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Abstract

Background: Many prediction tools for microRNA (miRNA) targets have been developed, but inconsistent predictions were
observed across multiple algorithms, which can make further analysis difficult. Moreover, the nomenclature of human
miRNAs changes rapidly. To address these issues, we developed a web-based system, miRSystem, for converting queried
miRNAs to the latest annotation and predicting the function of miRNA by integrating miRNA target gene prediction and
function/pathway analyses.

Results: First, queried miRNA IDs were converted to the latest annotated version to prevent potential conflicts resulting
from multiple aliases. Next, by combining seven algorithms and two validated databases, potential gene targets of miRNAs
and their functions were predicted based on the consistency across independent algorithms and observed/expected ratios.
Lastly, five pathway databases were included to characterize the enriched pathways of target genes through bootstrap
approaches. Based on the enriched pathways of target genes, the functions of queried miRNAs could be predicted.

Conclusions: MiRSystem is a user-friendly tool for predicting the target genes and their associated pathways for many
miRNAs simultaneously. The web server and the documentation are freely available at http://mirsystem.cgm.ntu.edu.tw/.

Citation: Lu T-P, Lee C-Y, Tsai M-H, Chiu Y-C, Hsiao CK, et al. (2012) miRSystem: An Integrated System for Characterizing Enriched Functions and Pathways of
MicroRNA Targets. PLoS ONE 7(8): e42390. doi:10.1371/journal.pone.0042390

Editor: Michael Watson, The Roslin Institute, University of Edinburgh, United Kingdom

Received April 24, 2012; Accepted July 4, 2012; Published August 1, 2012

Copyright: � 2012 Lu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported in part by NSC100-2314-B-002-054- from National Science Council, Taiwan and 99R81811 by National Taiwan University,
Taiwan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Eric Y. Chuang is a PLoS ONE Editorial Board member. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing
data and materials.

* E-mail: llai@ntu.edu.tw (L-CL); chuangey@ntu.edu.tw (EYC)

. These authors contributed equally to this work.

Introduction

MicroRNAs (miRNAs) are short, non-coding RNAs which

regulate their corresponding target genes through post-transcrip-

tional repression [1]. It has been shown that miRNAs play

important roles in many cellular processes such as stress responses

[2], hematopoiesis [3], radiation responses [4], and the immune

system [5]. A growing body of evidence has indicated that

dysregulation of miRNAs results in several diseases including

cardiovascular disease [6], type 2 diabetes [7], and multiple

cancers [8]. Therefore, treatment of those diseases may be

improved with better understanding of how miRNAs participate

in regulation of gene expression during pathogenic processes.

With the advancement in microarray and next generation

sequencing technologies, researchers are able to investigate

miRNA expression profiles en masse at a lower cost. To evaluate

the associations between mRNA and miRNA, several useful

prediction tools for miRNA target genes have been developed. For

example, miRanda and TargetScan both predict miRNA target

genes by seed-matching and three prime untranslated region

(39UTR) pairing [9,10,11,12], and DIANA-microT develops a

dynamic programming algorithm to calculate scores based on

affinity of the interactions between miRNAs and gene targets

[13,14]. MirBridge explores regulatory miRNAs by considering

whether their functional binding sites were enriched among a gene

set with pre-defined biological functions [15], whereas PicTar

claims miRNA-gene interaction pairs according to the binding

probability between mature miRNAs and the 39UTR of the gene

target [16]. Moreover, rna22 identifies putative miRNAs by

mapping their binding sites through a pattern-based approach

[17], and PITA incorporates free energy intake and cost to

evaluate the interactions between miRNAs and gene targets [18].

Challenges arise, however, when predictions are inconsistent

across multiple algorithms. Discrepancies may be mainly attrib-

uted to the use of different modeling formulas, which consider

distinct physical and biochemical characteristics.

