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Abstract

Insects are the most diverse group of animals on the planet, comprising over 90% of all metazoan life forms, and have
adapted to a wide diversity of ecosystems in nearly all environments. They have evolved highly sensitive chemical senses
that are central to their interaction with their environment and to communication between individuals. Understanding the
molecular bases of insect olfaction is therefore of great importance from both a basic and applied perspective. Odorant
binding proteins (OBPs) are some of most abundant proteins found in insect olfactory organs, where they are the first
component of the olfactory transduction cascade, carrying odorant molecules to the olfactory receptors. We carried out a
search for OBPs in the genome of the parasitoid wasp Nasonia vitripennis and identified 90 sequences encoding putative
OBPs. This is the largest OBP family so far reported in insects. We report unique features of the N. vitripennis OBPs, including
the presence and evolutionary origin of a new subfamily of double-domain OBPs (consisting of two concatenated OBP
domains), the loss of conserved cysteine residues and the expression of pseudogenes. This study also demonstrates the
extremely dynamic evolution of the insect OBP family: (i) the number of different OBPs can vary greatly between species; (ii)
the sequences are highly diverse, sometimes as a result of positive selection pressure with even the canonical cysteines
being lost; (iii) new lineage specific domain arrangements can arise, such as the double domain OBP subfamily of wasps and
mosquitoes.
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Introduction

Chemical senses are central to the life history of the parasitoid

wasp, Nasonia vitripennis, commonly known as the jewel wasp. For

instance, their courtship behaviour is guided by male [1] and

female [2] pheromones and females locate hosts and parasitize the

pupae of various fly species using olfactory signals [3,4]. The wasps

also use chemical cues from host pupae to bias the sex ratio of their

offspring, manipulate the clutch size and to avoid oviposition on

dead hosts, or those containing well-developed parasitoid larvae,

pupae or adults [5,6,7].

The Nasonia genus is mainly comprised of three closely related

species of wasps. N. vitripennis (Walker) is found throughout the

world and is estimated to have diverged from N. giraulti and N.

longicornis approximately 1.0 million years ago (Mya). The three

species are normally genetically isolated as the result of Wolbachia-

induced cytoplasmic incompatibility and laboratory strains, cured

of Wolbachia are interfertile, provide a useful source of genetic and

sequence variation for mapping studies. Consequently, Nasonia

serves as a useful model system, particularly for the study of the

genetics of complex traits and for comparative developmental

genetics. The genomes of three Nasonia species, N. vitripennis, N.

giraulti and N. longicornis have been sequenced [8] and at the time of

writing, all other Hymenoptera with a sequenced genome belong

to the Aculeata group, which diverged from the Chalcidoida (the

clade of parasitic wasps that includes Nasonia) approximately 200

Mya ago. The phylogenetic position of Nasonia is therefore very

important for studies of sequence changes along the apocritan

Hymenoptera lineage, which comprises both social and parasitoid

groups.

We searched the Nasonia genome sequences to gain insight into

the evolution and diversity of the odorant binding protein (OBP)

family. Insect OBPs are small, water soluble proteins present at a

very high concentration (up to 10 mM) in the chemosensillum
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Table 1. Summary of N. vitripennis OBPs. Unless otherwise indicated, the ‘‘Status’’ is protein coding and ‘‘EST support’’ is full.

Name Scaffold Status
EST
support Subfamily Name Scaffold Status

EST
support Subfamily

NvitOBP01 1 Yes Classic NvitOBP02 1 Yes Classic

NvitOBP03 1 Yes Classic NvitOBP04 3 None Classic

NvitOBP05 3 pseudogene None Classic NvitOBP06 5 Yes Classic

NvitOBP07 9 Yes Classic NvitOBP08 9 Yes Classic

NvitOBP09 9 Yes Classic NvitOBP10 9 None Classic

NvitOBP11 9 Yes Classic NvitOBP12 9 Yes Classic

NvitOBP13 9 Yes Classic NvitOBP14 9 None Classic

NvitOBP15 9 Yes Classic NvitOBP16 9 None Classic

NvitOBP17 9 Yes Classic NvitOBP18 9 Yes Classic

NvitOBP19 9 Yes Classic NvitOBP20 9 Yes Classic

NvitOBP21 9 None Classic NvitOBP22 9 None Classic

NvitOBP23 9 Yes Classic NvitOBP24 9 None Classic

NvitOBP25 9 Yes Classic NvitOBP26 9 Yes Classic

NvitOBP27 9 Yes Minus-C NvitOBP28 9 Yes Classic

NvitOBP29 9 None Classic NvitOBP30 9 Yes Classic

NvitOBP31 9 None Classic NvitOBP32 9 Yes Classic

NvitOBP33 9 pseudogene Yes Classic NvitOBP34 9 pseudogene Yes Classic

NvitOBP35 9 Yes Classic NvitOBP36 9 None Classic

NvitOBP37 9 Yes Classic NvitOBP38 9 Yes Minus-C

NvitOBP39 9 Partial Double
Minus-C(a)

