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Abstract

Background: Horizontal gene transfer (HGT) is one of the major mechanisms contributing to microbial genome
diversification. A number of computational methods for finding horizontally transferred genes have been proposed in the
past decades; however none of them has provided a reliable detector yet. In existing parametric approaches, only one
single compositional property can participate in the detection process, or the results obtained through each single property
are just simply combined. It’s known that different properties may mean different information, so the single property can’t
sufficiently contain the information encoded by gene sequences. In addition, the class imbalance problem in the datasets,
which also results in great errors for the gene detection, hasn’t been considered by the published methods. Here we
developed an effective classifier system (Hgtident) that used support vector machine (SVM) by combining unusual
properties effectively for HGT detection.

Results: Our approach Hgtident includes the introduction of more representative datasets, optimization of SVM model,
feature selection, handling of imbalance problem in the datasets and extensive performance evaluation via systematic
cross-validation methods. Through feature selection, we found that JS-DN and JS-CB have higher discriminating power for
HGT detection, while GC1–GC3 and k-mer (k = 1, 2, …, 7) make the least contribution. Extensive experiments indicated the
new classifier could reduce Mean error dramatically, and also improve Recall by a certain level. For the testing genomes,
compared with the existing popular multiple-threshold approach, on average, our Recall and Mean error was respectively
improved by 2.81% and reduced by 26.32%, which means that numerous false positives were identified correctly.

Conclusions: Hgtident introduced here is an effective approach for better detecting HGT. Combining multiple features of
HGT is also essential for a wider range of HGT events detection.
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Introduction

Horizontal gene transfer (HGT, also called lateral gene transfer)

is a transfer of genetic material from one lineage to another and

has played a key role in species evolution and microbial genome

diversification [1,2]. Transfers can occur both between closely and

distantly related species or strains, and are thought to be frequent

events [3]. In addition, horizontal gene transfer has also been

proposed to result in the emergence of novel human diseases and

poses several risks to humans [4,5]. As sequence data has

accumulated, evidence for rampant HGT has increased dramat-

ically. Thus, detecting HGT has enormous practical significance

for providing a better understanding of the impact of HGT on

genome evolution and for identifying new drug targets.

At present, there are two primary strategies to detect the genes

that have been transferred horizontally: phylogenetic approaches

and parametric approaches [6,7]. Phylogenetic approaches are

typically based on the comparative study of numerous genomes to

find genes with unusually taxonomic distributions. However, many

other phenomena, such as biased mutation rates, gene loss and

long branch length attraction etc., also can cause the phylogenetic

tree for a gene to differ from that for the species, thus, phylogenetic

approaches are time-consuming and insufficiently robust [8,9].

In contrast, parametric approaches (also called composition-

based approaches) are based on a common theory that the unusual

characteristics of horizontally transferred genes can distinguish

themselves from other genes in genome. This kind of approach is

computationally less demanding and can be carried out in each

single genome. So far, various parametric approaches have been

proposed, but it’s not difficult to find one common drawback that

only one single compositional property could be used to identify

the transferred genes in each predicting experiment. It’s known

that different properties may mean different information, and this

limitation also results in great errors for HGT detection. Some

combined methods were also proposed by Becq et al. [10] and

Azad et al. [11] to resolve this problem, but these methods just

only combined the predictive results that obtained through each

single property, the essence remained that only one single property
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was used. Therefore, how to sufficiently extract the information

encoded by genes has become an open and challenging issue. In

addition, machine learning also was applied widely for HGT

detection [12,13], but the class imbalance problem which can

result in poor classification performance with respect to the

minority class [14] hasn’t been considered by them.

In light of all the caveats, in this study, we have developed a new

strategy (Hgtident) which used support vector machine (SVM) to

detect horizontally transferred genes by combining the unusual

properties effectively, meanwhile, the class imbalance problem was

also considered. The information from combined properties can

sufficiently stands for the whole gene sequence. To our knowledge,

this is the first use of such integrated strategy to identify

horizontally transferred genes. As a result, Hgtident can achieve

better performance than the existing methods.