Two elementary methods to summarize the prediction results

from different algorithms are union and intersection analyses, but

the performance of such approaches is usually not very good. For a

specific miRNA or a set of co-expressed miRNAs, combining
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prediction results across different algorithms into a union set often

leads to numerous target genes with high false-positive rates. On

the other hand, selecting predicted targets in common from the

intersection set usually results in very few genes due to stringent

selection criteria. To overcome these challenges, one possible

strategy is to integrate the results by using a voting scheme and

establishing a statistical threshold based on existing data to identify

the optimal cutting point. After identification of potential target

genes, it is well known that pathway analyses can help to reveal the

biological functions regulated by given miRNAs [19,20]. Yet, one

major limitation in these algorithms is that the raw expression

values of each gene are only used to identify the ranking or

statistical differences among them [21]. Subsequent over-repre-

sentation approaches through identified genes do not incorporate

the raw expression values to pinpoint enriched functional

pathways. However, since the effects of different miRNAs on

gene expression are not equivalent, considering miRNA expres-

sion levels during pathway analyses may further improve the

robustness of the results. Performing these pathway analysis

methods on identified miRNA target genes facilitates character-

ization of the biological roles of queried miRNAs and addresses

how they participate in transcriptional regulation.

In addition to discrepancies in the prediction of target genes, the

integration of different algorithms poses another major challenge:

the nomenclature of miRNAs in commonly used databases (such

as miRBase [www.mirbase.org]) has changed over time. Not only

have some miRNAs been retired due to irreproducibility of the

original results, but a single miRNA may also have multiple names

in different versions of the database (Table S1 and Figure S1).

Similar to the chaos caused by multiple names for the same gene,

such inconsistent annotation is error-prone and makes it difficult

for users to perform a correct search and analysis. Moreover, with

the ongoing study of miRNAs, many novel miRNAs are included

in newer releases of miRBase. Therefore, a systematic mapping of

miRNA sequences to the latest nomenclature is a prerequisite to

do any analysis.

In this article, we present miRSystem, a web-based system that

matches queried miRNAs with the latest annotation and identifies

the biological functions/pathways regulated by miRNAs based on

the enriched functions of their target genes. Searching for the

enriched pathways of miRNAs can be implemented by bootstrap

approaches or incorporating miRNA expression values. The

results of enrichment analysis and gene-gene interaction maps are

shown in tabular or graphical output.

Figure 1. An overview of miRSystem. The green boxes indicate the data input and output. The purple rectangle with a dotted outline represents
the miRSystem core. The three major components of miRSystem (blue boxes) are the miRNA ID converter, statistical analysis tools, and web
application server. The target prediction algorithms (upper yellow cylinder) constitute 7 programs (white boxes) and 2 experimentally validated data
sets (red boxes). The pathway prediction module (lower yellow cylinder) includes the information from 5 databases (orange boxes).
doi:10.1371/journal.pone.0042390.g001
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Methods

Overview of miRSystem workflow
An overview of the miRSystem database and modules is

illustrated in Figure 1. Briefly, queried miRNAs are first converted

to the latest miRBase annotation (currently version 17). Subse-

quently, to identify significantly enriched signaling pathways,

several statistical approaches are provided, including O/E ratios of

gene targets, hypergeometric P-value and empirical P-value from

permutation. All analyses are executed by the miRSystem

application server through a graphical user interface. Results are

displayed in tabular or graphical format, and hyperlinks to the

original data sources are also provided.

Database construction and contents
Currently, miRSystem can analyze two species: Homo sapiens and

Mus musculus. Seven algorithms predicting miRNA targets,

DIANA-microT [13,14], miRanda [9,22,23], mirBridge [15],

PicTar [16], PITA [18] , rna22 [17] , and TargetScan [10,11,12],

and two experimentally validated databases, TarBase [24] and

miRecords [25], of miRNA target genes were included. The

details of each algorithm and database are summarized in Table

S2. Five pathway databases, including Gene Ontology [26],

KEGG [27], BioCarta, Pathway Interaction Database [28], and

Reactome [29], were used to annotate the biological functions and

canonical pathways of target genes.

