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Abstract

The advances in proteomics technologies offer an unprecedented opportunity and valuable resources to understand how
living organisms execute necessary functions at systems levels. However, little work has been done up to date to utilize the
highly accurate spatio-temporal dynamic proteome data generated by phosphoprotemics for mathematical modeling of
complex cell signaling pathways. This work proposed a novel computational framework to develop mathematical models
based on proteomic datasets. Using the MAP kinase pathway as the test system, we developed a mathematical model
including the cytosolic and nuclear subsystems; and applied the genetic algorithm to infer unknown model parameters.
Robustness property of the mathematical model was used as a criterion to select the appropriate rate constants from the
estimated candidates. Quantitative information regarding the absolute protein concentrations was used to refine the
mathematical model. We have demonstrated that the incorporation of more experimental data could significantly enhance
both the simulation accuracy and robustness property of the proposed model. In addition, we used the MAP kinase
pathway inhibited by phosphatases with different concentrations to predict the signal output influenced by different
cellular conditions. Our predictions are in good agreement with the experimental observations when the MAP kinase
pathway was inhibited by phosphatase PP2A and MKP3. The successful application of the proposed modeling framework to
the MAP kinase pathway suggests that our method is very promising for developing accurate mathematical models and
yielding insights into the regulatory mechanisms of complex cell signaling pathways.

Citation: Tian T, Song J (2012) Mathematical Modelling of the MAP Kinase Pathway Using Proteomic Datasets. PLoS ONE 7(8): e42230. doi:10.1371/
journal.pone.0042230

Editor: Raya Khanin, Memorial Sloan Kettering Cancer Center, United States of America

Received November 3, 2011; Accepted July 4, 2012; Published August 8, 2012

Copyright: � 2012 Tian, Song. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Australian Research Council (ARC) (project number FT100100748) and the National Health and Medical Research
Council of Australia (NHMRC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tianhai.tian@monash.edu

Introduction

In the post-genomic era, proteomics is considered as the next

crucial step to study biological systems because it allows large-scale

determination of genetic and cellular functions at the protein level

[1,2]. The proteome is the entire complement of proteins,

including the post-translational modifications (PTMs) that are

made to a particular set of proteins. Unlike the genome that is

more or less constant, the proteome differs from cell to cell, as well

as varies over time and distinct requirements that a cell or

organism undergoes [3]. The purpose of proteomics research is to

determine the relative or absolute amount of a biological sample.

In recent years, the advanced proteomic technologies, including

mass spectrometry (MS), two-dimensional gel electrophoresis and

protein arrays, provide powerful methods for analyzing protein

samples, emerging as a potent tool for rapidly identifying proteins

from complex biological samples, and for characterizing protein

post-translational modifications and protein-protein interactions

[4,5].

An important application of MS-based proteomics is to study

cell signaling cascades that involve the binding of extracellular

signaling molecules to cell-surface receptors triggering events

inside the cell [6]. In this process, phosphorylation, a key reversible

PTM, plays a key role in regulating protein function and

localization in cell signaling networks. Phosphoproteomics is a

branch of proteomics that identifies and characterizes proteins

containing a phosphate group as a PTM [6,7]. In recent years

phosphoproteome studies have provided a global and integrative

description of cellular signaling networks [8,9,10,11]. However,

the complex nature of the cell signaling pathways remains to be

completely understood as to how they are exactly regulated in vivo

and what are the important parameters that determine their

dynamics [12]. In this context, mathematical modeling is a

powerful tool for addressing such key questions, deducing useful

regulatory principles and understanding the complex biological

systems [13]. To improve our understanding of signaling

pathways, mathematical modeling allows us to make testable

predictions and validate biological hypotheses regarding the signal

transduction mechanisms regulating various cellular functions

[14].

One of the major challenges in systems biology is the lack of

kinetic rates for mathematical modeling that ideally should be

measured by experiments or estimated from experimental data.

Although mathematical models have been developed to study

various cell signaling pathways, these models were predominantly

designed based on either in vitro assays or in-cell Western blot

assays. Due to the limited amount of experimental data, a

common approach currently used in systems biology is to collect

published experimental data that were obtained from different cell

types under various conditions. Therefore the advances in
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proteomics technologies offer an unprecedented opportunity to

understand how living organisms execute necessary functions at

systems levels. From a systems biology perspective, the highly

accurate temporal dynamic data generated by phosphoprotemics

are valuable resources to infer unknown model parameters and to

accurately model complex cell signaling networks. However, little

work has been done up to date to utilize the temporal dynamic

proteome dataset in mathematical modeling of biological systems.

Although it was claimed that the proteomic data were used in a

number of research works [15,16,17], these studies in fact still

heavily relied on traditional experimental data such as Western

blot assays. However, experimental studies have recently expedit-

ed the research to generate proteomic data for inferring kinetic

parameters and developing more accurate signaling pathway

models [18,19,20,21].