Materials and Methods

Datasets
In previously published study, various artificial datasets were put

forward [3,5,6,7,8,10,11,12,13], and this kind of simulative dataset

was composed of donor genes and recipient genome. The task is

that of recovering as many as possible of the donor genes. But it’s

important to note that, in the evolutionary histories of recipient

genome, those genes from a transfer of genetic materials between

different species don’t have been considered.

So, in this article, in order to validate the performance of

Hgtident in genuine genomes, we chose six common genomes

published in more reliable HGT-DB database (http://genomes.

urv.cat/HGT-DB/) [15], which was E. coli K12, E. coli O157

Sakai, S. enterica Typhi CT18, S. enterica Paratypi ATCC 9150,

C. pneumoniae CWL029 and S. agalactiae 2603, respectively. The

horizontally transferred genes and others in genome were

respectively regarded as positives and negatives. The results

predicted by Hgtident would be compared with that of the existing

popular multiple-threshold approach proposed by Azad et al. [11].

Compositional Features
7 common features were used for HGT detection owing to their

representativeness and wider coverage. These features contained

Karlin’s dinucleotide [16], Karlin’s codon bias [17], GC1–GC3

[18], k-mer (k = 1, 2, …, 7) [19], x2 dinucleotide, x2 codon bias

[20], JS-N, JS-DN and JS-CB [8], which is respectively based on

structural, statistical, and Shannon information entropy character-

istics. We believe these comprehensive properties can sufficiently

express the information encoded by gene sequences. Therefore, we

chose them to develop the SVM model.

Selection of SVM Model
SVM is a supervised machine learning paradigm derived from

the statistical learning theory of structural risk minimization

principle for solving linear and non-linear classification and

regression problem [21]. We chose SVM as our classification

paradigm due to its high generalization capability, ability to find

global classification solutions [21], and successful application in

bioinformatics and other practical domains.

The model selection for SVM involves the selection of a kernel

function and its parameters which yield the optimal classification

performance for a given dataset [21]. Among the available kernel

functions, we chose the most popular and widely used Radial Basis

Function (RBF) as the kernel function because of its higher

reliability in finding optimal classification solutions in most

practical situations [22]. The performance of the classifier at each

parameter point (c, g) is evaluated by 5-fold cross-validation on the

training dataset. After finding the best parameters, a new SVM

model was trained using the complete training dataset at those

parameters. Then a separate testing dataset was used to measure

the performance of the developed classifier. The C++ interface of

libsvm3.1 package [23] was used to develop SVM model. Before

training the SVM classifier systems, the complete dataset was

scaled into (21, +1) interval.

Feature Selection
Selecting the most discriminative set of features would increase

the performance, efficiency and comprehensibility of a classifier

system by reducing its complexity. In particular, through analyzing

the optimal feature subsets for these genomes, we can clearly

realize which features make more important contributions to

HGT detection. Here genetic algorithm (GA) was chosen as our

feature selection paradigm due to its strong random search ability

to find the convincingly optimal feature subset. The evaluation

from GA aims to one feature subset, not one single feature, and

this can guarantee the combination optimization of feature subset

[24]. Firstly, generated some feature subsets randomly, then the

new feature subsets were obtained through selection, cross and

mutation. After many iterations of this ritual, the result would

converge to the optimal solution, which corresponded to the

optimal feature subset. The 5-fold cross-validation was used to test

the generalization ability of feature subsets, the feature subset

which obtained optimal classification performance would be

considered as optimal feature subset.

The feature selection procedure was carried out based on initial

imbalanced dataset. Binary string was chosen to code the feature

data of the population, 1 meant that the corresponding feature was

selected, and 0 was just the reverse. The chosen fitness function

was f(x) = 10000*Recall because we needed to evaluate the Mean

error under the situation where the highest Recall was obtained.