NvitOBP40 9 Yes Double
Minus-C(a)

NvitOBP41 9 Yes Double
Minus-C(a)

NvitOBP42 9 None Double
Minus-C(a)

NvitOBP43 9 None Double*
Minus-C(a)

NvitOBP44 9 Yes Double
Minus-C(a)

NvitOBP45 9 Yes Double
Minus-C(a)

NvitOBP46 9 Yes Double
Minus-C(a)

NvitOBP47 9 Yes Classic NvitOBP48 9 Yes Double

NvitOBP49 9 Yes Double NvitOBP50 9 Yes Classic

NvitOBP51 9 Yes Classic NvitOBP52 9 Yes Classic

NvitOBP53 9 Yes Classic NvitOBP54 9 Yes Classic

NvitOBP55 9 Yes Classic NvitOBP56 9 Yes Minus-C

NvitOBP57 9 pseudogene None Classic NvitOBP58 9 Yes Minus-C

NvitOBP59 9 Partial Minus-C NvitOBP60 9 Yes Minus-C

NvitOBP61 9 None Minus-C NvitOBP62 9 Yes Minus-C

NvitOBP63 9 incomplete None Classic NvitOBP64 9 incomplete None Classic

NvitOBP65 18 Yes Classic NvitOBP66 18 Yes Classic

NvitOBP67 20 Yes Classic NvitOBP68 20 pseudogene None Classic

NvitOBP69 24 Yes Classic NvitOBP70 30 None Classic

NvitOBP71 30 Yes Classic NvitOBP72 30 Partial Classic

NvitOBP73 30 pseudogene Yes Classic NvitOBP74 33 pseudogene Yes Classic

NvitOBP75 40 Yes Classic NvitOBP76 126 None Classic

NvitOBP77 153 None Classic NvitOBP78 153 None Classic

NvitOBP79 153 None Classic NvitOBP80 153 None Classic

NvitOBP81 153 Yes Classic NvitOBP82 153 Yes Classic

NvitOBP83 153 Yes Classic NvitOBP84 153 Yes Classic

NvitOBP85 163 None Classic NvitOBP86 174 incomplete Yes Classic

NvitOBP87 178 None Classic NvitOBP88 178 None Classic

NvitOBP89 178 pseudogene None Classic NvitOBP90 185 Yes Classic

*OBP only has some vestiges of its second domain.
(a)On its first domain only.
doi:10.1371/journal.pone.0043034.t001

Double-Domain OBPs of the Parasitoid Wasp
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lymph bathing the dendrites of olfactory nerve cells in antennae

[9]. They function as carrier proteins, transporting semiochemicals

to olfactory receptors and thus constitute the first molecular

recognition step in insect olfaction [9,10]. Some members of the

OBP family have been shown to be involved directly in the

olfactory process [11,12,13,14]. However, several studies have

reported the expression of OBPs in non-olfactory organs

[15,16,17,18] and thus the function of this family of proteins

appears to be diverse and context-dependent.

OBPs typically contain six highly conserved cysteine residues,

forming disulphide bonds that stabilise the 3-D structures

[19,20,21,22,23]. The presence or absence of these canonical

cysteine residues has been used to classify OBPs into three

subfamilies: classic OBPs (six canonical cysteines), plus-C OBPs

(more than six cysteines) and minus-C OBPs (less than six

cysteines) [17,24,25,26,27]. In Drosophila melanogaster, transcripts

encoding two OBP dimers (DmelOBP83cd and Dmel83OBPef) have

been identified, with two complete OBP domains each with six

conserved cysteines (a total of 12 cysteines). Some OBPs are

thought to form homo- and hetero-dimers in vivo [28] and thus the

fusion of two OBP domains would generate an OBP dimer to form

a single gene.