One of the most prominent signaling pathways, the mitogen-

activated protein (MAP) kinase cascade, communicates signal from

the growth factor receptors on the cell surface to effector molecules

located in the cytoplasm and nucleus. This pathway is activated by

the upstream input signal Ras protein, and comprises a set of three

protein kinases, namely Raf, MEK and ERK, with a highly

conserved molecular architecture that acts sequentially [22].

Activated MAP kinase phosphorylates multiple substrates, includ-

ing transcription factors, protein kinases, phospholipases and

cytoskeletal proteins, as well as regulates a wide range of

physiological responses, such as cell proliferation, differentiation,

apoptosis, and tissue development. Note that the signaling

downstream of Ras protein is of an incredible complexity that

includes positive and negative feedback loops, protein re-localiza-

tion, signaling complex formation and cross-talk between parallel

signaling pathways. The EGF-regulated MAP kinase pathway is

among the best-characterized signal transduction pathways.

Although the principal hierarchy of the signaling pathway and

its activation sequence are well established, recent experimental

data have yielded additional information on critical protein-

protein interactions, regulatory loops and spatio-temporal organi-

zation [23].

Over the last decade, the MAP kinase pathway has been used

repeatedly as a testable paradigm for pioneering computational

systems biology. By focusing on Ras-dependent activation of the

MAP kinase module, Huang and Ferrell developed the first

mathematical model that predicted highly ultra-sensitive responses

of the MAP kinase cascade, which were then confirmed by

experimentation [24]. The success of this work stimulated a great

deal of interests in designing kinetic models that provided testable

predictions and novel insights into signaling events. For example,

Bhalla et al. combined experiments and modeling to support MAP

kinase involvement in a bistable feedback loop [25]; Schoeberl et

al. developed the mathematical model for the EGF-regulated

MAP kinase pathway [26]; we have demonstrated that the critical

function of Ras nanoclusters in generating high-fidelity signal

transduction [27]; and recent research works investigated the

cross-talk between the MAP kinase pathway and other parallel

signaling pathways [28]. Nevertheless, the molecular mechanisms

that allow for precise yet robust control of MAP kinase signal

intensity with a range of activation kinetics and diverse biological

outcomes remain poorly understood. Using the MAP kinase

pathway as the test system, this work will design a novel

computational framework for developing mathematical models

of cell signaling pathway based on the available proteomic data,

which represents one of the earliest effects in using proteomic data

to develop detailed mathematical models.

Results

Development of mathematical model
Our proposed model of the MAP kinase pathway comprises a

cytosolic subsystem and a nuclear subsystem (Fig. 1). In the

cytosolic subsystem, the Ras-GTP is the signal input of the MAP

kinase cascade, which activates Raf molecules in a single step. This

activation is followed by sequential activation of the dual-

specificity MAP kinase kinase (MEK) by Raf* (i.e., the activated

Raf) in a single-step processive module. The activated MEKpp (i.e.

phosphorylated MEK at two residue positions) in turn activates

ERK in a two-step distributive module [29]. The activated

ERKpp (i.e. phosphorylated ERK at two residue positions) is the

signal output of the MAK kinase module. Both the activated and

un-activated MEK and ERK kinases can diffuse between the

cytosol and nucleus freely. In the nuclear subsystem, the activated

MEKpp can further activate ERK kinase via the distributive two-

step phosphorylation module. In addition, phosphatases, termed

as Raf-P’ase, MEK-P’ase and ERK-P’ase, can deactivate the

activated Raf*, MEKpp and ERKpp kinases, respectively, at

different subcellular locations.

A set of chemical reactions was used to describe the detailed

process of kinase activation. Briefly, the activated kinase (or

phosphatase) K binds to its substrate S (or activated kinase Sp) to

form a protein complex K-S (or K-Sp), which leads to the

activated substrate Sp (or deactivated kinase S). Examples of these

reactions are: the processive phosphorylation module of MEK

kinase

Raf�zMEK
�?

ai

/�
di

Raf�{MEK�?
ki

Raf�zMEKpp ð1Þ

and the distributive phosphorylation module of ERK kinase

MEKppzERK
�?

aj

/�
dj

MEKpp{ERK�?
kj

MEKppzERKp ð2Þ

MEKppzERKp
�?

aj

/�
dj

MEKpp{ERKp�?
kj

MEKppzERKpp ð3Þ

where ai, di and ki are protein binding, dissociation and activation rate

constants, respectively. In addition, the diffusion of MEK kinase, for

example, between the cytosolic and nuclear subsystems is represented by

MEK
�?

fi

/�
bi

N{MEK, ð4Þ

where MEK and N-MEK are MEK kinase located in the cytosolic and

nuclear subsystems, respectively, fi and bi are diffusion rate constants.

All the chemical reactions are listed in Supporting Information S1.