Each generation contained 100 individuals. And the cross

probability, mutation probability and iteration number was set

to 0.9, 0.1 and 200, respectively. We employed the classical

proportion selection operators, and the optimal two individuals in

every generation were directly passed to the next generation.

Class Imbalance Problem
As is well-known, the horizontally transferred genes are far less

than others in each genome, which will inevitably result in the

sample imbalance problem. It has been well studied that training

a classifier with an imbalance positive and negative dataset in

machine learning research would result in poor classification

performance with respect to the minority class [14,25], in this case,

it would be with respect to the horizontally transferred gene class.

According to previous study, Synthetic Minority Over-sampling

Technique (SMOTE) which is independent from the learning

algorithm and involves in pre-processing of training data was

successfully applied to this kind of problem [26]. It is an over-

sampling technique which introduces new synthetic examples in

the neighborhood of the existing minority examples. Therefore,

SMOTE was chosen to resolve the class imbalance problem in this

study.

Evaluation Criteria
In this research, we used detection rate Recall as our primary

evaluation criteria as the same with that in the paper published by

Azad et al. [11]. In addition, Mean error was also used as the

evaluation criteria to sufficiently evaluate the performance of

Hgtident. They are defined as follows,
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Recall~
TP

TPzFN
|100,

Mean error~
Type I errorzType II error

2
|100,

where Type I error~ FN
TPzFN

, Type II error~ FP
TNzFP

, and TP

refers to true positives, FN refers to false negatives, TN refers to

true negatives and FP refers to false positives.

Results and Discussion

Feature Selection Results
As the first experiment, we trained an SVM model with the

complete imbalanced dataset to observe the classification perfor-

mance. The complete dataset was randomly divided into five

equally sized partitions and each partition contained the same

ratio of positives and negatives. Then four partitions were used

together as the training dataset to develop an SVM classifier, the

resulted model was tested for its classification performance on the

fifth partition. This procedure was repeated five times with

different combinations of training and testing dataset, and the

results were averaged. Table 1 shows the classification results

obtained subjected to all features and optimal feature subset. For

each genome, Recall and Mean error were respectively improved

and reduced effectively by using the optimal feature subset. In

average, Recall was improved by 6.50%, and Mean error was

reduced by 4.67%, which showed the optimal feature subset has

a significant influence in better classification results. The resulted

optimal feature subsets with less number of features not only gave

higher classification results, but also immensely reduced compu-

tational complexity.

At the same time, the optimal feature subset for each genome

was analyzed as well, and summarized in Table 2. We found the

JS-DN and JS-CB appeared in five out of six feature subsets, which

indicated these two features have higher discriminating power for

HGT detection than the others. Second was Karlin’s codon bias,

x2 dinucleotide and x2 codon bias. In addition, GC1–GC3 and k-

mer (k = 1, 2, …, 7) hardly ever appeared in these optimal feature

subsets, which also indicated these features make the least

contribution to HGT detection. These deductions could also be

well achieved from the results obtained through the multiple-

threshold approach in Section ‘‘Comparison of multiple-threshold

approach with Hgtident’’.

Class Imbalance Learning Results
The imbalance learning experiments would be carried out to

observe the classification results by 5-fold cross validation. First, an

SVM model was trained by applying SMOTE on a training

dataset containing four-fifth complete dataset. Then its perfor-

mance was tested on the remaining imbalanced one-fifth of

dataset. This procedure was repeated five times with different

combinations of training and testing datasets, finally, the results

were averaged. Table 3 presents the classification results through

class imbalance learning method with the optimal feature subsets.

From these results, we could find that, compared with the

preliminary classification results obtained through the imbalanced

datasets, the application of SMOTE could improve the Recall and

reduce the Mean error effectively. In average, Recall was

improved by 6.53%, and Mean error was reduced by 6.02%,

which provided a good evidence for us to apply SMOTE in this

problem for the development of a better performing classifier with

respect to imbalanced positive and negative classes.

