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Abstract

Treatment of cancer often involves uses of multiple therapeutic strategies with different mechanisms of action. In this study
we investigated combinations of nanosecond pulsed electric fields (nsPEF) with low concentrations of gemcitabine on
human oral cancer cells. Cells (Cal-27) were treated with pulse parameters (20 pulses, 100 ns in duration, intensities of 10, 30
and 60 kV/cm) and then cultured in medium with 0.01 mg/ml gemcitabine. Proliferation, apoptosis/necrosis, invasion and
morphology of those cells were examined using MTT, flow cytometry, clonogenics, transwell migration and TEM assay.
Results show that combination treatments of gemcitabine and nsPEFs exhibited significant synergistic activities versus
individual treatments for inhibiting oral cancer cell proliferation and inducing apoptosis and necrosis. However, there was
no apparent synergism for cell invasion. By this we demonstrated synergistic inhibition of Cal-27 cells in vitro by nsPEFs and
gemcitabine. Synergistic behavior indicates that these two treatments have different sites of action and combination
treatment allows reduced doses of gemcitabine and lower nsPEF conditions, which may provide better treatment for
patients than either treatment alone while reducing systemic toxicities.
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Introduction

Oral squamous cell carcinoma (OSCC) is the most widespread

malignant oral cavity neoplasm [1,2]. OSCC has a higher

proportion of deaths than breast cancer and cervical cancer with

36,540 new cases and 7,880 deaths in the United States in 2010

[2]. Despite therapeutic advances using surgery, radiation, and

chemotherapy, the 5-year survival rate has remained at 50–55%

for the past four decades [2–4]. This disappointing outcome

strongly suggests that we needed to improve treatments of OSCC.

Presently, chemotherapy is one of the most important treatment

methods for malignancy. However, misuse and overuse of drugs

could induce adverse effects and chemotherapeutic drug resis-

tances are common [5–8]. Therefore, avoiding drug resistances

and adverse effects of chemotherapy treatment in cancer and

improving therapeutic outcomes have recently gained consider-

able attention. One way to enhance uptake of chemotherapeutic

agents is by electroporation therapy (EPT), which has been more

recently referred to as electrochemotherapy (ECT); EPT would

include gene electrotransfer (GET) [9] and irreversible electropo-

ration (IRE) [10], both of which are used for cancer therapy. The

primary biological effect of conventional electroporation is by

reversible permeabilization of target cell plasma membranes.

Short (millisecond, ms or microsecond, ms), relatively low voltage,

electrical pulses can create micropores in plasma membranes,

allowing entrance of poorly permeating agents such as macro-

molecules, proteins, drugs or genes [11–16]. Electrochemotherapy

has been considered an interesting alternative in treatments of

head and neck cancer [17,18]. However, ECT only increases

bioavailability of membrane impermeable drugs by permeabilizing

plasma membranes [19].

Unlike conventional electroporation, nanosecond pulsed electric

fields (nsPEFs) exhibit extremely short pulse durations, high

voltage, but low energy and non-thermal effects [20]. They create

large transmembrane potentials across membranes [21] and

nanopores in plasma membranes as well as in intracellular

membranes [22–25]. Recently, treatment with nsPEFs is emerging

as a novel stimulus for inducing tumor cell death. Apoptosis can be

induced by nsPEFs in various cancer cell lines in vitro [26–30], and

in B16f10 melanoma tumors [32] and in Hepa l–6 hepatocellular

carcinoma in vivo [33]. Current studies show that nsPEFs can

induce several cellular responses including calcium bursts from the

endoplasmic reticulum [34–37], DNA fragmentation [29], and

caspase activation [26,30,38]. However, there are currently no
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studies on tumor cell treatments with nsPEFs in combination with

chemotherapy agents.

In this study, a deoxycytidine analog drug gemcitabine (29, 29-

difluorodeoxycytidine) is employed in combination with nsPEFs.