A mathematical model was developed according to the chemical

rate equations of these chemical reactions. For example, reaction

(1) leads to the following differential equation for the dynamics of

the Raf*-MEK complex, given by

d½Raf �{MEK �
dt

~ai½Raf ��½MEK �{(dizki)½Raf �{MEK� ð5Þ

Modeling of Kinase Pathway Using Proteomic Data
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This mathematical model includes 33 differential equations

representing the dynamics of 33 variables in the system. To test

all the possibilities of the molecular mechanisms, we did not make

any assumptions regarding the model rate constants and thus there

are 57 unknown reaction rate constants. Detailed information of

the differential equations is given in Supporting Information S1.

Estimation of model kinetic rates
We first used the genetic algorithm to infer the model kinetic

rates based on the proteomic dataset [9]. The corresponding

model was termed as System 1. Since Ras activity was not

available in this dataset, we used the Ras activity monitored in vivo

by FRET imaging as the signal input of the MAP kinase module

[30]. It was assumed that the total concentration of each kinase or

phosphatase was unit one. The initial condition of the differential

equation model was given in Table 1. Since the kinase activities in

the proteomic dataset were available at most five time points, we

used the linear interpolation to generate kinase activities at other

16 time points during the time interval [0,20] (min). To be

consistent with the normalized kinase activities in the proteomic

dataset [9], the simulated activity of each kinase was also

normalized by its activity at 5 min; and we chose

max
j

xi(tj)
� �

~1 in the objective function (6) for calculating the

error between the simulation and proteomic data. The number of

the unknown rate constants in the proposed model is 57. The

parameter set that produced smaller simulation error with respect

to the proteomics data was selected as the estimated model rate

constants. In the genetic algorithm, the searching range of [0,

Wmax] for each rate constant is the same (Wmax = 1000). Because

of the local maximal issue of the genetic algorithm, we

implemented the genetic algorithm with different random seeds

that led to different estimates of the model kinetic rates. We

obtained 20 sets of estimated rate constants and selected the top 10

estimates with smaller simulation errors to the proteomic data for

further analysis. The difference between the simulation errors of

these top 10 estimates is quite small. It is thus reasonable to use

any set of the estimated rate constants as the final estimate. Here

we used the robustness property of the model as an additional

criterion to select the optimal rate constants.

Robustness, in both biological and engineering systems, can be

defined as the ability of a system to function correctly in the

presence of both internal and external uncertainty [31]. First

introduced by Csete and Doyle [32], this theory has been

extensively studied by Kitano and co-workers [33,34,35,36]. Since

robustness is a ubiquitously observed property of biological systems

[33,37], this property has been widely used recently as an

important measure to select the optimal network structure or

model rate constants from estimated candidates, including the

MAP kinase pathway [38,39,40]. A formal and abstract definition

Figure 1. Schematic representation of the MAK kinase pathway.
doi:10.1371/journal.pone.0042230.g001
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of the robustness property, given by Kitano [34], is well consistent

with the general principle of the robustness property of complex

systems [31], and has been widely used in analyzing robustness

properties of biological systems. Recently more detailed definitions

have been proposed to calculate the robustness property of

biological systems [41].

To choose the best set of kinetic rates, we then carried out the

robustness analysis of the mathematical model for the selected 10

estimates of kinetic rates. We first used the estimated kinetic rates

without any perturbation to produce a simulation that was used as

the standard kinase activity. Then for each set of model rate

constants, we perturbed the value of each parameter by using the

generated random number. New simulations were obtained by

using the perturbed rate constants, and we compared the new

simulations with the standard simulation derived from the

unperturbed model rate constants. The system with a particular

set of rate constants is more stable if the difference between the

new simulations and standard simulation is smaller. For each set of

estimated rate constants, we generated 10,000 sets of perturbed

rate constants by using the uniformly distributed random variable

and m~0:5 in equation (10). To make a fair comparison, the same

random numbers in either the uniformly distributed random

variable (10) or standard Gaussian random variable (11) were used

in each set of rate estimate. The kinase activities at different

subcellular locations together with the total activities of each kinase

were collected at 20 min and we calculated the mean and variance

of each kinase activity. Based on Kitano’s definition of robustness

[34], in this work we proposed to use the average behavior, which

is the sum of all the means of each kinase activity as calculated by

equation (8), and the nominal behavior, which is the sum of all the

variances of each kinase activity as calculated by equation (9), as

the measure of the robustness property. A model is more stable in

terms of the average behavior if the perturbed behavior (solid lines

in Figures 2A and 2C) is closer to the unperturbed behavior (dash-

lines in Figures 2A and 2C). However, a model is more stable in

terms of the nominal behavior if the values of the nominal

behavior in Figures 2B and 2D are smaller.

