymphocytes. Most SVLP co-localise with high molecular weight dextran. Uptake of both is impaired
with mature DC, but there remains a residual uptake of SVLP. These results imply that DC use multiple endocytic routes for
SVLP uptake, dominated by caveolin-independent, lipid raft-mediated macropinocytosis. With most SVLP-containing
vesicles being retained in the periphery, not always interacting with early endosomes, this relates to slow proteolytic
degradation and antigen retention by DC. The present characterization allows for a definition of how DC handle virus-like
particles showing efficacious immunogenicity, elements valuable for novel vaccine design in the future.
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Introduction

Dendritic cells (DC) [1] play a crucial role initiating and

promoting immune response, and are essential for the develop-

ment of robust, efficacious immune defences. An important

characteristic is the capacity of DC to employ different endocytic

pathways towards efficient antigen internalisation and processing;

reviewed by Lin and co-workers [2]. DC possess the potential for

selective application of endocytic pathways dependent or in-

dependent of clathrin, caveolae, lipid raft mobilisation and/or

macropinocytosis; antigen delivery routes can employ endosomal

pathways and/or the endoplasmic reticulum [3,4,5,6,7,8]. This

diversity of processing routes provides DC with a high capacity for

promoting antigen delivery and processing. Yet, these same

endocytic pathways are involved in degrading internalised

material. It has been reported that DC display a more limited

protease activity compared with macrophages; this was related to

a slower in vivo degradation of internalized antigens, and antigen

retention for extended periods, which favoured antigen pre-

sentation [9].

DC have been labelled professional antigen presenting cells

[10]. Immature DCs display more efficient endocytic processes

than mature DCs [11]. While appropriate targeting of vaccines to

DC would favour immune defence development, this area still

requires clarification concerning the characteristics of DC

endocytic uptake. With particulate delivery vehicles [12,13] being

promoted as vaccine carriers targeting DC for efficient immune

defence induction [14,15,16] defining endocytic uptake is impor-

tant for vaccine design. Although there is information on model

proteins such as ovalbumin, there is less information on how DC

handle more complex vaccines. Accordingly, the aim of the

present work was to characterize how DC handled Synthetic

Virus-Like Particles (SVLP). These are complex antigenic

structures with an already proven capacity for efficient induction

of IgG responses; importantly, this is achieved without adjuvant

requirement in rabbits [17] and pigs (R.S, unpublished data).

SVLP are formed by lipopeptide self-assembly into spherical

nanostructures in the 20–30 nm size range, which resemble small

virus-like particles in their shape, size and chemical composition

[18,19]. Like naturally-derived VLPs, SVLP can be exploited for

multivalent presentation of antigens across their surface (Fig. 1A–

S1A) [17] and several SVLP constructs have previously been

shown to induce strong immune responses in experimental systems

without co-administration of adjuvants [18,20].
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Figure 1. SVLP binding to DC. (A) Graphic representation of SVLP. (B) DC were incubated with different concentrations of SVLP in medium
without serum on ice for 20 min. Samples were washed and analysed by flow cytometry. (C) Pre-chilled DC were incubated with 2.5 mg/ml for SVLP
for 5 or 30 seconds, then washed and fixed (10min, room temperature, 4% w/v p-formaldehyde) prior to analysing by confocal microscopy. Scale
bars: 5 mm. (D) DC were incubated with high molecular weight dextran-546 (500 kDa), Ovalbumin-488, transferrin-546 (artificially coloured blue to aid
visualisation) or PBS (mock) for 1 min at 39uC followed by analysis using confocal microscopy. Scale bars: 5 mm. (E) Pre-chilled DC were incubated
with Ovalbumin-488 or PBS for 10 or 60 min on ice, followed by washing and analysis by flow cytometry. (F) Receptor-mediated binding of SVLP. DC
were treated with pronase for 25 min at 39uC. Cells were then pre-cooled on ice for 30 min and washed 5 times. SVLP (1 mg/ml), or antibody against
MHCI, CD172a or CD14, were added for 20 min on ice (antibody binding was then detected with Alexa488-conjugated anti mouse immunoglobulin
F(ab’)2). The cells were also treated with 3 mM NaN3 to impair recycling of CD172a or CD14. Cells were analysed by flow cytometry. For the % SVLP
positive cells, difference was significant between cells treated with pronase at ‘‘0.5 mg/ml’’ and ‘‘1 mg/ml’’ (p = 0.004), and also between ‘‘no
pronase’’ and ‘‘0.5 mg/ml pronase’’ (p = 0.014). Results (B, E–F) are means of three samples 6 s.d.
doi:10.1371/journal.pone.0043248.g001
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Despite the work showing efficient immune response induction,

there is no knowledge on SVLP interaction with DC. We

hypothesised that their interaction with DC could elaborate on

the characteristics of DC-antigen interactions relating to effica-

cious induction of immune responses. Moreover, the SVLP should

provide the means of defining how DC handle a complex virus-like

structure. The efficiency of the SVLP vaccine allows these

characteristics to be defined without the encumbrance of over-

laying adjuvant activity. Accordingly, the present work charac-

terised the manner by which DC bind and internalise SVLP,

relating to the involvement of different intracellular organelles and

compartments known to be important for the variety of DC

functions.

Results

SVLP interact with DC in a time and concentration
dependent manner

The initial analyses sought to determine the kinetics of SVLP

interaction with DC, which was performed over a 20 min period

on ice to impede the internalisation processes. Flow cytometry

analyses showed SVLP binding in a concentration dependent

manner; optimum binding with 1 mg/ml resulting in 98% SVLP-

positive cells (Fig. 1B). This was confirmed by confocal micros-

copy, with which the strongest signal was obtained using 2.5 mg/

ml SVLP (data not shown). The binding to DC on ice was also

time-dependent and rapid, being observed as early as the 5-second

time point (plus the time for washing prior to fixation of the DC

with 4% w/v p-formaldehyde to prevent further activity) (Fig. 1C).

Binding appeared to peak at 5 min (data not shown).

Such a rapid interaction of SVLP with DC was not unique.

High molecular weight dextran, ovalbumin and transferrin also

interacted rapidly (Fig. 1D), but contrasted with SVLP in requiring

metabolically active cells; only a low signal was obtained for

binding on ice (Fig. 1E shows ovalbumin as an example). Although

SVLP binding to DC on ice was variable with time, 5 independent

experiments showed that the interaction depicted in Fig. 1C was

consistently rapid.

This rapid SVLP binding to DC may have reflected an ionic or

a receptor-mediated interaction. Consequently, pronase (titrated

for its optimum concentration and incubation time; data not

shown) was used to pre-treat DC at 39uC. The cells were then

washed and cooled on ice prior to adding SVLP or antibody

against MHC Class I (MHCI), CD172a or CD14 on ice (Fig. 1F).

Labelling of the cell surface markers was to confirm the proteolytic

effect of pronase on sensitive cell surface protein receptors

(CD172a, CD14), but not all molecules (MHCI); the pronase

sensitivity of CD172a and CD14 was enhanced by treating the

cells with 3mM NaN3 to impair receptor recycling (Fig. 1F). A

90% reduction in binding was observed with SVLP, compared to

cells not treated with pronase (Fig. 1F). This was considered to be

indicating the removal of a putative protein receptor for SVLP

binding.

SVLP internalisation by DC
The capacity of DC to internalise bound SVLP employed

incubations at 39uC (the resting body temperature of the porcine

donors of the DC). Following incubation for 30 min at 39uC,

confocal microscopy showed SVLP internalisation by DC using 3–

D imaging (Fig. 2A).