Gemcitabine has shown activity in a variety of solid tumors,

including breast, head and neck, bladder, ovary, lung, and

pancreas [39–41]. Current studies suggest primary antitumor

mechanisms of gemcitabine include reduction of apoptotic

thresholds, interference with DNA replication and blockade of

DNA synthesis [42–44]. Huang et al. [45] reported antitumor

activity of gemcitabine increased when calcium concentrations

increased. Since nsPEFs induce formation of nanopores in plasma

membranes [25], these pulses do not enhance delivery of drugs to

cells like that observed in ECT. However, our study provides

evidence that nsPEFs with low doses of gemcitabine have a strong

synergistic effect on cell death in OSCC. This has potentially

important clinical relevance given toxicity for gemcitabine when

used as a radiosensitizer for treatment of head and neck

carcinomas [46] as well as high burden of anemia, thrombocy-

topenia and other associated untoward effects [47]. These

observations are demonstrated using MTT viability assays,

clonogenic assays, flow cytometry, scanning electron microscopy

and transwell invasion assays. Synergistic effects with combina-

tions of gemcitabine and nsPEFs are observed in all of these assays

except cell invasion, which exhibited additive effects. The

demonstration of synergy indicates that these two therapies have

different sites of action that coordinately enhance OSCC cell

death by apoptosis and necrosis.

Materials and Methods

Cell line and cell culture
The cell line used in this study was Cal-27 (ATCC American

Type Culture Collection CRL-2095), a human squamous cell

carcinoma cell line of the tongue. Cal-27 cells were cultured in

DMEM medium, supplemented with 10% dialyzed fetal calf

serum and 2 mM glutamine (Invitrogen). No antibiotics were

used. Cells were cultured as monolayers and maintained in

exponential growth in a humidified air atmosphere with 5% CO2/

95% at 37uC. Cal-27 cells were harvested at 80–90% confluence

by treatment with 0.25% trypsin/0.53 mM EDTA solution and

prepared for in vitro experiments.

Application of nanosecond pulsed electric fields (nsPEFs)
In this study, we used a nanosecond pulsed electric field

generator as previously described with a duration of 100-ns [48].

Electric fields were varied from 10 kV/cm to 60 kV/cm.

Waveforms were monitored using a digital phosphor oscilloscope

(DPO4054. Tektronix.USA) equipped with a high voltage probe

(P6015A.Tektronix.USA). The pulse power devise is shown in

Fig. 1. Cal-27 cells were harvested and resuspended in cell culture

media with a concentration of 2.06106 cells/ml. A 500 ml cell

suspension (16106 cells) was placed in 0.2 cm gap cuvette

(Biosmith, aluminum plate electrodes) and exposed to nsPEFs.

To explore possible synergistic effects of nsPEFs combined with

low concentrations of gemcitabine on Cal-27 cells in vitro, 20 pulses

with 100 ns durations with electric field of 10 kV/cm, 30 kV/cm,

Figure 1. A schematic diagram of experimental setup for nsPEFs on Cal-27 cells. A schematic diagram of experimental setup for nsPEFs on
Cal-27 cells. A) NsPEF generator; B) Pulse excitation region; C) 0.2 cm gap cuvette (Biosmith); D) The typical waveforms of nsPEFs; E) Circuit design for
nsPEFs.
doi:10.1371/journal.pone.0043213.g001

Synergistic Cell Death with nsPEF and Gemcitabine
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60 kV/cm, and a gemcitabine concentration of 0.01 mg/ml were

applied alone and in combination with Cal-27 cells and then

treated with nsPEFs. According to different treatments, cells were

divided into four groups. Group A was the control group and

received neither gemcitabine nor nsPEF. Group B was treated

with gemcitabine, group C was treated with nsPEF (10 kV/cm,

30 kV/cm or 60 kV/cm). Group D was exposed to nsPEF as in

group C plus gemcitabine.

Cell proliferation test
Anti-proliferative effects of gemcitabine on Cal-27 cells were

determined with the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenylte-

trazolium bromide (MTT) dye uptake method. In this study we

seeded 86103 cells/well into 96-well flat bottom (Costar) plates.