Comparison of Multiple-threshold Approach with
Hgtident
At present, the multiple-threshold approach proposed by Azad

et al. [11] is very popular, because better results can be obtained.

Thus the comparison between these two approaches would be

carried out to evaluate the performance of Hgtident (Table 4). It’s

not difficult to find that, in the multiple-threshold approach, each

Recall was obtained at the cost of a higher Mean error, which

means that a mass of false positives were produced. The reason is

maybe that only one single property can be applied in this

approach, however, every one single property can’t sufficiently

express the comprehensive information encoded by genes. This

information should be expressed sufficiently by different properties

based on different directions. Therefore, these seven comprehen-

Table 1. Comparison of classification results obtained
through 5-fold cross validation with respect to different
feature subsets selected.

All features
Optimal feature
subset

Genome Recall
Mean
error Recall

Mean
error

E. coli K12 80.62 18.67 86.79 13.50

E. coli O157 Sakai 76.83 17.97 84.62 14.31

S. enterica Typhi CT18 67.32 27.31 77.27 21.92

S. enterica Paratypi ATCC 9150 78.34 20.38 83.73 16.05

C. pneumoniae CWL029 74.52 19.17 80.66 16.10

S. agalactiae 2603 74.73 20.69 78.30 14.27

doi:10.1371/journal.pone.0043126.t001

Table 2. The optimal feature subsets for testing genomes.

Feature A B C D E F

Karlin’s
dinucleotide

Yes Yes Yes

Karlin’s codon
bias

Yes Yes Yes Yes

GC1–GC3 Yes

x2 dinucleotide Yes Yes Yes Yes

x2 codon bias Yes Yes Yes Yes

JS-N Yes Yes Yes

JS-DN Yes Yes Yes Yes Yes

JS-CB Yes Yes Yes Yes Yes

1-mer Yes

2-mer

3-mer Yes

4-mer Yes

5-mer Yes

6-mer Yes

7-mer Yes

A-F is E. coli K12, E. coli O157 Sakai, S. enterica Typhi CT18, S. enterica Paratypi
ATCC 9150, C. pneumoniae CWL029 and S. agalactiae 2603, respectively. ‘‘Yes’’
indicates that the corresponding feature is included in the optimal feature
subset.
doi:10.1371/journal.pone.0043126.t002
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sive and representative features were applied to this research

together. From Table 4, we could clearly observe that Hgtident

effectively reduced the Mean error, which also illustrated the

correctness of our viewpoint.

In addition, we respectively chose the highest Recall and the

corresponding Mean error obtained through multiple-threshold

approach in each genome to compare with our results (Fig. 1). For

E. coli K12, our Recall was reduced by 0.76%; but for E. coli O157

Sakai, S. enterica Typhi CT18, S. enterica Paratypi ATCC 9150,

C. pneumoniae CWL029 and S. agalactiae 2603, our Recall was

respectively improved by 0.73%, 5.95%, 0.82%, 3.80% and

6.33%, as a whole, the mean was 2.81%. In addition, for each

genome, our Mean error was reduced dramatically, and the

overall mean was 26.32%. Tsirigos et al. [12] and Chen et al. [13]

also used SVM to research the prediction of horizontally

transferred genes, but they used the simulated datasets, most

importantly, only one single property was used in their researches,

which also indicated insufficient information encoded by genes

was extracted. In addition, surprisingly, none of them have

considered a proper class imbalance learning method for classifiers

development. Thus, their results were even inferior to that

obtained through the multiple-threshold approach. Therefore,

we can state that the results reported in our research are much

more reliable and better than those results published by other

existing approaches.