In order to confirm that the SVLP were internalised, PK

treatment was employed to remove material from the cell surface.

SVLP were interacted with DC for 30 min on ice, followed by PK

treatment for a further 30 min on ice. This resulted in an

abrogation of the SVLP fluorescent signal (Fig. 2B; ‘‘DC + SVLP

then PK’’ compared with ‘‘SVLP(positive control)’’). If the DC

were pre-treated with the PK for 30 min on ice prior to addition of

the SVLP (Fig. 3B; ‘‘DC + PK then SVLP’’), there was only

a minor reduction in the signal obtained. It was considered that

these results demonstrated a sensitivity of the SVLP to digestion by

PK, whereas the receptor(s) for SVLP binding was apparently

insensitive. This sensitivity of the SVLP was confirmed by pre-

treating with PK on ice prior to incubation with DC; again the

fluorescence signal was lost with the treated SVLP (Fig. 2C).

Subsequent experiments in which SVLP internalisation required

confirmation used this sensitivity of the SVLP to the PK treatment

on ice – resistance to PK was taken as indicative of internalisation.

The rate of SVLP internalisation by DC was analysed by

pulsing the cells with SVLP on ice for 20 min, washing to remove

any unbound particles, then shifting to 39uC. After different times

at 39uC, treatment with PK on ice for 30 min allowed definition of

the degree of internalisation (PK activity was neutralised by

addition of 10% porcine serum). Internalised SVLP, and therefore

protected from the PK treatment, were observed as early as one

min after shifting to 39uC (Fig. 2D). However, only a minor

proportion of the cells showed evidence of internalised material at

this time. There was a gradual increase with time for the number

of cells displaying internalised material, reaching maximum uptake

at 30 min (Fig. 2D).

SVLP are non-toxic for DC
Despite the apparently efficient internalisation of SVLP by DC,

this did not exclude an eventual toxicity for the cells. Accordingly,

DC were given 1.25, 2, 4, and 8 mg/ml of SVLP, and incubated

for 24, 48 and 72 hrs at 39uC without removal of the SVLP. After

harvesting at these different time points, the cells were stained with

propidium iodide (PI) to quantify dead or damaged cells. No cell

death was observed above that obtained with the ‘‘cell only’’

control, when analysed at 24 and 48 hrs (Fig. 2E). A slight increase

in the number of PI-positive cells was seen with the SVLP after

72 hrs, but this was not related to the SVLP concentration, and

with most concentrations represented ,10% cell population.

Statistical analysis showed that the numbers of PI+ cells with

SVLP-treated cells were not significantly different from ‘‘PBS’’ or

‘‘cells alone’’. It was therefore considered that SVLP are non-toxic

for DC.

Kinetics of SVLP association with DC
While the above results focussed on the kinetics of uptake and

internalisation, it was also important to determine if the SVLP

were degraded over time. Following SVLP pulsing of DC on ice,

and washing prior to the 39uC shift, it was noted that between 4

and 24 hrs the fluorescent signal declined rapidly, reaching

a minimum close to the background signal by a 72 hrs (Fig. 2F).

Although a few positive cells could be found at later times, this was

rare and inconsistent.

SVLP association with lipid rafts
The association of SVLP with particular subcellular fractions

gave no information on the manner of uptake; DC operate various

endocytic pathways, which can determine the fate of the

internalised material. An early characteristic defining particular

endocytic pathways is the involvement of lipid raft mobilisation,

identifiable by CTB binding to five molecules of GM1 [21].

Within 30 min of incubation with DC on ice, CTB (under

predetermined optimum conditions for visualising lipid rafts)

showed an irregular pattern of interaction (in patches) with the

plasma membrane (Fig. 3A, ‘‘CTB’’); This pattern can be seen

DC Endocytosis of SVLP
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Figure 2. Internalisation of SVLP by DC. (A) DC incubated with 2.5 mg/ml SVLP (green) for 30 min at 39uC. High resolution stacks (102461024
voxels) were prepared, and 3D-imaging preformed using IMARIS. Scale bar: 5 mm. (B) SVLP (1 mg/ml) were added to pre-chilled DC (SVLP) or not
(Mock) for 30 min on ice; pre-chilled DC were treated with PK before (DC + PK then SVLP) or after (DC + SVLP then PK) incubation with SVLP on ice. PK
was added for 30 min on ice, then 10% serum added to ‘‘neutralise’’ PK activity. Cells were analysed by flow cytometry. The % Alexa488 positive cells
were significantly different between SVLP (cells not treated with PK; ‘‘SVLP (positive control)’’) and ‘‘DC + PK then SVLP’’ (p = 0.006). (C) SVLP (1 mg/ml)
were first pre-treated with PK as in (B). The treated SVLP were added to DC on ice for 30 min. Cells were washed and analysed by flow cytometry. (D)
Pre-chilled DC were pulsed with 1 mg/ml SVLP for 20 min on ice and then shifted to 39uC for different time points, followed by treating or not with PK
for 30 min on ice, and analysed by flow cytometry. (E) DC were incubated with different concentrations of SVLP for 24, 48 or 72 hrs at 39uC. Following
washing, the cells were treated with PI and analysed by flow cytometry. The ‘‘0’’ on the x-axis indicates the cell control untreated with SVLP. (F) DC
were incubated with 1 mg/ml SVLP for 20 min on ice, then different incubation time at 39uC, followed by flow cytometry analysis. Results are means
of three samples 6 s.d.
doi:10.1371/journal.pone.0043248.g002

DC Endocytosis of SVLP
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more distinctly in the zoomed images of the lower panel for

Fig. 3A. This was considered to reflect the irregular distribution of

lipid rafts throughout the membrane. These pre-chilled DC were

also given SVLP together with CTB for 30 min on ice, washed to

remove unbound particles and CTB, and shifted to 39uC for

different periods of time. At 0 min (the time of temperature

Figure 3. SVLP association with lipid rafts. (A) Pre-chilled DC were treated with 2.5 mg/ml SVLP (green) and 5 mg/ml CTB (red), followed by
30 min incubation on ice and washing. Samples were fixed and analysed by confocal microscopy. Arrows indicate SVLP and CTB localisation. The
white square is the zoomed area in the lower panel; the lower panel shows a different section to that in the upper panel, to demonstrate that areas
with apparently no co-localisation of the SVLP with CTB could overlay areas showing co-localisation. Scale bars: 50 mm (upper panel) and 5 mm (lower
panel). (B) DC treated as (A) were given warm medium and shifted to 39uC for 10 min. Arrowheads indicate SVLP and CTB co-localisation on polarised
membranes at intercellular contacts; arrows indicate internalisation at polarisation sites. Scale bars: 10 mm (upper panel) and 5 mm (lower panel). (C)
Pre-chilled DC incubated with 2.5 mg/ml SVLP (green) on ice for 20 min followed by washing and shifting to 39uC for 10 min. The image in the lower
panel is a zoom of the white square in the upper panel. Arrows show SVLP associated with lamellipodia. Scale bars: 30 mm (left) and 10 mm (right). (D)
DC were pulsed with 2.5 mg/ml SVLP and 5 mg/ml CTB for 30 min on ice, then shifted to 39uC for 30 min. High-resolution stacks, 3D images and co-
localisation analysis, using IMARIS, demonstrate co-localisation of SVLP with CTB; this included algorithmic analysis to identify co-localised voxels.
Scale bar: 8 mm. (E) Algorithmic analysis of the results from (D) performed using IMARIS.
doi:10.1371/journal.pone.0043248.g003

DC Endocytosis of SVLP
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shifting), the CTB and SVLP were seen together, distributed about

the cell membrane (Fig. 3A). Despite a clear association between

the CTB and SVLP signals, there were also sites of SVLP

interaction without any detectable CTB. The lower panels of

Fig. 3A are zoomed on to the white square shown in the upper

panel ‘‘Merge’’. Therein, association of the SVLP and CTB

signals can be seen, as well as areas of red SVLP devoid of a green

CTB signal. Moreover, the lower panel shows a different z-section

to that in the upper panel, to demonstrate that sections showing

apparently no associating (as in the white square of the upper

panel) can display association in a different z-section (lower

panels). Such observations that not all SVLP binding can be

observed associated with sites of CTB binding may reflect

additional SVLP interaction with the cell membrane at sites

devoid of GM1, or a disparate distribution of the CTB to the GM1

sites.