When cells began to grow exponentially, they were treated with

gemcitabine and desired concentrations (0.01, 0.1, 1.0, 10,

100 mg/ml). After incubation for 24, 48, and 72 h, 20 ml MTT

(5 mg/ml) was added to each well, and cells were further

incubated at 37uC for 4 h. The medium was then removed and

200 ml of DMSO was added to dissolve the reduced formazan

product. Dye intensity was then read on a micro plate reader (Bio-

Rad) at 492 nm.

Using this same method, we investigated proliferation effects of

nsPEF combined with gemcitabine. Cal-27 cells were harvested

and resuspended with a concentration of 2.06106 cells/ml. A

500 ml cell suspension (16106 cells) was placed in 0.2 cm gap

cuvette (Biosmith) and exposed to nsPEFs. After treatment group

D cells were treated with nsPEFs and then incubated with

0.01 mg/ml gemcitabine. Then cell proliferation was analyzed

after 24, 48, and 72 h by MTT assay.

Clonogenic assay
Clonogenic regrowth efficiency was determined by plating

single cell suspensions in medium onto the bottom of cell culture

dishes. Cal-27 cells in control and treated groups were exposed to

different nsPEF intensity of 0 kV/cm, 10 kV/cm, 30 kV/cm, and

60 kV/cm, then cells were incubated in 37uC for 6 hours to allow

attachment to the plastic bottom before the medium was replaced

with or without gemcitabine. The control group and gemcitabine

group had 200 cells seeded and other treated groups had 2000

cells seeded in 60 mm plate. After incubation for 10 days, cell

colonies were fixed and stained with 0.1% crystal violet. Colonies

($50 cells) were counted for computing percent growth inhibition.

Cell apoptosis evaluation by flow cytometry
A Annexin V-FITC Apoptosis Detection Kit (BD Biosciences

Pharmingen) was used for assessing apoptosis induced by nsPEF

combined with low concentration of gemcitabine. Annexin V-

FITC and propidium iodide (PI) were used to evaluate normal

cells (no staining), early apoptotic cells (annexin positive, PI

negative) and necrotic cells (annexin and PI positive). After

treatment with nsPEFs, groups B and D were incubated in fresh

media with 0.01 mg/ml gemcitabine. All cell groups were

incubated 2 h at 37uC. Cells were then collected, stained with

Annexin V-FITC in a dark at room temperature for 15 min, and

then stained with PI on ice for 30 min. Samples were assessed by

FACSauto flow cytometry (Becton Dickinson, USA).

TEM observation for morphological changes
Morphological changes were observed by transmission electron

microscopy (TEM). Cells were first fixed with 2.5% glutaralde-

hyde/2% osmium tetroxide for no more than 20 minutes and

stained with uranyl acetate and lead citrate.

Synergism quotient calculation
The synergism quotient is calculated by subtracting baseline

values from all treatments and then dividing effects of combined

treatments by the sum of individual treatments. A synergism

quotient greater than 1.0 indicates that there is synergism for a

given measured response.

Cell invasion assay
Cell invasion was assessed by a modified Boyden assay using

transwell chambers (Costar, Cambridge, MA) with 8 mm pore

polycarbonate filters that were coated with 50 mg/ml of Ma-

trigelTM (BD, Biosciences, Bedford, MA) diluted in serum-free

medium. Cal-27 cells were treated with nsPEFs (10 kV/cm,

30 kV/cm, 60 kV/cm) plus gemcitabine. Cells (2.06104 cells/

chamber) were seeded in the top of cylindrical cell culture inserts

in DMEM media plus 2.5% FBS. DMEM media with 10% FBS

was placed in wells below and cells were allowed to migrate

through the filter for 48 h at 37uC in 5% CO2. Non-migrating

cells were removed from upper surfaces of chambers by scrubbing

with a cotton swab. Migrated cells on the lower membrane were

fixed in 100% methanol and stained with 0.1% Crystal Violet

(Invitrogen) for 20 min at 4uC. Invasion cells were counted under

a microscope.