Figures 2A and 2B give the average behavior and nominal

behavior of the mathematical model with 10 different sets of

estimated rate constants. We also tested the robustness property of

this model when the 10 sets of estimated rate constants were

perturbed by the Gaussian random variable with strength m~0:5
in equation (11). In this case the simulated perturbations of kinase

activities are smaller than but still proportional to the correspond-

ing perturbations in Figure 2A and 2B (results not shown). In

addition, we tested the robustness property of the model using the

10 sets of the rejected rate constants that generated simulations

with larger errors. Simulation results suggested that there is no

correlation between the model estimation error and robustness

property.

Figure 3 gives simulation results of the MAP kinase pathway

using the model that has both small estimation error and good

robustness property. The corresponding estimated model param-

eters were given in Table S1. To compare with the proteomic

data, simulations were also normalized by the simulated kinase

activity at 5 min. The total activity of MEK in Figure 3C (ERK in

Figure 3D) was also normalized by the corresponding total kinase

activity at 5 min. Simulations showed that the simulated kinase

activities matched the Raf* activities in the cytosol (Figure 3B) and

ERKpp activities in both the cytosol and nucleus (Figures 3F) quite

well. In fact, the proteomic data of the normalized ERK activity in

the cytosol are very close to those in the nucleus (Figure 3F).

However, there is a large difference between the simulated MEK

activities and proteomic data in Figure 3C. Note that there is a

significant difference between the MEK kinase proteomic data in

the cytosol and nucleus. The simulated MEK activities in the

nucleus match the proteomic data very well. The derivation

between the simulated MEK activities and proteomic data in the

cytosol will be discussed in the next subsection.

To demonstrate the feasibility of our modeling approach, we

compared our simulated kinase activities in Figure 3 with the

kinase activities measured in vivo by Western blotting that were

taken from Figure 7 in Ref [30]. To match the normalized

proteomic data, the experimental activities of each kinase were

also normalized by its activity at 5 min. Figure 3 shows that our

computer simulation matched the Raf activity (Figure 3B) and

ERK activity (Figure 3D) very well. The reason for the good

agreement between the kinase activities is that the Western

blotting data in [30] match the proteomic data very well.

However, the measured MEK activity in Figure 3C is different

from the proteomic data, and interestingly, the simulated MEK

activity locates in the middle of the proteomic data and Western

blotting data. Note that the simulated MEK activity is smaller,

rather than being larger than the proteomic data, when time

increases. The reason may be that, in order to match the ERK

kinase activity that decreases significantly from 10 min to 20 min,

MEK kinase activity should be smaller and smaller in this time

period. This observation suggests that in the cell signaling cascade,

Table 1. Protein concentrations of the pathway models.

Initial condition of System 1 Initial condition of Systems 2
Max % of activated kinase
at 5 min in System 2

Activated kinases at
5 min in System 2

[Ras] 1 0.4 [30] 0.4

[Raf] 1 0.013 [30] 0.013

[Raf-P’ase] 1 0.002 [26]

[MEK] 1 1.4 [30] 5% [30] 0.07

[MEK-P’ase] 1 0.14 [26]

[ERK] 1 0.96 [30] 50% [30] 0.48

[ERK-P’ase] 1 0.48 [26]

System 1 is the model based on the proteomic data only with normalized protein concentrations. System 2 is the model based on both proteomic and other
experimental data with absolute protein concentrations. Except the variables in this table, the initial conditions of other variables are zeros. The concentrations of three
phosphatases were calculated based on both the absolute kinase concentration in [30] and ratio of phosphatase concentration to the corresponding kinase
concentration in [26].
doi:10.1371/journal.pone.0042230.t001
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the downstream signal activity may be used to calibrate the

measurement errors of the upstream signals that are present in the

proteomic datasets.

Model refinement by incorporating more experimental
data

Although the normalized simulation matches the proteomic

data and experimental data very well in Figure 3, the robustness

analysis results in Figure 2 suggested that the percentages of the

activated kinases were quite low. In addition, the fraction of the

activated MEK kinase was larger than that of the activated ERK,

which is in contradiction to previous observations [26,27,30].

When using the absolute protein concentrations as the initial

condition to simulate the established System 1, we found large

difference between the predicted kinase activities and experimen-

tally measured activities [30]. These results suggested that the

normalized proteomic data might not be adequate for accurately

inferring the cell signaling pathway. To achieve better inference

results, it is clear that more experimental data should be

incorporated to the model on the basis of the proteomic data [42].