A major challenge in establishing the miRSystem database is the

inconsistent miRNA IDs used across different algorithms and data

sources (Table S1). For example, hsa-miR-24-1* in version 17 of

miRBase has another official name, hsa-miR-189, before version

9.2. Such multiple names for the same miRNA can cause errors

and produce misleading results. To overcome this problem, we

developed miRConverter, which collects all versions of annotation

in miRBase, converts queried miRNAs into the latest version, and

removes retired miRNA. Lastly, gene names from different

algorithms and pathways were also unified to the standard

HUGO gene symbols.

Database characteristics in predicting miRNA-gene
relationships

To identify the optimal threshold of multiple prediction

algorithms, characteristics of predicted miRNA-gene relationships

were summarized (Table S3). The ‘‘hit’’ represents the number of

algorithms predicting the same miRNA-gene interaction pair. As

shown in Table S3, almost 75% of miRNA-gene associations were

predicted only by one algorithm, indicating that multiple

algorithms must be combined in order to identify possible

miRNA-gene associations. To balance the reliability of the

predictions with a manageable number of records, the default

parameter in miRSystem was set at three algorithm hits.

Approximate 9% of the total predictions are analyzed when this

setting is selected.

Simulation of the null baselines for identifying biological
functions that target genes are enriched

After identifying potential target genes, a hypergeometric test is

used to characterize the functions of the target genes. Since raw P-

Figure 2. Graphical user interface in miRSystem. A hierarchical menu is shown in the left panel and the queried and analyzed results are shown
in the main window.
doi:10.1371/journal.pone.0042390.g002
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values are easily affected by the number of genes of a given

function/pathway, we also calculated an empirical P-value. The

empirical P-values of each function/pathway were determined by

ranking the enriched hypergeometric probability as compared

with null baseline probabilities. The null baseline probability was

established by randomly selecting a group of miRNAs, whose size

ranges from 1 to 100, and using the default values in miRSystem

to calculate the raw P-value for each function/pathway. The

default analysis parameters in miRSystem were following: (a) O/E

ratio = 2, (b) hit frequency = 3, and (3) validated miRNA-gene

pairs were included for analyses. This simulation process was

repeated 1,000 times to build the null baseline.

Figure 3. Screenshots of miRConverter. miRConverter allows two types of query format: (A) miRNA sequence and (B) accession number.
doi:10.1371/journal.pone.0042390.g003
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Weighted pathway-ranking method for identifying
enriched biological functions

If miRNA expression values were available, the ratios of

experimental group to control group for queried miRNAs were

incorporated into an additional weighted pathway-ranking meth-

od to identify the enriched biological functions. First, for a given

set of miRNAs, expression levels of the miRNAs were required to

be used as the weight. The weight for one miRNA was calculated

by dividing its absolute expression value by the absolute sum of the

expression values of all input miRNAs. Next, after identifying the

target genes by the selected prediction algorithms, for each

functional category, the ranking score was obtained by summation

of the weight of its miRNA times its enrichment 2log (P-value)

from the predicted target genes fScore~
P

VmiRNAwi½{
log10(pi)�g. When equal weights are assumed, i.e., no differences

in miRNA expression were considered, this weighted scoring

method reverted to the previously described hypergeometric test

procedure. In general, the results of these two algorithms are

comparable; users can choose this method when expression values

of their miRNAs are available.

Figure 4. Identification of miRNA target genes in miRSystem. (A) The miRNA input interface. (B) Tabulated results of enriched pathways of
miRNA target genes based on the consistency across multiple algorithms and observed/expected ratios.
doi:10.1371/journal.pone.0042390.g004
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Results

Website interface
miRSystem is a web-based system, which is implemented

mainly by PHP5 language, a mySQL database management

system, and a jQuery grid plugin. As shown in Figure 2, a

hierarchical menu in the left panel lists the items of queried and

analyzed data. After clicking, the results of each item are displayed

in the main window in tabular format. Users can sort selected

results in ascending or descending order, and all data can be

exported in csv-format files. In general, the computation time of

each function in miRSystem is on the order of minutes, depending

on the complexity of the miRNA targets. The major functions

provided in miRSystem are demonstrated in the following

examples.