Statistics
Data were analyzed using one-way ANOVA, post hoc,

Bonferroni and Dunnett’s test for analyses of multiple group

comparisons. Statistical analyses and graphics were performed

using the program SPSS version 16.0. Results were expressed as

the mean6SEM. In all cases P,0.05 was taken as the level of

significance.

Results

Synergistic suppression of proliferation with nsPEFs and
gemcitabine

Effects of gemcitabine on proliferation of Cal-27 were first

determined using MTT assay. As indicated in Figure 2A, results

showed a clear concentration- and time-dependent inhibitory

effect of gemcitabine on Cal-27 cell survival. When a concentra-

tion of 2.3 mg/ml of gemcitabine was applied, Cal-27 cell viability

was reduced to a level of 50% of control samples at 48 h. Based on

these results, we chose 0.01 mg/ml gemcitabine as an extremely

low concentration for combination treatments. Figures 2B, C and

D show effects of gemcitabine and nsPEFs (10, 30 and 60 kV/cm)

alone and in combination in an MTT cell death assay 24, 48 and

72 hours after treatment. When used alone, there was an electric

field-dependent increase in nsPEF-induced cell death. Combina-

tion groups showed a more significant inhibition than the sum of

effects of nsPEF and gemcitabine alone, especially at 10 kV/cm

and 30 kV/cm, where synergism quotients were .3 and 2 times

better than the sum of each treatment alone. In addition, results

showed that combination treatments have an electric field

strength- and time-dependent effect on Cal-27cell proliferation.

However, as effects of nsPEFs become greater, the ability to see

synergism decreases because as effects of electric fields alone

approach a maximum response, the ‘‘window’’ for seeing

synergism is progressive decreased; when nsPEFs produce a

maximal response, the ability to see synergism is lost.

Synergistic Cell Death with nsPEF and Gemcitabine
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Electric field-dependent effects of nsPEFs and synergism
on Cal 27 cell survival

To study effects of treatment effects on Cal-27 cell growth, cells

were treated with nsPEFs and gemcitabine, and cell viability was

assessed by clonogenic assays (Figure 3). Again, there was an

electric field-dependent increase in growth inhibition with nsPEF

treatment. The combination treatment resulted in inhibition of

colony formation of Cal-27 cells when compared with the sum of

the nsPEF group and gemcitabine group alone However, in this

application synergism was less than in proliferation assays. This is

due to in vitro conditions that allows drug to be present with

continued action during entire incubation times. This is unlike an

in vivo situation where the drug would have limited time-action

effects. Nevertheless, results from clonogenic assays were consistent

with MTT data as shown in Figure 2, suggesting that nsPEFs

combined with low concentrations of gemcitabine significantly

inhibited cell growth in Cal-27 cells.

Synergistic effects of nsPEFs and gemcitabine on
apoptosis and necrosis

Numbers of apoptotic and necrotic cells were determined by

annexin V-FITC and PI double staining. Greater numbers of cells

showing early apoptosis were observed when nsPEFs were

combined with the low concentration of gemcitabine. Early

apoptosis (PS externalization without PI staining) detection results

by flow cytometry were shown in Figure 4D, and statistical data

were shown in Table 1. Results show that in combination groups,

PS externalization was induced markedly at 10, 30 and 60 kV/cm

as indicated by synergism quotients greater than 1.0. In addition,

combinations of nsPEFs with gemcitabine also exhibited synergis-

tic actions on necrosis (annexin-V-FITC and PI double staining);

synergism quotients for necrotic cells were also greater than 1.0 at

all electric fields tested. Notice that there was a ‘‘response window’’

for observing optimal synergism for both apoptosis and necrosis.

This is typical, because as individual effects become too great, the

‘‘response window’’ for synergism becomes smaller and eventually

no synergism can be seen due to effects of one treatment.