Within 10 min at 39uC, clear polarisation of the CTB together

with the SVLP was observed (Fig. 3B), reminiscent of accumula-

tion at the leading edge of the cell. There were also indications that

CTB plus SVLP accumulation could occur at sites of intercellular

contact (Fig. 3B, arrow head in upper panel). An apparently

parallel internalisation of CTB with SVLP was visible at

polarisation sites (Fig. 3B, arrow in lower panel). This accrual of

SVLP at polarised sites related to the observations showing SVLP

accumulating at sites of lamellipodia and filopodia formation

(Fig. 3C, arrows). The formation of this leading edge was

independent of SVLP binding, being observed in control DC

cultures upon shifting from ice to 39uC (data not shown).

At the time of observed maximum internalisation (maximum

PK-resistance; see Fig. 2D), the SVLP remained associated with

CTB (Fig. 3D). Although there were SVLP-containing structures

in which CTB was absent, co-localisation algorithm analysis

confirmed a high degree of co-localisation between the two

(Fig. 3D, E). Such frequent association of SVLP with CTB

indicated lipid raft involvement in DC uptake of SVLP. An

important lipid raft-dependent endocytic route involves caveolar

uptake. However, this appeared not to be involved, because no co-

localisation with caveolin-1 was detectable (data not shown).

Influence of cholesterol depletion on SVLP binding to DC
SVLP association with lipid rafts was confirmed using antibody

against CD9, due to the report of CD9 in lipid rafts of human

monocytes [22]. DC were incubated as before with SVLP and

CTB for 30 min on ice, but now also with antibody against CD9.

The cells were then shifted to 39uC for 2 hrs. SVLP were observed

associated with both CD9 and CTB (Fig. 4A, arrows). These

results confirmed that SVLP primarily associated with lipid rafts;

although not all SVLP were visualised together with CTB, they

did associate with at least CTB or CD9.

Considering that lipid rafts are cholesterol-rich membrane

regions, the importance of cholesterol in SVLP uptake employed

MBCD to deplete cholesterol. DC were treated with MBCD for

20 min at 39uC, followed by washing to remove MBCD and

chilling on ice. SVLP binding (20 min on ice, in the absence of any

further addition of MBCD) was clearly impaired (Fig. 4B, ‘‘No

PK’’, ‘‘0’’ time point); statistical analysis showed the difference

between untreated and MBDC-treated cells to be p,0.001. As

expected, any SVLP still binding was on the cell surface,

confirmed by its sensitivity to PK-treatment (Fig. 4B ‘‘PK-

treated’’). Fig. 4B shows the effect of 20 mM MBCD; similar

results were obtained with 10mM and 40mM MBCD (data not

shown). The cultures were again washed to remove unbound

SVLP, and fed with pre-warmed medium (39uC) containing

2 mM MBCD to maintain the cholesterol depletion, and shifted

back to 39uC. The gradual uptake of SVLP with time (time-

dependent increase in PK-resistance at 39uC) was also significantly

(p,0.001) impaired (Fig. 4B, ‘‘No PK’’ compared with ‘‘PK-

treated).

MBCD-treated and untreated cells, followed by addition of

SVLP for 20 min on ice, were overlayed for analysis. Thereby, the

reduction in the SVLP signals was clearly observable (Fig. S2A).

Interestingly, the SVLP signal was not abrogated following MBCD

treatment (also seen in Fig. 1B ‘‘No PK’’, ‘‘0’’). Accordingly, the

analyses were repeated, but using CTB in place of SVLP. In this

case, there was no apparent effect of the MBCD treatment

(Fig. S2B). The MBCD pre-treatment followed by SVLP addition

on ice was also repeated, but with a 10-fold higher concentration

of SVLP (10 mg compared with 1 mg). With this 1 mg sample, the

SVLP signal was somewhat weaker (Fig. S2C, left panel,

compared with Fig. S2A, upper left panel). Nevertheless, the

inhibitory effect of MBCD pre-treatment was still observable

(Fig. S2C, second and third panels). The signal obtained with the

10 mg SVLP was much stronger (Fig. S2C, right panel, grey/black

unshaded histograms), but now the MBCD did not reduce had

little influence on the signal obtained. This higher concentration of

SVLP gave a double peak of fluorescence intensity, whereas the

MBCD showed inly a single peak, but of the triplicate samples

there was no significant reduction in the SVLP signal.

We did not attempt to increase the MBCD concentration, due

to the increase toxicity for the cells. Indeed, the 20mM MBCD

treatment led to increased cell membrane permeability (Fig. S2D

middle panel), which could not be restored (Fig. S2D right panel).

For these reasons, we can only interpret the effect of the MBCD

on SVLP binding. Overall, it is difficult to interpret the influence

of MBCD beyond the removal of cholesterol. Indeed, the major

source of information on SVLP interaction with DC is provided by

the colocalisation studies of SVLP with CTB and CD9 (Fig. 4A).

Fate of SVLP in DC and involvement of intracellular
organelles and compartments

The internalisation of SVLP into cytoplasmic and membrane

fractions raised the question of which endocytic processes and

intracellular compartments were involved, and in particular if

more than one pathway was operative. With primary DC and

monocyte-derived DC, DNA plasmid transfection is highly

inefficient [23], rendering analyses of intracellular organelle

activity difficult by such means. Consequently, these analyses

employed ligands and antibodies to identify various intercellular

structures with which the SVLP associated.

(i) Early endosomes. EEA-1 positive endosomal structures

interacted closely with vesicles carrying SVLP, already clearly

visible by 10 min (Fig. 4C). The 3-dimensional images showed

EEA-1+ structures apparently ‘‘engulfing’’ the SVLP-containing

vesicles (Fig. 4D). Interaction with early endosomes was confirmed

using SVLP over-conjugated with Alexa488 to give a self-quench-

ing of the fluorochrome and absence of signal. Once enzymatic

degradation of these SVLP occurred, as in acidifying compart-

ments containing the appropriate cathepsins, the fluorochrome

signal should become detectable. A time-dependent appearance of

the signal was indeed noted (Fig. 5A). Interestingly, no signal was

detectable during first 30 min of incubation at 39uC (Fig. 5A),

despite the appearance of unquenched SVLP associating the EEA-

1+ structures within 10 min (Fig. 4C). By 1 hr, a signal was now

consistently apparent from quenched SVLP, seen in what

appeared to be vesicular structures. The latter were primarily

peripheral within the cell, and often associated with EEA-1+

structures, becoming more frequent at 2 hrs (Fig. 5A).