The Nasonia genome paper [8] reported a preliminary

annotation of 90 OBP-like genes. Here we carry out further

analyses of these genes and describe the unique features and the

evolutionary origins of the wasp OBPs. A previous study has

reported the genome annotation of 90 OBP-like genes in the N.

vitripennis genome as the supplementary material [8]. Here we

carry out further analyses of those OBPs report for the first time

the genome annotation and analysis of 90 OBP-like genes in the

genome of N. vitripennis and describe the unique features and

evolutionary origin of the wasp OBPs.

Results and Discussion

Annotation of OBPs
Genome wide searches of the N. vitripennis (Nvit) assembly v1.0

[8] identified 90 sequences [EMBL: HE578186-HE578278]

encoding proteins with a high similarity (likely homologous) to

insect OBPs which we have named NvitOBPs (Table 1, Figure 1,

Figure S3 and S4). Searches against the N. vitripennis ESTs and the

raw genomic traces did not yield any additional sequences; it is

therefore likely that we have identified the full complement of

OBP-like sequences in N. vitripennis. This is the largest OBP family

reported so far in any insect species [29,30]. By contrast, the

honeybee Apis mellifera has only 21 OBP genes [31], the fire ant

Solenopsis invicta only 12 [32] and the pea aphid Acyrthosiphon pisum

only 15 [33]. As would be expected, based on the very high

genomic sequence similarity between the three Nasonia species, all

90 sequences identified in N. vitripennis have a clear ortholog in N.

giraulti and N. longicornis. Interestingly, we did not find any ‘‘plus-C’’

OBPs [26] in this large OBP repertoire with all Nasonia OBPs

belonging to the ‘‘classic’’ or the ‘‘minus-C’’ OBP subfamilies [25].

We named N. vitripennis OBP genes using the ‘‘NvitOBP’’ prefix

followed by a number incremented from the 59 end of their

scaffold to the 39 end, in increasing scaffold order (Table 1). Of the

90 genes, 59 sequences have full EST support, three are partially

supported and the remaining 28 have no EST support, eight of the

latter having frameshifts, indicating that these are pseudogenes

(Table 1).

Loss of conserved cysteine residues
The highly conserved pattern of cysteine residues in insect

OBPs is very important for the disulphide bonding that stabilise

the folded OBP structures [19,20]. Classic OBP structure is

composed of 6 cysteine residues forming 3 disulphide bonds,

Figure 1. Multiple Sequence Alignment (MSA) of all 90 Nasonia OBP sequences. The signal peptides are in skyblue boxes, the conserved
residues are highlighted, the characteristic cysteines indicated in purple boxes. The splice sites are labelled with orange separators: vertical ones
indicate splice sites between codons; backward slanted separators indicate splice sites within codons after the first base. The double-domain OBPs
are NvitOBP38-NvitOBP46 and NvitOBP48.
doi:10.1371/journal.pone.0043034.g001

Table 2. Conserved cysteine residue losses in OBPs.

Cysteine
No. of events
(No. of affected genes) Affected Genes (one event per line)

C1 2 (3) NvitOBP31, NvitOBP64, DmelOBp59a.

C2 2 (2) AgamOBP38b, AgamOBP42a.

C5 2 (8) NvitOBP38b, NvitOBP39b, NvitOBP40b, NvitOBP41b, NvitOBP42b, NvitOBP44b, NvitOBP45b, ApisOBP11.

C6 2 (2) DmelOBP73a, AcerASP4.

C1/C3* 1 (4) AgamOBP34b, AgamOBP35b, AgamOBP36b, AgamOBP37b.

C2/C5* 8 (50) NvitOBP27, NvitOBP56, NvitOBP58, NvitOBP59, NvitOBP60, NvitOBP61, NvitOBP62, NvitOBP38a, NvitOBP39a,
NvitOBP40a, NvitOBP41a, NvitOBP42a, NvitOBP43, NvitOBP44a, NvitOBP45a, NvitOBP46a,DmelOBP8a,
DmelOBP99c, DmelOBP99d,DmelOBP44a,AgamOBP39b,LtesOBP8,AmelOBP14, AmelOBP15, AmelOBP16,
AmelOBP17, AmelOBP18, AmelOBP19, AmelOBP20, AmelOBP21, TcasOBP02, TcasOBP03, TcasOBP04, TcasOBP05,
TcasOBP06, TcasOBP07, TcasOBP08, TcasOBP09, TcasOBP10, TcasOBP11, TcasOBP12, TcasOBP13, TcasOBP14,
TcasOBP15, TcasOBP22, TcasOBP23, TcasOBP24, TcasOBP33, TcasOBP34, TcasOBP44.