Example 1: Conversion of miRNA IDs across different
annotation versions

To reduce the potential discrepancies caused by multiple

naming conventions used among different algorithms and

databases (Table S2), queried IDs are converted into the latest

annotation in miRBase (currently version 17). Users can submit an

miRNA ID or a sequence of mature miRNA (Figure 3A). The

basic local alignment search tool (BLAST) is utilized to identify the

miRNA IDs with the highest similarity as compared to the input

miRNA sequences. Results with different versions of annotation

are shown in a table (Figure 3B), which can be downloaded as a

csv-format file.

Example 2: Prediction of functions that grouped miRNAs
are enriched

Once users provide a list of miRNAs and, optionally, their

expression ratios (Figure 4A), as illustrated in example 1, these

Figure 5. Results of pathway enrichment analysis. (A) The graphical output of enriched pathways of miRNA target genes. Y-axis: 2log (P-value).
(B) Tabulated results of enriched pathways of miRNA target genes using a pathway-ranking algorithm that incorporates weighting based on the
expression levels of a given miRNA set.
doi:10.1371/journal.pone.0042390.g005
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miRNAs are first converted to the latest annotation in miRBase.

Users can choose different parameters to identify possible miRNA

target genes by considering multiple prediction algorithms

simultaneously (Figure 4A). After the miRNA target genes are

identified, to identify the pathways in which the target genes

participate, an observed to expected (O/E) ratio is first calculated.

The observed identification probability for a given gene is the

proportion of the queried miRNA(s) which are predicted to target

that gene, whereas the expected probability is the proportion of all

miRNAs in the miRSystem database predicted to target that gene,

i.e., the number of target gene-miRNA pairs deposited in the

miRSystem database. This expected probability represents the

chance of one gene being randomly selected by miRNAs. The

default O/E ratio is 2, but users are able to adjust this value

(Figure 4B). Next, cumulative hypergeometric distribution is used

to characterize enriched biological functions/pathways of these

predicted target genes. Graphical results are sorted by 2log(P-

value) to facilitate identification of functional pathways that these

input miRNAs are involved (Figure 5A). Additionally, empirical P-

values indicate the probability of identifying pathways by random

chance (Figure 5B), and hyperlinks to original pathway databases

are also embedded (Figure 6). Combining the pathway enrichment

results from raw P-values and empirical P-values may help to

reduce the false positive and reveal the biological functions indeed

regulated by queried miRNAs. Moreover, users are able to explore

possible regulatory miRNAs by inputting user’s favorite genes

(Figure 7A). The predicted miRNAs by which algorithms are also

indicated in a summary table (Figure 7B).

Example 3: Demonstration of analysing datasets in public
domain

To demonstrate the usefulness of miRSystem, we analyzed two

microarray datasets with both mRNA and miRNA data

(GSE16558 and GSE19536) in the Gene Expression Omnibus

(GEO) [30,31,32]. For GSE16558, there were 60 multiple

myeloma samples and 5 normal controls. Three miRNAs were

significantly (P-value,5.1*1024) up-regulated in multiple myelo-

ma using unpaired t-tests with unequal variance (Table S4A).

Afterwards, 1,527 genes were indicated as the potential target

genes of these 3 miRNAs using the default values in miRSystem.

Since miRNAs were expected to down-regulated their target

genes, proportion of down-regulated genes predicted by miRSys-

tem (48.53%) was higher than that in the whole genome (38.66%;

Table 1 and Figure S2A).

Similarly, for GSE19536, unpaired t-tests were done to identify

miRNAs that were up-regulated in breast cancer patients with

estrogen receptor–positive tumors. Six miRNAs were significantly

(P-value,5 * 1029) up-regulated (Table S4B). However, because

hsa-miR-29c* was a newly identified miRNA, no gene target

predictions for hsa-miR-29c* were recorded in miRSystem.