Figure 2. NsPEF combined with gemcitabine synergistically inhibit growth in Cal-27 cells. Inhibition of cell proliferation was assessed by
MTT assay. A) Cal-27 cells were treated with various concentrations of gemcitabine for 24 h, 48 h, 72 h. B, C, D): Cell death rates of Cal-27 cells were
determined after combination treatment for 24 h, 48 h and 72 h. Results are presented as the percentage of the decreased values from the control
cells. Insets in B) and C) show synergism quotients at every electric field with gemcitabine combination. The synergism quotient is defined in
Materials and methods. The results presented are averages of three independent experiments each done in triplicate and expressed as the mean
6SEM. *p,0.01, one way ANOVA with Bonferroni/Dunnett’s test compared to the nsPEF group and gemcitabine group.
doi:10.1371/journal.pone.0043213.g002

Synergistic Cell Death with nsPEF and Gemcitabine
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The presence of apoptotic and necrotic cells was also evident

upon a morphological analysis. Morphological characteristics of

normal cells by electron microscopy are: uniform distribution of

cytoplasm and integral cellular membrane (Figure 4A). Typical

morphological changes of Cal-27 cells after combination treatment

were observed through transmission electron microscope. After

combination treatment for 4 hours with nsPEFs plus 0.01 mg/ml

gemcitabine, Cal-27 cells exhibited morphological characteristics

of apoptosis including nuclear condensation, oversize cytoplasmic

particles and vacuoles as well as smooth, integral cellular

membrane and intact organelles (Figure 4B). In addition,

characteristics of necrosis, including karyopycnosis, endolysis,

damaged organelles, diffused chromatin, and ruptured plasma

membrane were observed in Cal-27 cells after combination

treatment (Figure 4C).

Absence of synergism of nsPEFs and gemcitabine on cell
invasion

Invasion assays were performed as described in Materials and

methods. As shown in Figure 5, both gemcitabine and nsPEFs

inhibited invasion potentials of Cal-27 cells. In addition, inhibitory

effects of nsPEF on invasion were electric field-dependent. When

the potential for synergism was analyzed from effects of the

combination of gemcitabine and nsPEFs, there was no synergistic

effect on Cal-27 cell invasion.

Figure 3. Effect of the combination of the nsPEFs and gemcitabine in the colony formation of Cal-27 cells. A) Photographic difference
in colony formation in treated groups. B) Gemcitabine (0.01 ug/ml) in combination with nsPEFs at 10, 30 and 60 kV/cm, respectively. Data are
expressed as percentages of growth inhibition in reference to growth of untreated control cells. The synergism quotient is defined in Materials and
methods. The results presented are average of three experiments each done in triplicate and expressed as the mean 6SEM. *p,0.01, one way
ANOVA with post-hoc Bonferroni/Dunnett’s test compared to the control group, nsPEF group and gemcitabine group.
doi:10.1371/journal.pone.0043213.g003

Synergistic Cell Death with nsPEF and Gemcitabine
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Figure 4. NsPEFs combined with gemcitabine significantly induced Cal-27 cell apoptotic death. A) The graph shows normal Cal-27 cells,
which have intact plasma membranes and nuclear envelopes; B) nsPEF combined with gemcitabine induced apoptosis of Cal-27 cells. From the
graph, blebbing membranes are clear; C) nsPEF plus gemcitabine induce necrosis in Cal-27 cells, which have ruptured nuclear and plasma
membranes; D) Characterization of apoptosis after PI and Annexin V-FITC staining; E, F) Synergism of percent cells showing apoptosis and necrosis,
respectively, is determined by treatment of cells with nsPEF and gemcitabine alone and in combination. The results presented are average of three
experiments each done in triplicate and expressed as the mean 6SEM. *p,0.01, one way ANOVA with post-hoc Bonferroni/Dunnett’s test compared
to the control group, nsPEF group and gemcitabine group.
doi:10.1371/journal.pone.0043213.g004

Table 1. Effect of nsPEFs combined with Gemcitabine on Cal-27 apoptosis.