C4/C6* 2 (2) AgamOBP40a,AgamOBP45b.

C2/C6 1 (1) NvitOBP69.

C5/C6 1 (1) AgamOBP65.

C4/C5/C6 1 (1) AgamOBP16.

*Cysteine pairs forming disulphide bonds in the OBPs. Incomplete sequences were excluded.
doi:10.1371/journal.pone.0043034.t002

Double-Domain OBPs of the Parasitoid Wasp
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although other forms have also been reported [24,34]. Interest-

ingly, the wasp OBPs have lost a large number of such conserved

cysteines, with a minimum of 22 independent loss events (Table 2).

One event involves the loss of three cysteines (C4/C5/C6), 13

events involve the loss of two cysteines (1 for C1/C3; 8 for C2/C5;

1 for C2/C6; 2 for C4/C6; 1 for C5/C6) and eight events involve

the loss of a single cysteine (2 for C1; 2 for C2; 2 for C5; 2 for C6).

We assessed whether the cysteine losses occurred at random or if

they preferentially involved disulphide bond-forming cysteines

(Table 2). Considering just the 13 events involving two cysteine

replacements (58 OBP genes), 11 of them involved cysteines

forming disulphide bonds. The probability that 11 out of 13 would

specifically affect the two disulphide bond-forming cysteines is

extremely low (p = 1.065779e26), suggesting that the replacement

of one cysteine (if such event is not deleterious) reduces the

selective constraints acting on their former partner.

Double-domain OBPs
We have identified 10 unusual N. vitripenis sequences encoding

putative OBPs (OBP38-OBP46 and OBP48) with only little

sequence similarity with the OBPs of other insect species.

However, these 10 OBPs have significant similarity with those of

the other wasp OBPs, which are in turn related to the classical

OBPs of other insects. Moreover, the 10 N. vitripenis genes are

found in the middle of a genomic cluster located on scaffold 9

containing predominantly OBP genes (Table 1). Nine of these

non-standard OBPs (all except OBP43) are exceptionally long

(more than 250 amino acids) and are formed by two OBP domains

Figure 2. Mid-point rooted phylogenetic relationships of Nasonia vitripennis (light brown) and Apis mellifera (orange) OBPs. The outer
ring shows the intron/exon structure in the coding region (intron phases are represented by colour-coded crossed bars: dark orange, phase 0; blue,
phase 1; black, phase 2. The scale bar represents 1 amino acid substitution per site. The tree is displayed using the iTOL webserver (Letunic and Bork
2007). The accession numbers of OBPs used are listed in Table S1.
doi:10.1371/journal.pone.0043034.g002

Double-Domain OBPs of the Parasitoid Wasp
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arranged in tandem. One of the two domains, however, has

undergone extensive loss of the canonical cysteines and become a

‘‘minus-C OBP’’. These double-domain OBPs are thus different

from the dimer OBPs of D. melanogaster (Dmel), such as

DmelOBP83cd and DmelOBP83ef, which have two complete

OBP domains with no cysteine losses. This domain organization

fits well with the functional hypothesis of OBP dimerization

[28,35,36]. Moreover, a number of ESTs support the fact that the

transcripts of these genes contain both OBP domains.

Domain definition
We defined the two domains of the double-domain wasp OBPs

using the splicing pattern, sequence similarity and cysteine profile

(Figure 1). In fact, the two domains have, in almost all cases, the

same gene structure, which is similar to the closely-related classic

OBPs (except for the signal peptides) (Figure 2 and 3). Excluding

the signal peptides, we define the 1st domain from positions 25 to

186 and the 2nd domain from 187 to ,240 of the multiple

sequence alignment (Figure 1).

Interestingly, the gene cluster containing the double-domain

OBPs also includes two single-domain proteins (NvitOBP43 and

NvitOBP47) that appear to have different evolutionary histories.