Conclusions
In this research, an integrated strategy, which more compre-

hensively described the biological information encoded by genes,

was proposed to identify horizontally transferred genes. Mean-

while, SMOTE was also considered to address the class imbalance

problem. Extensive experiments indicated that the extraction of

sufficient information can reduce Mean error dramatically, and

also improve Recall by a certain level. However, change in gene

Table 3. Comparison of classification results obtained through class imbalance learning method with the optimal feature subsets
by 5-fold cross validation.

None (imbalanced dataset) SMOTE (balanced dataset)

Genome Recall Mean error Recall Mean error

E. coli K12 86.79 13.50 92.35 7.26

E. coli O157 Sakai 84.62 14.31 89.85 9.64

S. enterica Typhi CT18 77.27 21.92 86.17 11.36

S. enterica Paratypi ATCC 9150 83.73 16.05 91.60 7.64

C. pneumoniae CWL029 80.66 16.10 83.51 13.70

S. agalactiae 2603 78.30 14.27 87.09 10.42

doi:10.1371/journal.pone.0043126.t003

Table 4. The classification results of the multiple-threshold approach and Hgtident.

E. coli K12 E. coli O157 Sakai S. enterica Typhi CT18
S. enterica Paratypi
ATCC 9150 C. pneumoniae CWL029 S. agalactiae 2603

Method Recall Mean error Recall Mean error Recall Mean error Recall Mean error Recall Mean error Recall Mean error

A 81.03 30.54 79.05 22.94 66.80 33.99 89.93 37.32 69.27 37.49 72.35 38.57

B 75.56 28.09 77.51 26.19 71.27 26.99 82.80 22.99 67.43 37.33 76.57 23.12

C 42.44 37.98 47.02 43.10 33.96 47.27 45.65 39.51 40.53 43.15 37.19 46.60

D 64.95 36.56 67.29 29.42 71.79 51.44 78.56 24.23 72.60 44.09 69.50 30.51

E 61.09 38.71 61.67 38.72 61.75 41.90 71.13 24.26 73.34 40.56 80.63 34.73

F 93.11 51.24 86.03 27.45 80.22 25.39 82.16 46.98 68.64 37.76 77.50 29.67

G 86.50 30.92 77.00 26.20 78.73 35.25 79.41 24.14 77.05 27.10 67.60 40.06

H 90.03 34.32 89.12 33.50 70.71 26.89 90.78 43.26 79.71 28.89 80.76 35.67

I 87.13 36.27 47.19 50.51 34.51 58.81 88.93 46.27 46.51 47.38 37.24 52.63

J 43.73 53.22 49.06 51.64 46.27 58.77 46.50 51.87 47.36 50.60 41.15 52.76

K 43.73 53.05 49.06 50.83 41.79 58.49 51.80 51.90 47.36 50.73 41.15 51.32

L 63.73 44.29 50.15 53.19 35.82 58.71 51.80 52.45 53.15 51.19 35.07 49.67

M 43.73 53.34 52.81 49.75 35.82 58.50 46.71 52.00 48.89 51.32 54.13 49.75

N 51.13 53.37 47.53 51.38 44.51 56.80 46.50 51.97 47.36 50.38 46.30 51.69

O 43.73 54.17 49.06 50.92 44.51 56.80 48.83 52.21 49.10 47.41 49.62 51.33

Hgtident 92.35 7.26 89.85 9.64 86.17 11.36 91.60 7.64 83.51 13.70 87.09 10.42

A-O is multiple-threshold approach based on Karlin’s dinucleotide, Karlin’s codon bias, GC1–GC3, x2 dinucleotide, x2 codon bias, JS-N, JS-DN, JS-CB and k-mer (k = 1, 2,
…, 7), respectively. The best Recalls and corresponding Mean errors obtained through multiple-threshold approach are depicted in bold face.
doi:10.1371/journal.pone.0043126.t004
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inventory is a historical process, how to thoroughly extract the

useful information encoded by genes still remain a challenging and

open issue. Further study is yet needed to decrease the false

positives and negatives.
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