To further refine the mathematical model, we used the

experimentally measured absolute total concentration of each

kinase, which were also the initial condition of System 2 in Table 1,

together with the information regarding the maximal percentages

of MEK and ERK kinases that were activated by EGF stimulation

[30], which is also presented in Table 1. Then the normalized

proteomic data (with kinase activity of unit one at 5 min) were

rescaled by the absolute kinase activity (i.e. activated kinases at

5 min in System 2) in Table 1. The kinase activity in System 2 was

calculated by

kinase activity½ �~ proteomic kinase activity½ ��

kinase activity at 5 min in System 2½ �:

Note that the related activities of each kinase remained

unchanged. In addition, the absolute concentrations of the three

phosphatases, namely Raf-P’ase, MEK-P’ase and ERK-P’ase,

were also included in the model using the experimentally

measured data [26,30], which is part of the initial condition of

System 2 in Table 1. Note that the Raf, MEK and ERK kinase

activities in Figure 7 in [30] were only utilized to compare with the

simulated kinase activities, serving as the evidence to validate the

feasibility of our proposed mathematical model. Since no further

information was available regarding the distributions of the

activated MEK and ERK kinases in different subcellular locations,

we still used the proteomic data to generate the normalized kinase

activities in the cytosol and nucleus. In summary, the experimental

data provide: (1) the absolute concentrations of the activated Raf,

total MEK activity and total ERK activity in the first 20 min

stimulated by Ras-GTP-binding; (2) the normalized activities of

Figure 2. Robustness analysis. (A and B) Robustness analysis of the proposed model with 10 sets of estimated kinetic rates that were derived
from the normalized proteomic data. (A) the average behavior and (B) nominal behavior of the model with perturbed kinetic rates. (C and D)
Robustness analysis of the proposed model with 10 sets of estimated kinetic rates that were derived from more resources of experimental data. (C)
the average behavior and (D) nominal behavior of the model with perturbed kinetic rates. (Blue-line: Raf; green-line: MEK, red-line: ERK. The horizontal
dash lines in (A) and (C) are the simulated kinase activities based on the unperturbed model kinetic rates).
doi:10.1371/journal.pone.0042230.g002
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MEK and ERK kinases in the cytosol and nucleus in the first

20 min.

We used these experimental data to infer the model rate

constants once again. To balance the errors of different kinases,

the weight to scale the errror of each kinase in equation (6) was the

experimentally measured maximal activity of that kinase. Howev-

er, for the normalized activities of MEK and ERK in the cytosol

and nucleus, the weight in equation (6) was set to unit one. In this

case we also derived 20 sets of estimated model rate constants by

repeated implementations of the genetic algorithm and selected

the top 10 sets with smaller estimation errors. For the top 10 sets of

model rate constants, we used the same method described in the

previous subsection to carry out the robustness analysis. Since the

top 10 sets of estimates have similar kinetic fits, we selected the

kinetic rates that produced the best robustness property of the

system as our final estimate. The estimated model parameters

were given in Table S1.

The major advantage of adding more experimental data is that

the mathematical model now can realize experimental observa-

tions much more accurately and as a result computer simulations

are able to make testable predictions regarding the regulatory

mechanisms, which will be discussed in the following subsection.

Figure 4 gives the simulated system dynamics with the absolute

kinase activities. Computer simulations match the experimental

data very well for the Raf activities in Figure 4B, and the total

ERK kinase activities in Figure 4D. Moreover, the normalized

MEK activity in the cytosol is very close to that in the nucleus,

which is consistent with the experimental observation [30].

Compared with the simulations based on the normalized kinase

concentrations in Figure 3, simulations using the absolute kinase

concentrations in Figure 4 have better agreement with the

experimental data.

An additional advantage of the refined model is that it has a

very good robustness property in response to the perturbations in

rate constants. Numerical results in Figure 2C and 2D suggested

that the developed model based on the absolute kinase concen-

trations has a better robustness property than that based on the

normalized kinase concentrations. Compared with the results in

Figure 2A and 2B, variations between the kinase activities derived

from perturbed and unperturbed rate constants in Figure 2C and

2D are much smaller. In particular, the variances of the Raf

activity in Figure 2D are neglectable.

In summary, the flowchart of the proposed modeling framework

is given in Figure 5. The model structure may include the

graphical schematic structure of the signaling pathway, a list of all

the chemical reactions and a mathematical model that is a system

of differential equations. The proteomic data are the time-course

quantitative data of kinase activities. The other datasets include

data resources obtained by other experimental techniques such as

the FRET imaging and Western blotting. Using the genetic

algorithm, we can obtain a number of candidate estimates of

model parameters. It is suggested that the robustness analysis will

Figure 3. Simulations of the normalized kinase activities. (A) Normalized Ras activity as the signal input from [30]. (B) Raf activity; (C) Total
MEK activity; and (D) Total ERK activity (blue-line: simulation; green-line: normalized Western blotting data [30]; red-line: proteomic data [9]). (E) MEK
activity and (F) ERK activity at different locations (blue-line: simulation in the cytosol, red-line: proteomic data in the cytosol, green-line: simulation in
the nucleus, black-line: proteomic data in the nucleus).
doi:10.1371/journal.pone.0042230.g003
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only be applied to the selected candidates that have the minimal

estimation errors in the genetic algorithm. If the robustness

analysis results are satisfactory, we can choose the parameter set

that has the best robustness property as our final parameter

estimate. Otherwise, other experimental data are required to

refine the parameter estimation. Finally, we can make testable

predictions regarding the signal output under various system

conditions.