Figure 3. Comparison of the phylogenetic tree topologies of double-domain OBPs. The phylogenetic trees built using the full-length
Nasonia double-domain OBPs are depicted in black, and those with information of the first domain or second domain in dark blue or dark orange,
respectively. A) Full-length OBPs (left) compared with the first OBP domain (right). B) Full-length OBPs compared with the second OBP domain. C) The
second domain compared with the first domain. Branch support values represent Bayesian and bootstrap, respectively. Scale bars represent amino
acid substitutions per site.
doi:10.1371/journal.pone.0043034.g003

Double-Domain OBPs of the Parasitoid Wasp
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The phylogenetic analysis suggests that NvitOBP47 is a classic

OBP, with just one domain, whilst the NvitOBP43 sequence

clusters with the 1st domain of other double-domain OBPs

(Figure 3 and Figure 4). Furthermore, the NvitOBP43 gene has

several features reminiscent of the 2nd domain i.e. the 1st exon, the

splice site and the 1st cysteine. It is therefore likely that NvitOBP43

is a former double-domain OBP that has lost most of its 2nd

domain.

Overlapping transcripts and expressed pseudogenes
An analysis of all publicly available Nasonia ESTs revealed a

region on Scaffold 9 (between positions 2,440,886 and 2,447,816),

within the double domain OBP gene cluster, containing several

ESTs that partially overlap two pseudogenes (NvitOBP33 and

NvitOBP34) and one gene (NvitOBP35). Two of these ESTs span

across NvitOBP33 and NvitOBP34, and 11 ESTs cover exons of

both NvitOBP34 and NvitOBP35 (Figure 5). NvitOBP33 and

NvitOBP34 are predicted to be pseudogenes, and this prediction

is supported by ESTs. It is possible, however, to construct

alternative genes models that do not contain the frame-shift and

premature stop codons found in these genes (Figure S1), but still

contain only canonical intron-exon junctions. We used primers

designed to test for the presence of transcripts from these genes but

none were detected (Figure S2).

Evolutionary origin of the double domain OBPs
Phylogenetic analyses revealed that all double-domain Nasonia

OBPs are monophyletic, suggesting a unique origin of these

proteins. Indeed, each domain is also monophyletic and the

topologies of the trees based on the separate domains are

consistent with the trees constructed with the full length sequences

(Figure 3 and Figure 4). There are two possible mechanisms for

such double-domain OBPs, either internal gene duplication or

gene fusion between two physically close paralogs. The existence

of overlapping transcripts in the cluster containing these genes (see

previous section) might suggest that the latter mechanism is more

likely. Also, the Nasonia double-domain OBPs clearly cluster

together with some classic OBPs with a reasonable SH

(Shimodaira–Hasegawa likelihood ratio test [37]) support

(Figure 2), suggesting that double-domain OBPs evolved from a

single event that merged two closely related genes. Moreover, all

the Nasonia double-domain OBPs are located in a cluster located

on scaffold 9 (Table 1), suggesting that this expansion occurred

after the merging of the two domains. Remarkably, the mosquitoes

Anopheles gambiae and Aedes aegypti also have a cluster of double-

domain OBPs (the atypical OBPs) [38,39] and their evolutionary

history is broadly similar to what we have seen in N. vitripennis, with

a putative origin from a single duplication/fusion event, as shown

on Figure 6.

The main lineage-specific expansion of the OBP family in

Nasonia includes the double-domain genes (Figure 2). We carried

out an analysis of the selective selection pressure on these genes

using the codeml software of the PAML package. As indicated in

Table 3, this showed that the M2s model (with positive selection)

has a higher likelihood than the M1a (purifying selection) but the

difference is not statistically significant (p = 0.7). The M8 model,

however, has a significantly higher likelihood than both the M7

(purifying) (p = 0.004) and M8a (purifying and neutral) models

(p = 0.02), but none of the sites reach the 95% confidence level

(BEB analysis). This suggests that positive selection pressure has

Figure 4. Phylogenetic relationships of Nasonia’s double-
domain OBPs with their closest Classic OBPs. Double-domain

OBPs were split in the two encompassing domains (domain 1 in dark
blue; domain 2 in dark orange).
doi:10.1371/journal.pone.0043034.g004

Double-Domain OBPs of the Parasitoid Wasp
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probably played a role in the diversification of the sequences in this

lineage specific expansion, but such inference based on such

diverged protein sequences is to be taken with caution [40].

Relationships with other insect OBPs
Phylogenetic trees for OBPs from Hymenopteran insects

(Figure 2) and from other insects with genome or genomic

sequences publically accessible were constructed using Bayesian

phylogenetic inference (MrBayes v3.2) (Figure 6). We considered

that the inference procedure had converged when the average

standard deviation of split frequencies was smaller than 0.05 and

0.01 for ‘all insect’ and ‘hymenoptera’ trees, respectively. The trees

show a number of highly supported terminal relationships between

genes in tandem and closely related genes and several lineage

specific expansions, both hinting at extensive expansion after

speciation by tandem gene duplication.