DC Endocytosis of SVLP
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Figure 4. SVLP associating with early endosomes and CD9. (A) Pre-chilled DC were incubated with SVLP and CTB as in Fig. 3, or with antibody
against CD-9 for 30 min on ice. Samples were then washed and shifted to 39uC for 2 hrs, followed by confocal microscopy analysis. High-resolution
stacks prepared using IMARIS are shown for each label, arrows indicating co-localisation. Scale bars: 20 mm (left image), 5 mm (zooms). (B) DC were
treated with 20 mM MBCD for 20 min at 39uC, followed by washing to remove the MBCD and pre-chilling for 30 min on ice. DC were then pulsed
with 2.5 mg/ml SVLP for 20 min on ice (‘‘0’’ time point) and then washed with pre-chilled medium, prior to receiving fresh warm (39uC) medium
containing 2 mM MBCD and shifting back to 39uC. DC were treated or not with PK to define internalisation at the time points shown. Analyses were
by flow cytometry; all differences at the 39uC time points between 0 MBCD and 20 mM MBCD treatment are significant, as are the differences
between ‘‘No PK’’ and ‘‘PK-treated’’ for the 20 mM MBCD samples (p#0.001). (C) DC were incubated with 2.5 mg/ml SVLP at 39uC for 10 min, then
fixed/permeabilised and co-labelled with anti-EEA-1 antibody prior to confocal microscopy analysis. Scale bar: 3 mm. (D) A 3-dimensional analysis of
the circle shown in (C); the right image shows a further analysis of the circle in the left image, analysed with the aid of Spots module in IMARIS to
define centre points for SVLP (green) and EEA-1 (red) labelling. Scale bars: 3 mm (blend), 1 mm (zoom; spot module to enhance visualisation, filtered
on mean intensity).
doi:10.1371/journal.pone.0043248.g004

DC Endocytosis of SVLP
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This enzymatic degradation of SVLP in vesicular structures

(Fig. 5A) was relatively slow compared with the rapid internalisation

(see Fig. 2D). Accordingly, the SVLP accumulation was further

analysed together with endocytosed DQ-Ova, another fluoro-

chrome-quenched molecule used to identify the action of endosomal

enzymes. Considering the inefficient binding of ova to DC on ice,

only the SVLP were pulsed with DC on ice, followed by washing and

addition of the DQ-Ova in the medium at all times of incubation.

After 30 min at 39uC, many of the SVLP-positive vesicular

structures also contained de-quenched (enzymatically cleaved)

DQ-Ova (Fig. 5B). The association was particularly strong at

60 min, and continued to be observable at 8 hrs of incubation

(Fig. 5B). Application of co-localisation algorithm confirmed this

close association (Fig. 5C), giving a Pearson’s coefficient in co-

Figure 5. SVLP associating with early endosomes, MHCII and DQ-Ova. (A) Application of quenched SVLP signal to identify endosomal
enzyme activity leading to de-quenching of the signal. DC were incubated with 2.5 mg/ml quenched SVLP (green) for different incubation times at
39uC. Samples were fixed, permeabilised and labelled with antibody targeting EEA-1 (red). Acquisition of the images was by confocal microscopy,
followed by analysis and merging using IMARIS. Scale bars: 30 mm. (B) Cells were treated as for (A), but also with DQ- Ovalbumin. Acquisition of the
images was by confocal microscopy, followed by analysis and merging using IMARIS. Scale bar: 20 mm. (C) Algorithmic co-localisation analysis of SVLP
and DQ-Ova performed using IMARIS. (D) Cells were treated as for (A), but stained also for MHCII molecules (blue). Acquisition of the images was by
confocal microscopy; high-resolution stacks were prepared using IMARIS. Scale bars: 20 mm (top left), 5 mm (zooms).
doi:10.1371/journal.pone.0043248.g005

DC Endocytosis of SVLP
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localised volume of 0.4. Intriguingly, this value seen at 60 min was

retained after 8 hrs incubation at 39uC.

With SVLP being internalised into similar structures as DQ-

Ova, suggested similar routes of uptake and processing. The

relatively slow rate of the process suggested a role for macro-

pinocytosis; caveolar uptake was unlikely due to the aforemen-

tioned absence of SVLP co-localisation with caveolin. According-

ly, the association of the SVLP with other intracellular structures

involved in different antigen processing routes was investigated.

(ii) MHCII and Microtubules. As in Fig. 5A, de-quenched

SVLP was associated with EEA-1+ early endosomes by 2 hrs at

39uC (Fig. 5D, red on green signal). In contrast, it was rare to

visualise de-quenched SVLP associated with MHCII-rich com-

partments (Fig. 5D, blue on green signal). This may have reflected

an association with MHCII-positive structures typifying more

advanced structures in antigen processing, wherein the SVLP had

been degraded beyond detectability. Alternatively, a slow rate of

processing may have led SVLP into MHCII+ compartments at

levels too low to be detected.

DC which had endocytosed SVLP were also stained for MHCII

and microtubules. Fig. 6A shows an apposition of MHCII+

structures (blue) with microtubules (red), but this was distinct from

the SVLP-containing vesicles (green). The majority of the SVLP-

containing vesicles were observed appositional to the microtubules

(Fig. 6A). It was considered that those SVLP-containing vesicles

not associated with microtubules may have been in an earlier stage

of internalisation. Certainly, when the SVLP were detectably

polarised (as observed with lipid raft association using CTB – see

Fig. 3), there was a tight apposition with the microtubules nearer

the leading edge of the cell (Fig. 6A, right-hand image).

Further analyses looked at the relative positioning of the SVLP

signal in the DC. During the initial 20 min after shifting to 39uC,

SVLP were often found internalised at the leading edge of the cell

(see Fig. 3 and 6A). Such internalisation yielded a polarised

positioning (Fig. 6B), distinctive from the less peripheral and more

perinuclear location of the MHC+ structures (Fig. 6B). At later

time points, such as the 2h shown in Fig. 6C, the SVLP-containing

structures, including those associated with EEA-1+ structures, were

only rarely associating with MHCII+ structures. By employing

quenched SVLP, so that the signal would only appear upon

enzymatic digestion, association of the SVLP signal with MHCII+

structures remained rare, in contrast to association with EEA-1+

structures (Fig. 6C; see also Fig. 5D). When the occasional

interaction with MHC II+ structures could be noted (Fig. 6C white

arrow), the signal was in the more peripheral ‘‘EEA-1+ region’’,

which may explain the more common association with the EEA-1+

structures compared with MHCII.

(iii) Lysosomes and Endoplasmic Reticulum. Although

the results indicate that processing of the SVLP was occurring,

albeit at a slow rate, attempts to show association of the SVLP with

more degradative lysotracker+ organelles was unsuccessful (data

not shown). However, DC are reported to express low lysosomal

proteolytic activity [9,24,25]. As an alternative to loss of de-

tectability during SVLP processing, the SVLP may have been

diverted prior to entering lysotracker+ organelles. An alternative

processing route to maturing endosomes and lysosomes is the

transfer into the ER. However, no SVLP signal could be found

associated with the ER using ER-tracker or the chaperones

calnexin and calreticulin (data not shown).