Signal output inhibited by phosphatases with different
concentrations

To further validate the feasibility of our modeling approach, we

next asked whether the developed model could make testable

predictions. Here we used the MAP kinase pathway inhibited by

phosphatases with different concentrations as a test problem to

predict the signal output under different cellular conditions. This

test has important implications for drug design because protein

phosphatases are viable therapeutic targets [43,44]. The activity of

protein phosphatases can be manipulated to alter cellular signaling

for therapeutic benefits [44]. In this work we tested the effects of

two important phosphatases PP2A and MKP3. It has been well

established that MKP3 is a phosphatase to inhibit the activities of

both MEK and ERK [45]. However, the regulatory function of

PP2A in the MAP kinase pathway is complex. PP2A positively

promotes Raf kinase activation by dephosphorylating activated

Raf and scaffold protein KSR, regulating 14-3-3 interactions and

stimulating the recruitment of Raf and KSR complex to the

plasma membrane [46,47,48,49,50]. Simultaneously, as a phos-

phatase, PP2A inhibits ERK pathway by dephosphorylating the

activated MEK kinase and is involved in the regulation of nearly

all cellular activities [27,51,52]. Therefore, different PP2A

activities were realized by different concentrations of MEK

phosphatase (denoted as MEK-P’ase). In addition, since scaffold

protein KSR was not included in our proposed model, the positive

regulation of PP2A was described by the PP2A dependent binding

rate a1of Ras and Raf, given by

a1~a10(1z0:2 � ½PP2A�)

where a10 is the basal binding rates. In addition, different MKP3

activities were implemented by different concentrations of MEK-

P’ase and ERK phosphatase ERK-P’ase. Although ,25% of ERK

phosphatases are assumed to be serine/threonine phosphatases

and thus are able to dephosphorylate MEKp and MEKpp, it

should be noted, however, that only a fraction of the ERK

phosphatases can deactivate the activated MEK kinase [27].

Therefore we assumed that only a quarter of MEK-P’ase varied

proportionally to the MKP3 concentrations.

According to the experimental conditions in [45], we used the

mathematical model with the absolute kinase concentrations to

simulate kinase activities, when the MAP kinase module was

stimulated by Ras-GTP with activities ranging from 0.004 to 0.4

Figure 4. Simulated kinase activities based on the incorporation of proteomic data and Western blotting data. (A) Normalized Ras
activity as the signal input [30]. (B) Raf activity; (C) Total MEK activity, and (D) Total ERK activity (blue-line: simulation; green-line: Western blotting data
[30]; red-line: re-scaled proteomic data [9]). (E) MEK activity and (F) ERK activity at different locations (blue-line: simulation in the cytosol, red-line:
proteomic data in the cytosol, green-line: simulation in the nucleus, black-line: proteomic data in the nucleus).
doi:10.1371/journal.pone.0042230.g004

Modeling of Kinase Pathway Using Proteomic Data

PLOS ONE | www.plosone.org 7 August 2012 | Volume 7 | Issue 8 | e42230



and the scaled phosphatase concentrations ranging from 0.3 to 2,

respectively. Figure 6 shows that the simulated kinase activities at

10 min are in good agreement with the experimental data [45].

Since the MEK and ERK activities begin to decline from ,6 min,

the different measurement points may lead to different patterns of

the kinase activities in regards to different ligand concentrations

and phosphatase activities. The predicted kinase activities

measured at 5 min or 20 min are given in the Figure S1 and

Figure S2, respectively. The simulated kinase activities at 10 min

and 20 min suggested that the positive regulation of Raf activation

by PP2A is important to maintain a sustained MAP kinase activity

over the time course.

Discussion

In this work, we used a well-characterized pathway to develop a

general framework to design mathematical models of cell signaling

pathways based on proteomic datasets. The power of this

modeling framework lies in its potential ability to explore the

network structure of more complex signaling pathways. Recently

systems-wide studies of targeted biochemical assays and in vivo

phosphoproteome have identified thousands of in vivo phosphor-

ylation sites in signaling proteins across different biological

conditions [1,6]. These achievements have led to a significantly

accelerating expansion of our knowledge regarding the kinase-

substrate relationships and post-translational modifications in cell

signaling pathways. However, our understanding of the phos-

phorylation-dependent signaling cascades is far from complete. In

this context, the motivation to better understand the essential

mechanisms underlying signaling pathways has driven the

development of bioinformatic and systems biology approaches to

infer signaling networks by exploiting high-throughput genomic

and/or proteomic data [53,54,55,56]. Development of such

methods for inferring signaling networks will significantly enhance

our ability to accurately model signaling networks and to discover

new mediators or components of the known networks. These

bioinformatics tools will be used in our modeling framework as a

crucial first step to infer the structure of signaling cascades.