We have found three orthologs of Nasonia OBPs in A. mellifera

(NvitOBP76-AmelOBP1, NvitOBP02-AmelOBP10, NvitOBP90-Ame-

lOBP5) (Figure 2) and two orthologous groups with members in

several of the insects studied (DmelObp59a-AgamOBP29-Tca-

sOBP45-NvitOBP64 and DmelObp73a-ApisOBP4) (Figure 6). This

high conservation across insect species suggests that these OBPs

have an important function for insects.

Conclusions

Using the OBP sequence motif search [23,26,33,39], homology

searching [25,41,38,42] and genomic sequence analyses [35,30]

we have annotated 90 genes encoding putative OBPs in N.

vitripennis. This is the largest OBP gene family so far reported in

insects and has allowed us to identify some of unique features and

to be able to study evolution origin of these features. This

exceptionally high number of OBPs mirrors the large number of

genes encoding olfactory receptors in this species (over 200 ORs)

[8]. It has been proposed that the expansion of these gene families

related to olfaction has an origin in the need to detect and

discriminate between a number of diverse odours for food and

reproduction and to avoid dangers [43]. In the absence of

functional evidence, however, it is unclear how many of the

Nasonia OBPs are truly involved in olfaction, and whether the OBP

expansion in Nasonia is necessarily related to any olfactory role.

Further experiments are needed to determine which Nasonia OBPs

are expressed in olfactory tissues, and what type of molecule they

carry.

All Nasonia OBPs belong to the ‘‘classic’’ subfamily with no

‘‘Plus-C’’ OBPs but a large number which have lost at least one of

the characteristic six conserved cysteines. Our most striking

finding is a group of double-domain OBPs with little sequence

similarity to OBPs of other species but with substantial similarity

with the other NvitOBPs. These double-domain OBPs are thus

different from the fusion of two classic OBP domains in that one of

the two domains has undergone extensive loss of the canonical

cysteines and become equivalent to ‘‘minus-C OBPs’’. This is

supported by the finding that the two domains of these NvitOBPs

have the same gene structure, similar to the closely related classic

OBPs, and are monophyletic. The results suggest that double-

domain OBPs evolved from a single event. It is possible these

functional double-domain OBP proteins may have acquired an

equivalent function to that performed by two ‘classic’ OBPs acting

as dimmers.

Taken together, the multiple occurrences of canonical cysteine

losses, and the independent emergence of double domain OBPs in

wasps, flies and mosquitos, represent a striking case of convergent

evolution of protein structures. The main challenge remains to

understand the functional significance of these structural changes.

Materials and Methods

OBP identification and annotation
A list of all described OBP-like protein sequences was built as

described in Forêt and Maleszka (2006). The sequences were then

used to build models for PSI-BLAST [44] and HMMER [45] to

search the N. vitripennis genomic scaffolds [8]. The PSI-BLAST and

HMMER models were iteratively updated with each newly

identified sequence. Gene models were constructed and manually

curated using the Apollo genome annotation software [46].

Nucleic acids analyses
Whole adult N. vitripennis were homogenised in 250 mL genomic

DNA extraction buffer (100 mM Tris-HCl pH 9.0, 100 mM

EDTA, 1% SDS) in 1.5-mL eppendof tubes. The extraction

mixture was heated at 70uC for 30 min, mixed with 35 mL of 8 M

KAc solution, incubated on ice for 30 min. The supernatant

containing DNA was obtained by centrifugation at 13,0006g for

10 min, and then extracted further with 280 mL chloroform:phe-

nol 1:1. The DNA sample was treated with 2 mL RNase (10 mg/

mL) at 37uC for 15 min, extracted again with 250 mL chloroform,

and finally DNA was precipitated with 2.5 volume of 100%

ethanol.

RNA from whole N. vitripennis adults was extracted using Trizol

reagent (Invitrogen) according to the manufacturer’s protocol.

Reverse transcriptions were carried out using SuperScript II

(Invitrogen). The cDNA for RT-PCR was prepared with an

oligo(dT)15 primers (Promega) and SuperScriptTM II Reverse

Transcriptase RNAase H2 (Invitrogen Life Technologies), and

used as the PCR template.