Association of SVLP with markers of different endocytic
pathways

(i) Clathrin. Considering that DC possess different endocytic

routes, a role for clathrin-dependent or -independent endocytosis

was analysed. Labelling of the DC with antibody against clathrin

at different times after the shift to 39uC revealed that the SVLP

were mostly associated with structures free of clathrin (data not

shown). Only at early time points such as 10 min was there

evidence of co-localisation (Fig. 7A). Again, the majority of SVLP-

structures were not clathrin+, and no such association was

observed after this 10 min time point (data not shown).

(ii) Transferrin. Alexa-labelled transferrin was used as

a marker for clathrin-mediated endocytosis, as well as an aid for

identifying sorting endosomal structures; following the shift from

ice to 39uC, unbound SVLP were removed, but presence of the

transferrin was maintained for the different time points of

incubation. The earliest time point of 5 seconds (plus the time

for washing) after the shift to 39uC showed no association of

transferrin and SVLP (data not shown). From 5 min, both

transferrin and the SVLP were becoming less associated with the

cell periphery, but there were still no signs of co-localisation

(Fig. 7B, top row). Between 10 and 60 min, the transferrin

continued to be translocated from the periphery (replaced

presumably by newly endocytosed transferrin at the periphery),

but the SVLP tended to remain more peripheral than the

transferrin (Fig. 7B, 2nd and 3rd rows). It was during this period

that SVLP associating with transferrin-containing vesicles was

noted, also more peripheral (Fig. 7B, arrows). By the 2 hrs time

point, the SVLP-containing structures were showing evidence that

they were now translocating from the cell surface in larger

numbers, but were distinct from the transferrin-bearing structures

(Fig. 7B, 4th row), Interestingly, a number of particularly

perinuclear transferrin+ structures were seen, but the SVLP

remained to the peripheral side of these (Fig. 7B, 4th row).

(iii) Dextran. The evidence pointing to the clathrin-in-

dependent endocytic process of macropinocytosis was interesting

for SVLP considering that many viral pathogens employ this route

to infect host cells including DC [26]. Accordingly, high molecular

weight dextran was employed as a marker for macropinocytosis

[27], due to its accumulation in macropinosomes; the high

molecular weight of the dextran prevents its translocation from the

vesicular structures. Cells were given high molecular weight

dextran 30 min at 39uC prior to adding the SVLP, allowing the

dextran to accumulate, and ensure that there would not be

confusion with any dextran still entering the cells. DC were then

washed and pulsed with SVLP on ice for 20 min, unbound SVLP

washed away, and the cells shifted to 39uC for different time

points. By 20 min of incubation at 39uC most of the SVLP+

vesicles were associating with dextran+ vesicles (Fig. 8A, yellow

dots). Interestingly, the SVLP+ vesicles still at the leading edge of

the cells were distinct from the dextran-containing vesicles (Fig. 8A,

white arrow). It was also observed in 3D-analyses that some

dextran+ vesicles were seen in apposition with SVLP-vesicles

(Fig. 8A, right-hand image, yellow arrows). Nevertheless, algorith-

mic analysis of co-localised voxels demonstrated a high confidence

in co-localisation (Fig. 8B), and this was time-dependent.

SVLP internalisation by immature and mature DC
Further analysis of macropinocytosis used the characteristic of

mature DC having reduced activity compared with immature DC

[28]. The uptake of SVLP by mature and immature DC was

therefore compared, using DC matured with interferon-

a (1000 U/ml) plus lipopolysaccharide (10 mg/ml) for 24 hrs:

the immature DC were left untreated. For macropinocytosis, the

uptake of high molecular weight dextran (500 KD) and ovalbumin

were used as markers. Mature DC did not endocytose high

molecular weight dextran, unlike immature DC, confirming the

relative states of maturation (Fig. 8C). Ovalbumin uptake was
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partially reduced in mature DC compared to immature DC

(Fig. 8C), reflecting its known uptake by macropinocytosis plus

other endocytic routes. Internalisation of SVLP (to become PK-

resistant) by mature DC was also significantly reduced, whereas

immature DC were 60% positive for SVLP within 5 min (Fig. 8D).

Although these results indicate a major role for macropinocytosis

in DC internalisation of SVLP, this is not the only endocytic

process involved. Mature DC did internalise SVLP, but to a lower

level and with a much slower kinetics.

Discussion

DC express a wide variety of receptors to constitutively sample

their environment, and employ different endocytic pathways to

Figure 6. SVLP association with DC microtubules, leading edge and MHCII. (A) Pre-chilled DC were incubated with 2.5 mg/ml SVLP for
20 min on ice, followed by shifting to 39uC for 10 min. Samples were then fixed, permeabilised and labelled with antibody targeting a-tubulin (red)
and MHCII (blue). Acquisition was by confocal microscopy; high-resolution stacks were prepared and analysed using Filament Tracer and Spots
modules in IMARIS. Visualisation was enhanced using filament tracer (microtubules) and spot (SVLP, MHCII) modules. Scale bars: 5 mm (left), 2 mm
(right). (B) Pre-chilled DC were incubated with 2.5 mg/ml SVLP for 30 min on ice, followed by washing and shifting to 39uC for 20 min. Cells were then
fixed, permeabilised and labelled with antibody targeting MHCII (blue). Acquisition was by confocal microscopy; high-resolution stacks were
prepared using IMARIS. Scale bar: 5 mm. (C) The same cultures were used as in (B), but incubated for 2 hours. Cells were then fixed, permeabilised and
labelled with antibody targeting EEA-1 (red) or MHCII (blue). The arrows indicate sites of potential SVLP and MHCII association. Acquisition was by
confocal microscopy; high-resolution stacks were prepared using IMARIS. The arrow shows a vesicle in which SVLP and MHCII were present. Scale bar:
5 mm.
doi:10.1371/journal.pone.0043248.g006
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endocytose antigens. In contrast to more degradative cells, such as

macrophages, DC display a lower lysosomal proteolytic activity

and show greater control of proteasees process [9,24,25]. Indeed,

Delamarre et al related this limited protease activity of DC to their

slower in vivo degradation of internalized antigens and retention

of antigen in lymphoid organs for extended periods. They

remarked that this limited lysosomal proteolytic activity would

favour antigen presentation, and help explain the DC ability for

efficient accumulation, processing, and dissemination of antigens.

Considering these characteristics of DC, we sought to determine

how DC would process a complex antigen resembling a small

synthetic virus-like particle – SVLP. Many current vaccines act

against viruses, and many vaccines are based on virus particles.