Therefore, the following analyses only focused on the remaining

5 miRNAs. A total of 1,425 genes were identified as the potential

Figure 6. Illustration of embedded hyperlink to KEGG database. The genes highlighted in red color are predicted to be regulated by queried
miRNAs.
doi:10.1371/journal.pone.0042390.g006

miRSystem: An Integrated System for miRNA Analyses

PLoS ONE | www.plosone.org 7 August 2012 | Volume 7 | Issue 8 | e42390



Figure 7. Identification of regulatory miRNAs from predicted target genes. (A) Gene input interface for query of regulatory miRNAs. (B)
Tabulated results of prediction of regulatory miRNAs.
doi:10.1371/journal.pone.0042390.g007

Table 1. Significant miRNAs and identified target genes of GSE16558 and GSE19536a.

GSE16558 GSE19536

Whole Genome 3 miRNAs Whole Genome 5 miRNAs

20,177 genes 1,527 genes 30,981 genes 1,425 genes

Number of down-regulated genes

Down-regulation ,1.0 fold 7801 (38.66%) 741 (48.53%) 16064 (51.85%) 789 (55.37%)

Down-regulation ,0.67 fold 2183 (10.82%) 226 (14.80%) 782 (2.52%) 46 (3.23%)

Down-regulation ,0.5 fold 766 (3.80%) 76 (4.98%) 203 (0.66%) 16 (1.12%)

aThe proportion of down-regulated genes was calculated relative to the total number of genes under each condition.
doi:10.1371/journal.pone.0042390.t001
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targets of the 5 miRNAs using the default values in miRSystem. As

shown in Fig. S2B, the proportion of target genes that was down-

regulated (55.37%) was slightly higher than that in the whole

genome (51.85%; Table 1 and Figure S2B). These results suggest

that miRSystem was able to identify the possible target genes of a

group of miRNAs by consensus among multiple prediction

algorithms.

After identifying the potential target genes, we further explored

the pathways in which these genes participate (Tables S5 and S6).

In GSE16558, the target genes of the 3 identified miRNAs were

involved in cancer, platelet activation signaling and aggregation,

and the notch signaling pathway (Table S5A). These pathways

were expected in patients with multiple myeloma. Dysregulation of

the notch signaling pathway has been demonstrated as an

important step in transforming normal cells into tumors

[33,34,35]. Platelet activation and aggregation are highly associ-

ated with thrombosis [36,37], which is a causative factor leading to

multiple myeloma [38,39], and the changes in several cancer-

related genes curated by KEGG were possibly regulated by these

miRNAs.

Similarly, in GSE19536, several previous studies have reported

that breast cancer cells undergo distinct apoptosis procedures

based on estrogen receptor status [40,41]. The genes involved in

the apoptosis pathway were thus expected to show differential

expressions in breast cancer patients with estrogen receptor-

positive tumors (Table S6). Regarding the axon guidance pathway,

many molecules play important roles in driving tumorigenesis and

progression [42,43,44].

The enriched pathways identified by considering miRNA

expression levels were generally similar to that obtained from

hypergeometric tests in GSE19536 data set (Table S6), but

differences were observed in GSE16558 (Table S5). This may be

attributed to the fact that the fold changes in miRNA expression

were substantially larger in GSE16558 than in GSE19536 (Table

S4). In conclusion, these results suggested that characterization of

dysregulated cellular functions and pathways among multiple

miRNAs using miRSystem was able to identify promising targets

with meaningful biological implications.