In spite of the significant progress in the phosphoproteomics by

using mass spectrometry, this technique also has certain limita-

tions. Among them, the lack of information on the stoichiometry of

phosphorylation is the key limitation of the current phosphopro-

teomic approaches [57]. In addition, quantification may be limited

to a portion of proteins (for example, proteins with adequate

abundance) [58], which leads to the missing values or the absence

of relevant proteins. Another limitation is the resolution of time-

course studies, so certain fast phosphorylation events may be very

difficult to be picked up experimentally [59]. It is worth noting that

these limitations may be liable to errors in the proteomic data.

Even by making the most out of the available data, this research

work has identified a number of important issues in using

proteomic data to infer mathematical models of cell signaling

pathways. One of the challenging issues is the missing value of

kinase activities, which can be caused by either biological or

technical reasons. Although a number of statistical methods have

been proposed to estimate the missing value, the implementation

of these methods will be extremely difficult if the activity of a

protein is completely unavailable in the proteomics dataset. An

example is the Ras protein whose activities were not available in

the proteomic dataset at all. In this case, other sources of biological

data must be utilized to fill the data gaps. In addition, the

normalization of proteomic data causes the uncertainty of protein

concentrations in mathematical modeling. In this work we first

used the unified protein concentrations, where the information of

the absolute protein concentrations was not known a priori.

Although the normalized simulations can match the normalized

experimental data very well, the simulated relative protein

concentrations do not necessarily reflect the real scenario of

signaling pathways, since the concentrations of proteins, such as

MEK-P’ase [27], may play an appreciated role in modulating

signaling transduction. Therefore, it is important to enrich the

data by integrating more sources of experimental data prior to

Figure 5. Flowchart of the proposed modeling framework for developing mathematical models of cell signaling pathways using
proteomic data. Refer to the Section ‘‘Model refinement by incorporating more experimental data’’ for more detailed description of this flowchart.
doi:10.1371/journal.pone.0042230.g005
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model simulation. In fact, by incorporating more relevant

information regarding the absolute kinase concentration and

percentages of activated kinases in this study, we have shown that

the developed mathematical model has indeed achieved a better

simulation accuracy and more robust properties with respect to

varying rate constants. More importantly, the mathematical model

can provide more realistic predictions and mechanistic insights

into kinase activities under various cellular conditions.

The MAP kinase module studied in this work comprises of only

seven proteins. Based on the detailed phosphorylation and

dephosphorylation reactions, the proposed mathematical model

encompasses 33 reactions and 57 unknown rate constants. By

using only a small amount of proteomic data that are currently

available to infer a large number of rate constants, our research

showed that a variety of rate constants could reliably realize the

same experimental data. Thus a challenging question is how to

select the most appropriate rate constants from a variety of

candidate estimates. One possible approach to address this issue is

to develop simplified mathematical models with less unknown rate

constants, which is similar to the approaches to infer gene

regulation from microarray data [60,61]. The Michaelis-Menten

function is one of the best known models to simplify the enzymatic

reactions and reduce the number of unknown parameters.

However, the remaining question in the field is how to design

simplified functions to represent the multiple-step activation and

deactivation reactions which are essential for signaling transduc-

tion. In addition, we need to develop useful methods to identify the

key steps of phosphorylation or dephosphorylation reactions.

Proteomics data are subjected to considerable noise, including

not only the technical noise arising from repeated experimental

processes but also the analysis noise [62]. However, compared

with the developed stochastic methods for studying noise in

microarray expression data [63,64], the study of noise in

proteomic data is still at the very early stage of development.

Researchers are still in the progress of designing noise models to

characterize the statistical distributions of noise in proteomic data.

Noise, like the error of MEK kinase activity in this study, may

result in significant variations in the inference of mathematical

models. However, an interesting observation in this study is that

the downstream signal cascade may have the potential to correct

the errors in the upstream signal activity. In view of this, more

work is required to investigate the influence of noise on the

development of mathematical models based on the noisy

proteomic datasets.