SVLP have a high immunogenicity in mice, rabbits [17] and pigs

Figure 7. SVLP association with clathrin and transferrin. (A) DC were incubated with 2.5 mg/ml SVLP (green) on ice, shifted to 39uC for
different times, fixed/permeabilised, and labelled using antibody targeting clathrin (red). Acquisition was by confocal microscopy; high-resolution
stacks were prepared using IMARIS, including algorithmic co-localisation analysis for co-localised voxels. Arrows show co-localisation on the merged
image. Scale bars: 20 mm (top-left), 5 mm (zooms). (B) DC were incubated with 2.5 mg/ml SVLP (green) and 10 mg/ml transferrin-546 (red) for 20 min
on ice, washed and shifted to 39uC with addition of fresh transferrin-546 for different times at 39uC. Acquisition was by confocal microscopy; high-
resolution stacks were prepared using IMARIS. Arrows show co-localisation on the merged image. Scale bars: 30 mm (left-panel) and 5 mm (zooms).
doi:10.1371/journal.pone.0043248.g007
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Figure 8. SVLP association with high molecular weight dextran and its uptake by mature or immature DC. (A) DC were incubated with
50 mg/ml high molecular weight dextran for 30 min at 39uC, followed by ‘‘on ice’’ for 30 min. Cells were then treated with 2.5 mg/ml SVLP and
incubated for 30 min, then shifted to 39uC for different times. Acquisition was by confocal microscopy; high-resolution stacks were prepared using
IMARIS. White arrows: SVLP near the leading edge. Yellow arrows: Dextran+ vesicles in apposition with SVLP-vesicles. Scale bars: 50 mm (top-left),
3 mm (zooms). (B) Algorithms of SVLP co-localisation with dextran. (C) Four-day old DC were treated or not with interferon-a (1000 U/ml) and
lipopolysaccharide (10 mg/ml) for 24 hrs to mature. High molecular weight dextran (50 mg/ml) or ovalbumin (10 mg/ml) was added, and incubated for
5, 30 or 60 min at 39uC. The number of positive cells was measured by flow cytometry; each bar represents means of three values and standard
deviation. (D) Internalisation of SVLP (1 mg/ml) by the immature and mature DC used in (C). SVLP were added for 30 min on ice, then shifted to 39uC
for different times, when the cultures were chilled and treated or not for 30 min with PK on ice. The number of positive cells was measured by flow
cytometry; each bar represents means of three values and standard deviation.
doi:10.1371/journal.pone.0043248.g008
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(R.S., unpublished data); of particular note is that unlike most non-

replicating vaccines, the SVLP do not require formulation with

adjuvant. It was considered that analysis of how DC handle a more

complex virus-like structure would be informative; by using SVLP,

the analyses of DC function would not be complicated by any

adjuvant-formulation effect.

SVLP were bound rapidly by DC, even on ice, more efficiently

than for high molecular dextran, ovalbumin or transferrin.

Internalisation of the SVLP was initially determined in terms of

PK-resistance (internalised). Although the PK did not remove the

DC receptors binding SVLP (whereas pronase did), the PK did

efficiently destroy any SVLP still bound to the DC surface.

Following binding to the DC on ice, then washing to remove

unbound SVLP, further incubation at 39uC showed that the SVLP

gradually became resistant to the PK-treatment, but in contrast

with the rapid binding, internalisation was more gradual. This was

reflected by cell fractionation analyses. Association with the

cytoskeletal fraction was strongest at earlier time points, whereas

association with the cytoplasmic fraction was not noted until after

30 min. Membrane association was observed throughout the 4 hrs

observation period, probably reflecting the initial interaction with

the plasma membrane, followed by vesicular membranes relating

to internalisation. The SVLP signal faded at later time points, but

the loss of signal was still gradual over a number of days. This

kinetics of uptake and probable processing is consistent with the

report that DC process antigen slowly [9]. However, it was still

unclear if the slow kinetics were related to intracellular processing

or simply the rate of internalisation.

Primary DC and monocyte-derived DC are inefficient at

functional DNA transfection [23], possibly due to the imperme-

ability and resistance of their nuclear membranes. It was

considered inappropriate to employ cell lines, because the aim of

the work was to characterize how primary DC handled a complex

antigen with proven in vivo efficacy. Accordingly, the intracellular

compartments with which the SVLP associated were analysed

using ligands and antibodies for their identification.

SVLP interacted with lipid rafts on the DC surface. This was

concluded due to their patchy association with the cell surface on

ice, accumulation at the leading edge of the cell on shifting to

39uC, and co-localisation with CTB, which is known to interact

with lipid rafts [21]. Co-localisation of the SVLP with the CD9

marker associated with lipid rafts of human monocytes [22], and

sensitivity to MBCD treatment, known to interfere with cholesterol

restoration, confirmed that SVLP endocytosis by DC was

dominated by lipid raft-dependent processes. These were caveo-

lin-independent, because there was no co-localisation of SVLP-

containing structures with caveolin-1 (data not shown). Following

internalisation, there was an association with EEA-1+ structures,

which would relate to macropinosomes interacting with early

endosomes initiating antigen processing [5,6,7,8]. The association

of the internalised SVLP with EEA-1+ structures was a gradual

process, the frequency increasing as time progressed. Moreover,

not all SVLP-containing structures co-localised with EEA-1+

structures, even at later time points. The nature of this EEA-1

association was studied further using SVLP in which the

fluorochrome signal was self-quenched, and therefore required

degradation for de-quenching. When the processed SVLP was de-

quenched, the signal did co-localise with EEA-1, but this only

became apparent between 30 and 60 min (depending on the

experiment), more frequent by 1 to 2 hrs. This kinetics followed

that of DQ-Ova, a self-quenched entity employed for detecting

endosomal-processing events, the high degree of overlap indicating

similar processing pathways. This confirmed slow enzymatic

processing, but also indicated that the SVLP-containing vesicles

not associated with EEA-1 had probably not interacted with early

endosomes.

In contrast to the strong association with EEA-1+ structures,

even at later time points it was difficult to visualise association with

MHCII+ structures. Yet, the SVLP signal was aligning with

microtubules, confirming that intracellular transport was probable.

Nevertheless, the SVLP-containing vesicles, even when EEA-1+,

tended to remain more peripheral rather than trafficking towards

a more perinuclear region of the cell. The occasional SVLP-MHC

interaction that was noted, tended to be more at the peripheral

edge of region containing MHCII+ structures (intermediate

between the peripheral area occupied by most of the SVLP and

a more perinuclear region, also EEA-1+). With the peripheral

SVLP signal not declining rapidly, the endocytic process was

apparently maintaining the SVLP-containing structures in this

region, even after interaction with EEA-1+ vesicles.

Being indicative of macropinocytosis, with the advancement of

processing appearing gradual, this could explain why the observed

interaction with the MHCII+ structures was a rare event.

Visualisation of further processing may have proven difficult due

to a slow processing, when the amount of SVLP moving forward

in the processing chain was low, perhaps often too low to be

visualised. The same argument may be true for association with

the ER. This can also occur by translocation for macropinosomes

[4], before the acidification and proteolytic processing is too far

advanced. Although it was difficult to observe an association of

SVLP with the ER, there may have been a low level of

translocation, the number of events or amount of material

involved being too low for detection.

Although the results were indicating an important role for lipid-

raft mediated macropinocytosis, there was evidence of an early

involvement for a clathrin-dependent route. Nevertheless, most

SVLP were not associated with clathrin+ structures, and the latter

were only visible during the first 10 min. This implies that

clathrin-dependent endocytosis is of minor relevance to the

processing of SVLP for antigen presentation; indeed, the early

clathrin-dependent uptake may be leading the SVLP into a rapid

degradative process, rather than the slower and more progressive

antigen-processing route. The results with transferrin would also

argue in this direction. While transferrin was continually observed

translocating from the periphery, the SVLP tended to remain

more peripheral than the transferrin. Some peripheral vesicles did

contain both SVLP and transferrin, but this was rather late – at

the 60-min time point. This may reflect diversion of some SVLP-

containing vesicles into sorting endosomes. Although such

structures were in the minority, such a possibility relates to the

sorting of antigen for delivery to B-lymphocytes [1,29].

The importance of macropinocytosis in SVLP internalisation by

DC was confirmed using high molecular weight dextran [27],

which should remain blocked within macropinosomes. Allowing

dextran to accumulate in macropinosomes, SVLP-containing

vesicles entering at the leading edge of the DC were not associated

with dextran, confirming their early endocytic stage. By 20 min at

39uC, most of the SVLP co-localised with the dextran+ vesicles,

strongly indicative of SVLP accumulation in macropinosomes.