Discussion

With the rapid growth of high-throughput sequencing technol-

ogies and massive genetic data sets, many novel miRNAs have

been identified, and many computational algorithms have been

developed to predict possible miRNA target genes by considering

distinct physical, chemical, and biological characteristics. Howev-

er, as shown in Table S3, inconsistent miRNA target gene

prediction results across different algorithms pose a major

challenge. Taking hsa-miR-590-3p for an example, if we used

the union method to summarize the gene prediction results, a total

of 7,421 genes would be indicated as potential targets, which is a

dramatically large number to be validated experimentally. Under

the default settings in miRSystem, only 1,383 genes were suggested

as possible target genes of hsa-miR-590-3p. Therefore, miRSystem

simultaneously considers multiple prediction algorithms to reduce

the false positive rate.

Regarding the annotated miRNA databases and the prediction

algorithms deposited in miRSystem, several features are worth

mentioning. We aimed to provide the original prediction scores or

probabilities of the miRNA-gene interaction pairs from the

respective prediction algorithms, since this information is helpful

to users in selecting reliable prediction targets. Yet, such data were

not available for all the prediction algorithms, and thus in those

cases we could only embed hyperlinks to their original websites. In

addition, these prediction algorithms were developed based on

distinct statistical models and evaluation systems respectively,

which made it a challenge to identify a unify function in

integrating the prediction results. Currently, a voting scheme

was used in miRSystem to identify possible miRNA-gene

interaction pairs, but this voting scheme may be improved by a

multiple scoring system using fusion analysis method or rank-score

characteristics function [45,46,47]. To further enlarge the

miRSystem database, we will continue to collect and incorporate

accurate miRNA target gene prediction algorithms. In addition to

Homo sapiens and Mus musculus, the sequences of miRNAs and their

target genes have been rapidly accumulated in other species, such

as rat, fly and many plants [22,48,49]. We propose to include these

data in the future to further improve the usefulness of miRSystem

and facilitate characterizing miRNA variations in those species.

Conclusions

In this study, we present miRSystem, a user-friendly, web-based

system designed to perform miRNA target gene analysis and

prediction of biological functions and canonical pathways of

miRNAs and their target genes. Several prediction algorithms and

experimentally validated data sources were integrated into the

miRSystem to reduce false positive predictions. A miRNA ID

converter among different miRBase versions was utilized to

remove the potential discrepancies in nomenclature. Two

enrichment algorithms—with or without consideration of miRNA

expression changes—were incorporated to explore dysregulated

biological functions/pathways. To our knowledge, miRSystem is

the first analytical tool that identifies miRNA target genes based

on multiple algorithms simultaneously. We believe that the

development of miRSystem will increase the accuracy of target

gene analysis and facilitate the dissection and interpretation of the

biological functions affected by miRNAs.

Supporting Information

Figure S1 Example of changes of miRNA names in
different miRBase versions. Hsa-miR-34b is MI-

MAT0000685 from version 6 to version 10, but is MI-

MAT0004676 after version 10.

(PDF)

Figure S2 Heat map of identified target genes using
MiRSystem. The input data of each gene was normalized

relative to its biological control samples. That is, for each gene,

normal control or estrogen receptor-negative samples were used as

a normalization baseline, so the mean probe intensity of them was

subtracted from probe intensities in the multiple myeloma or

estrogen receptor-positive samples. One-way hierarchical cluster-

ing with average linkage distance was performed on these

transformed values in both datasets. (A) GSE16558, 1,527 genes.

(B) GSE19536, 1,425 genes.

(PDF)

Table S1 Conflicted miRNA IDs in different versions of
miRBase
(PDF)

Table S2 Prediction algorithms and databases avail-
able in miRSystem
(PDF)

Table S3 The potential number of miRNA-gene pairs
obtained with different combination of multiple algo-
rithms
(PDF)
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Table S4 Significantly expressed miRNAs

(PDF)

Table S5 Top 3 enriched pathways of the 3 miRNAs
identified in GSE16558 by (A) functional annotation
summary and (B) pathway ranking summary in miR-
System

(PDF)

Table S6 Top 3 enriched pathways of the 5 miRNAs
identified in GSE19536 by (A) functional annotation

summary and (B) pathway ranking summary in miR-
System.
(PDF)
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