Group Annexin-V-FITC+/PI2(%) P-values SQ Annexin-V-FITC+/PI+(%) P-values SQ

Control 2.360.6 --- --- 1.160.7 --- ---

Gemcitabine 9.864.6 P = 0.016 --- 3.161.1 P = 0.013 ---

10 kV/cm 6.960.3 P = 0.001 --- 2.260.9 P = 0.011 ---

30 kV/cm 15.965.5 P = 0.041 --- 3.961.1 P = 0.007 ---

60 kV/cm 33.763.6 P = 0.03 --- 7.861.8 P = 0.009 ---

Gemcitabine+10 kV/cm 18.967.1 P = 0.047 1.37 7.362.4 P = 0.024 2.00

Gemcitabine+30 kV/cm 38.864.1 P = 0.003 1.73 10.161.6 P = 0.003 1.87

Gemcitabine+60 kV/cm 54.866.2 P = 0.004 1.35 11.561.3 P = 0.001 1.20

Synergism of apoptosis rate was determined by treatment of cells with nsPEF and Gemcitabine in combination. The apoptosis rate of nsPEF-Gemcitabine combination
divided by the sum of single control, nsPEF, Gemcitabine groups to obtain the values of synergism quotient. P-values stand for statistical significance compare the
treated samples with control samples.
doi:10.1371/journal.pone.0043213.t001

Synergistic Cell Death with nsPEF and Gemcitabine
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Discussion

Applications of nsPEF are emerging as a novel stimulus for

tumor treatment [26–33]. Electric fields interact with plasma

membranes, intracellular organelles [20] and alter cell functions

such as mobilizing calcium [34–37], dissipating mitochondria

membrane potentials (DYm) [27,49–50], and damaging DNA

[29,51] as well as inducing apoptosis [26–30,49] and other forms

of cell death [27,49,52]. Although applications of nsPEFs are

effective to eliminate melanoma [31,32] and hepatocellular

carcinoma [33] in mice in vivo, understanding underlying

mechanisms require further analysis. Gemcitabine is used to treat

several cancers, including head and neck tumors. However, like

most cancer therapies, multiple treatments are needed either in

combination or in sequence. Even then based on present

outcomes, more efficacious treatments are needed. In this study,

we investigated effects of nsPEFs combined with a low concen-

tration of gemcitabine on proliferation/survival, apoptosis/necro-

sis and invasion in Cal-27 human OSCC cells in vitro. We

hypothesized that by combining gemcitabine with nsPEFs, the

concentration of gemcitabine could be reduced significantly to

include efficacy without significant side effects. By analyzing a

number of effects, we found synergistic activity with treatment

combinations to inhibit proliferation and survival and induce cell

death by apoptosis and necrosis, but not to affect cell migration/

invasion. Results also show that combination treatments inhibit

Cal-27 cell proliferation in a time- and strength-dependent

manner. Although results for proliferation inhibition and colony

Figure 5. Invasion assay by nsPEF and gemcitabine combination treatment. A) The representative microscopic fields of invasion cells on the
bottom of transwell inserts. B) Quantitation of cell invasion assay by counting invaded cells. Five microscopic fields were arbitrarily chosen and the
average invaded cell number was determined. The results presented are average of three experiments each done in triplicate and expressed as the
mean 6SEM. *p,0.01 one way ANOVA with post-hoc Bonferroni/Dunnett’s test compared to the control group, nsPEF group and gemcitabine
group.
doi:10.1371/journal.pone.0043213.g005

Synergistic Cell Death with nsPEF and Gemcitabine
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formation were in agreement with each other, synergism for

colony formation showed less synergism because effects of

individual treatments were quite effective alone. This suggests

that even lower gemcitabine concentrations and lower electric

fields could be effective.