This would certainly relate to the importance of macropinocytosis

for the entry of viruses into DC [26]. Use of maturing DC for their

reduced macropinocytic activity [28] further confirmed the

importance of macropinocytosis during SVLP uptake. Mature

DC were inferior to immature DC for endocytosis of SVLP; in

contrast to high molecular weight dextran, the uptake of which

was abrogated in mature DC, there was a residual uptake of

SVLP. This internalisation by mature DC was much slower than

with immature cells, and never reached the levels obtained with
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the latter. It has been reported that mature DC continue to

employ receptor-mediated endocytosis upon maturation [30],

despite macropinocytosis being significantly reduced. Such ob-

servations demonstrate that macropinocytosis may be the major

route for endocytosis of SVLP by DC, but other endocytic

processes, albeit less efficient, can be involved. Regardless,

internalisation of SVLP by DC is a gradual process, typical of

what has been reported for DC antigen processing [9].

The present work sought to characterize how DC interact with

a complex, virus-like antigenic structure – SVLP – which is an

efficacious immunogen requiring no adjuvant to induce adaptive

immunity in mice, rabbits [17] and pigs (R.S., unpublished data).

It was considered that this interaction would highlight the

elements contributing to efficient handling by DC leading to the

observed in vivo efficacy. Overall, DC interacted rapidly with the

SVLP, but displayed a more gradual kinetics for uptake and

processing, the latter relating to reported in vivo characteristics for

DC [9]. Endocytosis was a relatively slow process dominated by

caveolin-independent, lipid raft polarisation, leading the SVLP

into a peripheral location. The processing was dominated by

macropinocytosis, although non-macropinocytic events were likely

in the background. The processing was characterized by slow

kinetics, involving fusion with EEA-1+ early endosomes in the

periphery, and followed a common path to that with dextran. This

did not lead into the more degradative pathway employed with

transferrin, nor was there any observable association with

lysosomes. The rare localisation with MHCII-structures and the

ER may reflect a loss of signal once the material reached these

organelles, due to proteolytic cleavage. It is also possible that such

rare localisation reflected a slow progress of material into these

structures, at a level too low to be detected. The prolonged

association with peripheral structures, which were not all EEA-1+,

and the slow processing relate to macropinosomal retention of

antigen for slow antigen processing [9], and would allow for entry

into sorting compartments favouring transfer of antigen to B

lymphocytes [1,29]. Certainly, the processing was effective, as

witnessed by the immune responses induced by SVLP in vivo.

These characteristics of how DC handle a complex virus-like

structure such as SVLP do relate to efficacious processing, and the

characteristics DC require for efficient induction of immune

responses.

Materials and Methods

Ethics Statement
Blood donor pigs were used for the supply of blood, from which

blood cells were prepared, and used for the generation of

monocyte-derived DC. This operated under permission from the

Canton of Bern, Switzerland through the animal licence 112/09.

Porcine monocyte-derived DC
Porcine monocyte-derived DC were prepared as previously

described [31], from specific pathogen-free pigs held at the

Institute’s facility. Briefly, these were prepared from peripheral

blood cells using CD172a-magnetic sorting to isolate monocytes,

then culturing for 3–5 days with recombinant porcine GM_CSF

and IL-4 as described [32]. Monocytes are characterised by high

expression of CD172a (Fig. S1C), and the sorting yields .90%

purity. Upon culture in GM-CSF and IL-4, we obtained $95%

DC purity, characterized as described [32], [31]. Cell culture

medium and serum was obtained from Invitrogen (Basel, Switzer-

land).

SVLP
Lipopeptide buildings blocks were prepared as described

previously [17], Briefly, the peptide GGIEKKIEAIEKKIEAIEK-

KIEAIEKKIEAIEKKIAKMEKASSVFNVVNSKKKC-DA-am-

ide (0.25 mmol scale) was assembled on an ABI 433A peptide

synthesizer using standard Fmoc chemistry and Rink amide

MBHA resin pre-loaded with Fmoc-D-Ala (substitution:

0.3 mmol/g). After assembly and removal of the N-terminal

Fmoc-protecting group using 20% piperidine in DMF, the lipid

1,3-dipalmitoyl-glycero-2-phosphoethanolamine-N-succinic acid

[17] was coupled manually using PyBOP/HOBt/DIEA for

activation. The resin was then washed with DMF (3x), CH2Cl2
(3x) and CH3OH (3x), dried in vacuo over KOH pellets and

treated with CF3COOH/thioanisole/ethanedithiol/H2O/i-

Pr3SiH (75:10:10:4:1, 10 ml). The lipopeptide was precipitated

with iPr2O (cooled to 220u), washed 3x with iPr2O, dried and

purified by reverse phase HPLC using an UP10WC4/25M

preparative C4 column (Interchrom, 250621.2 mm, 5 mm parti-

cle size, 300 Å pore size). For cell-uptake and intracellular

trafficking studies, SVLP were labelled with Alexa-Fluor 488 C5

maleimide (Life Technologies, Zug, Switzerland). Remaining free

cysteines were blocked with N-ethylmaleimide (Sigma). For some

experiments, in order to observe degradation in acidifying

compartments, over-labelled SVLP were prepared by conjugating

excess Alexa-Fluor 488 C5 maleimide. The molecular weights of

the lipopeptide and Alexafluor 488 conjugate were confirmed by

mass spectrometry (MALDI-TOF and/or ESI-MS) and the purity

was .96% by analytical reversed phase HPLC. The size

distribution of SVLP was monomodal with narrow size-dispersion

and a hydrodynamic radius [14] of 11.2–12.8 nm by dynamic

light scattering (DLS). Unless stated otherwise, the SVLP were

used at 1 mg/ml for Flow Cytometry and 2.5 mg/ml for confocal

microscopy.

Proteinase K and pronase treatment of DC
In order to quantify SVLP internalisation by DC, flow

cytometry was employed. To this end, it was important to

differentiate between the surface bound and internalised SVLP.

Accordingly, Proteinase K (PK) obtained from Sigma was

employed. PK was titrated with DC on ice, to determine the least

toxic concentration, PK induced toxicity being observed by PI

staining. Least toxicity was seen with 0.2 mg/ml of PK. Therefore,

0.2 mg/ml of PK was used in all the experiments. PK was always

used under cold conditions on ice in order to minimise cell

damage. Pre-chilled DC were incubated with SVLP on ice for 20

or 30 min, or without SVLP were washed with 2 ml ice cold

phosphate-buffered saline (PBS). Cell pellet was re-suspended in

500 ml of cold Dulbecco’s MEM (DMEM) and incubated on ice

for 20 min. Then PK (0.2 mg/ml) was added followed by 30 min

incubation on ice. Then, 10% (v/v) porcine serum (PS) was added

in order to inactivate PK activity. Cells were then washed with

2 ml ice cold cell wash or PBS by centrifuging at 3506 g. Cells

were re-suspended in cell wash to analyse by flow cytometry or in

DMEM to incubate with SVLP.