Figure 5. Overlapping transcripts. In green: Nasonia vitripenis ESTs, in blue: gene models predicted based on these ESTs.
doi:10.1371/journal.pone.0043034.g005

Double-Domain OBPs of the Parasitoid Wasp

PLOS ONE | www.plosone.org 8 August 2012 | Volume 7 | Issue 8 | e43034



The PCR amplifications contained 14.5 ml sterile water, 2 ml

(106) PCR buffer including 15 mmol/L Mg2+, 0.4 ml dNTP

mixture (10 mmol/L), 0.5 ml each of forward and reverse primers

(25 mmol/L), and 0.1 ml HotStarTaqH DNA polymerase (5 U/ml,

Qiagen, Chatsworth, CA) and were done in a Hybaid thermo-

cycler with thermo-cycling program: 15 min at 95uC followed by

35 cycles of 40 sec at 94uC, 40 sec at 53uC, and 40 sec at 72uC,

with 7 min at 72uC after the last cycle. The PCR primers are

Primer_F1 (59-CCCAGGATAAGCAGTTTAGCTG-93) on the

second exon of the 39-end of NvitOBP33, Primer_R2 (39-

TCATTTTCGACGAGCTGCTG-59) on the first exon of the

59-end of NvitOBP34 and Primer_R1 (39-ATTTAGAGGAT-

TACTGCGACGC-59) on the last exon of NvitOBP35.

Phylogenetic analysis
Amino acid sequences were aligned with MAFFT v6 [47],

removing positions with over 95% gaps. Phylogenies were inferred

using maximum likelihood (ML; with PhyML v2.0, [48]) and

Figure 6. Phylogenetic relationships of OBPs from some insect species. The mid-point rooted tree includes OBP sequences from Drosophila
melanogaster and Drosophila mojavensis (Dmel, Dmoj; red branches), Anopheles gambiae (Agam; blue branches), Bombyx mori (Bmor; brown
branches), Tribolium castaneum (Tcas; green branches), Apis mellifera (Amel; orange branches), Nasonia vitripennis (Nvit; yellow branches), Pediculus
humanus (Phum; pink branches) and Acyrthosyphon pisum (Apis; cyan branches). The scale bar represents 1 amino acid substitution per site. The
image was created using the iTOL web server (Letunic and Bork 2007). The accession numbers of the OBPs are listed in Table S1.
doi:10.1371/journal.pone.0043034.g006
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Bayesian inference using MrBayes v1.2 [49]. For these analyses

the LG amino acid substitution matrix was used and positions with

over 95% gaps were removed, as preliminary MrBayes runs

rapidly converged to this model. Support for maximum likelihood

phylogenies were assessed with the likelihood-based SH test [37]

using 100 bootstrap replicates. Each Bayesian analysis was run for

10,000,000 iterations, using two parallel runs with four chains

each. The first 2,500,000 iterations were discarded as ‘‘burnin’’.

All analyses reached convergence, as indicated by the average

standard deviation of split frequencies being smaller than 0.05 or

0.01 for the ‘all insect’ and the ‘Hymenoptera’ trees, respectively.

The trees were displayed with iTOL [50] and FigTree (http://

tree.bio.ed.ac.uk/software/figtree/). Analyses of selective con-

straints were conducted using the codeml program from the PAML

v4 software package [51].

Conserved cysteine profiles
We inferred cysteine loss events by minimizing the number of

events given the OBP phylogenetic gene tree (a maximum

parsimony criteria). We tested if the cysteine loss events had

occurred at random or had preferentially involved disulphide

bond-forming cysteines. Assuming that each OBP has 6 cysteines,

forming three disulphide bonds, after losing the first cysteine the

probability of a second loss in a ‘bond’ or ‘non-bond’ cysteine is

q = 1/5 and p = 4/5, respectively. We can thus use a binomial

distribution to compute the probability that given a number of X

events involving two cysteine replacements Y (or more) involve

cysteines forming disulphide bonds by the binomial distribution.

Defining OBP domains
We delimited the OBP domains using sequence similarity,

splicing pattern and cysteine profile information. We first

determined the approximate boundary of the two domains by a

dotplot analysis (using the web-based Dotlet program; [52])

between several single-domain and double-domain proteins. To

pinpoint the most probable boundary between the domains we

complemented the dotplot analysis with the splice site distribution

and cysteine profiles.
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