These in vitro results suggest that for treatments of Cal-27 cells,

and likely other gemcitabine-sensitive tumors, in combination with

nsPEFs treatments, gemcitabine concentrations can minimize drug

side effects. Since nsPEFs have minimal side effects [32–33], it

should be possible to effectively eliminate tumors with combina-

tion treatment with minimal untoward effects. Since these

synergistic actions could be therapeutically advantageous, it will

be important to advance these in vitro studies to an animal model

and determine whether different treatment scheduling can

enhance synergism.

The presence of synergism suggests that mechanisms of action

of each treatment are likely at different sites and/or through

different pathways. Gemcitabine interferes with replication and

synthesis of DNA and exhibits self-potentiation [42–44]. However,

gemcitabine-induced apoptosis appears to be cell type-specific

[54]. Gemcitabine actions are complex and it may have different

cell death mechanisms in different cell types. The same thing can

be said of nsPEFs.

Exact sites of action for nsPEF-induced cell death are still in

question. DNA is a possible site [29,32,51]. Gemcitabine and

nsPEFs could act at different sites on DNA like that observed with

gemcitabine and ionizing radiation [46]. It has also been suggested

that nanopore formation is a major cause of apoptosis [22]. The

presence of nanopores in plasma membranes depolarizes cell

membrane potentials [24,25]. Subsequent fluxes of the ubiquitous

second messenger calcium, which regulates myriad cell responses,

can upset homeostatic mechanisms. Suspected nanopore forma-

tion in inner mitochondria membrane causes dissipation of DYm

[27,49,50] and elevated levels of intracellular calcium could

exacerbate this by overloading and upsetting mitochondria

calcium homeostasis. This can disrupt a wide range of functions

for maintenance of life as well as induction of death. Thus, cell

membrane nanopores can threaten life and promote death.

Regardless of sites of action, this study provides accumulating

evidence that nsPEFs induce cell death through multiple pathways

including apoptosis (caspase-dependent) and necroptosis/necrosis

(caspase-independent) [27,49,52]. Gemcitabine/nsPEF combina-

tions exhibited synergy for both types of cell death, again

suggesting actions at different sites. Because apoptosis and necrosis

can both affect mitochondria [53], these organelles are likely

primary sites for both cell death mechanisms. Since ATP

production is needed for apoptosis but not necrosis, ATP levels

could determine which type of cell death is induced [54]. Like

gemcitabine, actions of nsPEFs are complex. Since this is the first

study to investigate uses for nsPEFs and a chemotherapeutic agent,

additional work will be required to determine mechanisms of each

agent alone before mechanisms for their synergistic effects can be

determined.

Synergism observed with gemcitabine and nsPEFs is essentially

the same as dose enhancement effects observed with gemcitabine

as a radiosensitization agent. Concentrations and exposure times

for gemcitabine here and elsewhere were similar to those used in

radiosensitization [55]. However, variations of treatment schedules

and intervals were not investigated in our study and these factors

may be important like that observed for radiosensitization [55,56].

Since nsPEFs were used before gemcitabine in this study, it is

possible that nsPEFs sensitizes Cal-27 cells to gemcitabine. It will

be useful to study possibilities for synergistic effects using even

lower concentrations of gemcitabine and lower electric fields with

variable treatment order, times and intervals.

Combinations of gemcitabine with nsPEFs on invasion exhib-

ited additive effects, but not synergism. Nevertheless, both

treatments were potent invasion inhibitors. Since cellular mech-

anisms for cell motility and invasion versus proliferation and cell

death are much different, synergistic effects of these treatment

combinations show some selectivity for actions on cellular

mechanisms.

It is again noted that the treatment approach used here with

gemcitabine is distinct from uses of chemotherapeutic agents in

electrochemotherapy (ECT), which only increase plasma mem-

branes permeability of poorly permeable chemotherapeutic drugs.

In contrast, gemcitabine is readily membrane permeable and both

it and nsPEFs have their own sites and mechanisms of action. It is

most likely that these two therapies act at different sites or

pathways significantly diminishing side effects yet providing

cooperative actions that inhibit proliferation and lead to tumor

cell death by apoptosis and necrosis.
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