DC were also treated with pronase (Roche), for stripping

protein receptors. DC (0.56106/ml) were treated with different

concentrations of pronase and incubated at 39uC for 25 min,

followed by 5 times washing with 2 ml ice cold cell wash

containing 10% (v/v) PS. DC were immediately re-suspended in

500 ml cold DMEM and shifted on ice for 30 min, followed by

addition of SVLP or CTB and incubated for 20 min on ice. Cells

were then fixed with 4% (w/v) PFA, or surface labelled with

antibody against CD172a, CD14 or MHCI; replicates of cells
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stained with the former two antibodies were treated with 3mM

NaN3 to impair receptor recycling.

Antibodies and markers
Considering the difficulties in expressing tagged proteins in

primary DC using transfected DNA plasmids, visualisation of

different cell organelles had to rely on direct labelling in situ.

Accordingly, labelling of different intra-cellular organelles em-

ployed the following reagents: Major Histocompatability Complex

II (MHCII) containing vesicles were labelled with antibody against

MHCII molecules (mouse monoclonal 1F12 IgG2b; BD Trans-

duction Laboratories), microtubules were labelled with anti a-

tubulin (mouse monoclonal IgM; Santa Cruz Biotechnology); early

endosomes were labelled with antibody against Early Endosome

Antigen 1 (EEA-1) (Mouse Anti-EEA-1; BD Transduction

Laboratories); clathrin coated pits were labelled with anti-clathrin

antibody (mouse anti-clathrin Heavy Chain; BD Transduction

Laboratories); Endoplasmic Reticulum (ER) was labelled with

antibody against Calnexin (pAB Rabbit; Enzo Life Sciences); lipid

rafts were labelled with antibody against CD9 (Serotech) or

cholera toxin B (CTB)-Alexa546 (Life Technologies, Zug, Switzer-

land); CTB was used at a final concentration of 5 mg/ml.

Isotypespecific conjugates labelled with Alexa-fluro dye were used

from Life Technologies. Markers used for defining different

endocytic pathways included biotinylated high molecular weight

dextran-500 KDa (Sigma) for macropinocytosis, transferrin from

human serum labelled with Alexa546 for clathrin-mediated

endocytosis and recycling endosomes, CTB-Alexa546 for marking

lipid rafts, DQ-Ovalbumin (DQ-Ova) to mark acidifying compart-

ments, and ovalbumin labelled with Alexa488 for multiple

endocytic routes; all from Life Technologies.

Immunolabelling
Four day-old DC (0.2 million cells/well) were seeded in 8-well

fibronectin-coated Labteks (Nunc, Wiesbaden, Germany) with

200 ml of DMEM per well. For labelling of intracellular organelles,

DC were fixed with 4% (w/v) paraformaldehyde (PFA) and

washed twice with 0.1% (w/v) saponin, followed by incubation

with the primary antibody (see above) diluted in 0.3% (w/v)

saponin for 30 min on ice. Cells were then washed twice with

0.1% (w/v) saponin, followed by addition of an Alexa fluor-

labelled conjugated secondary antibody diluted in 0.3% (w/v)

saponin, with 30 min incubation on ice. Cells were then washed

twice with 0.1% (w/v) saponin in cell wash. DC were then

mounted in Mowiol and analysed by confocal microscopy.

The exception to the above routine was the procedure to label

microtubules. Cells were washed twice with microtubule stabilising

buffer (MSB), and then permeabilised with 1% (w/v) Triton X-

100 in MSB for 1 min at room temperature. The cells were then

washed and stained with the antibody against a-tubulin in cell

wash for 30 min on ice, washed twice, and then given the Alexa

fluor-labelled conjugated secondary antibody in cell wash for

another 30 min on ice. After final washing, the cells were mounted

in Mowiol and analysed by confocal microscopy.

Confocal Microscopy
Confocal microscopy employed a Leica TCS SL microscope

and LCS software (Leica Microsystems AG, Glattbrugg, Switzer-

land). All images were acquired using a 636 oil-immersion

objective; analysis used IMARIS-7.4.2 software (Bitplane AG). For

co-localisation analysis, high-resolution images acquired at opti-

mum voxel size were used, and automatic threshold applied.

Percentage material co-localised and Pearson’s coefficient were

also calculated. All microscopy analyses employed threshold

subtraction and gamma-correction, relating to the negative

controls that no false positive emissions were present. Some

images had analyses with filament tracer and spot modules of

IMARIS, to enhance their visualisation.

DC Maturation
Four day-old DC were treated with interferon-a (1000 U/ml)

(in house) and lipopolysaccharide (LPS) (10 mg/ml) (Sigma) for

24 hrs at 39uC. Cells were then harvested and pulsed with SVLP

on ice for 20 min., followed by washing and incubation at 39uC
for different time points. Cells were then treated with PK or were

directly analysed by flow cytometry.

High molecular weight dextran and CTB-Alexa546 markers
Cells were incubated with biotinylated high molecular weight

dextran (50 mg/ml) for 30 min at 39uC, followed by washing and

incubating on ice for 30 min. SVLP (2.5 mg/ml) were then added

and further incubated on ice for 20 min. Cells were then washed

and shifted to 39uC for different time points. DC were fixed with

4% (w/v) PFA at different times. Cells were then permeabilised (as

above) and labelled with streptavidin-546 (Invitrogen) diluted in

0.3% (w/v) saponin.

Four-day old DC were pre-incubated on ice for 30 min,

followed by addition of SVLP, or CTB-Alexa546, or anti-CD9

antibody, or all together. The cells were then further incubated on

ice for 30 min and then washed twice with cold PBS. Warm

DMEM was then added and cells were shifted to 39uC for

different incubation times, followed by fixing and mounting (as

above).

DC treatment with inhibitors
DC were treated with 20 mM methyl-b cyclodextran (MBCD;

Sigma) for 20 min at 39uC. Cells were then shifted on ice and

incubated for 30 min. Then fresh medium with 2 mM MBCD was

added to prevent cholesterol restoration, followed by addition of

SVLP, with incubation for 20 min on ice. Cells were then washed

and fixed with 4% (w/v) PFA, or stained labelled streptavidin prior

to fixation. One set of samples were treated with PK and the other

not.

Flow Cytometry
FACS Calibur analytical FCM (Becton Dickinson, Basel,

Switzerland) was used for acquiring data, and CellQuest Pro

software (Becton Dickinson) for analysis. Always 10,000 gated live

cells were acquired. Statistical analysis employed the FlowJo

software (Treestar, San Carlos, CA), which was also used to

prepare the flow cytometry plots.

Statistical Analysis
For statistical analysis, the Student t-test was performed, using

SigmaPlot Versin 11.0. Differences were considered to be

significant when p#0.05.

Supporting Information

Figure S1 SVLP structure and PBMC sorting. (A)

Structure of SVLP construct. (B) Purity of cell fractions isolated

from PBMC by magnetic sorting using CD172a to isolate

monocytes.

(TIF)

Figure S2 Influence of MBCD on SVLP and CTB
interaction with DC. (A) Flow Cytometry histograms showing

the uptake of SVLP by DC, triplicate samples, in the absence of

DC Endocytosis of SVLP

PLOS ONE | www.plosone.org 15 August 2012 | Volume 7 | Issue 8 | e43248



MBCD or after pre-treatment with 20 mM MBCD for 20min at

39uC prior to washing and adding the SVLP for 20min on ice. For

reference, the cell control is shown as the solid grey histogram.

The ‘‘Overlay’’ shows just the results with (coloured) and without

(grey/black) MBCD. (B) As in (A), but using CTB in place of

SVLP. (C) As in (A), but comparing a particular stock of SVLP

used at 1 mg/ml and 10 mg/ml.

(TIF)
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