The MAP kinase pathway is one of the most extensively studied

signalling pathways. Over the last two decades there has been a

large amount of published experimental data regarding the

signalling entities, regulatory interactions, kinase activities, protein

absolute concentrations and perturbation studies. In addition, the

advances in systems biology have produced a number of

sophisticated mathematical models with various assumptions of

the regulatory mechanisms at different levels as well as inferred

model parameters from experimental data under various exper-

Figure 6. Kinase activities at 10 min inhibited by phosphatases PP2A and MKP3. (A, B, C) Simulated Raf, MEK and ERK activities at 10 min
when the MAP kinase module was stimulated by different signal inputs and inhibited by phosphatase PP2A with different concentrations. (D, E, F)
Simulated Raf, MEK and ERK activities at 10 min when the MAP kinase module was stimulated by different signal inputs and inhibited by the
phosphatase MKP3 with different concentrations (blue-line: Ras = 0.004; red-line: Ras = 0.02; black-line: Ras = 0.04; green-line: Ras = 0.4).
doi:10.1371/journal.pone.0042230.g006
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imental conditions and from different types of cells. In this work

we concentrated on the issue of establishing mathematical models

from proteomic datasets. However, only a small amount of

experimental data was utilized in this work to refine the developed

mathematical model. As a result, our simulation suggested that the

integration of more experimental data could improve the accuracy

of the mathematical model substantially. Therefore, the future

work includes the development of more sophisticated models for

cell signalling pathways based on the combination of large-scale

proteomic datasets, more experimental data, more signalling

regulatory mechanisms as well as estimated model parameters.

In summary, this work proposed a novel computational

framework to develop mathematical models of cell signaling

pathways based on the proteomic datasets. Using the MAP kinase

pathway as the test system, we developed a new mathematical

model including the cytosolic and nuclear subsystems and applied

the genetic algorithm to infer unknown model parameters. The

robustness property of the mathematical model was used as a

criterion to select the appropriate rate constants from the

estimated candidates. This research work identified a number of

important issues in using proteomic data to infer the cell signaling

pathways. Our results have also demonstrated that incorporation

of more relevant experimental data, including the absolute protein

concentrations, could significantly enhance not only the simulation

accuracy but also the robustness property of the proposed

mathematical model. The successful application of the proposed

modelling framework to the MAP kinase pathway suggests that

this approach is very promising for developing accurate and robust

mathematical models for more complex cell signaling pathways.

Materials and Methods

Experimental data
Using an integrated phosphoproteomic technology that com-

bines phosphopeptide enrichment, high-accuracy identification,

and stable isotope labeling by amino acids in cell culture (SILAC)

with the time-course method, Olsen et al. [9] have recently

identified and quantitated the global in vivo phosphoproteome and

its temporal dynamics upon growth-factor stimulation in human

HeLa cells. In this study, human Hela cells were stimulated with

150 ng/ml of EGF for different time periods. The temporal

dynamical profiles were recorded in the Phosida database [9]. This

dataset includes the quantitative temporal activity ratios of 2,244

proteins with a total of 6,600 phosphorylation sites, and can be

download as an excel file in the supplementary information of ref

[9]. Note that the computational approach for extracting

quantitative proteomic data from proteomic readout is a crucial

step in proteomic data analysis and mathematical modeling. Here

we referred to two review papers [65,66] and the further

references therein for the recent progress of the experimental

and computational approaches for extracting proteomic data.

We used the proteomic data of the ARaf1 protein, the dual

specificity mitogen-activated protein kinase kinase 2 (MEK) and

the mitogen-activated protein kinase 1 (ERK) in Table S1. In this

dataset kinase activities were measured at 0, 1, 5, 10 and 20 min.

The activities of each kinase were normalized by its activity at

5 min. The activities of ARaf1 were available in the cytosol only;

while the activities of MEK and ERK were obtained in both the

cytosol and nucleus.

Additional experimental data were also obtained by using

Western blotting analysis and other experimental techniques in

human HeLa cells [30]. Hela cells were stimulated with 50 ng/ml

of EGF for different time periods. Although the EGF concentra-

tion in this study is different from that in the study [9], it has been

indicated that the proportion of phosphorylated MEK remained

unchanged even in the presence of an excess of EGF [30].

Therefore both datasets in the studies [9,30] can be perfectly

combined in our study. The Ras activity in Figure 7 [30] was used

as the signal input of the MAP kinase module in this research. We

also used the absolute kinase concentrations in Table 1 in [30] and

the fractions of the activated kinases (at 5 min) in Figure 2 in [30]

in our modeling work, which led to the absolute activated kinase

concentrations at 5 min in Table 1 in this paper. Then the relative

kinase activities in the proteomic study were re-scaled by the

absolute activated kinase concentrations at 5 min. Note that the

Raf, MEK and ERK kinase activities in Figure 7 [30] were utilized

only to compare with the simulated kinase activities, serving as an

evidence to validate the feasibility of our proposed mathematical

model.

In addition, the kinase activities that were inhibited by different

phosphatases [45] were also used to validate the predictions

derived from our proposed model.

Inference method
All model parameters are estimated by using the genetic

algorithm, which is an effective searching method for finding the

unknown kinetic rates when the search space is associated with a

complex error landscape. We used a MATLAB toolbox developed

by Chipperfield et al. [67] to infer the 57 unknown rate constants.

This toolbox used MATLAB functions to build a set of versatile

routines for implementing a wide range of genetic algorithms. The

major procedures of the genetic algorithm toolbox include

population representation and initiation, fitness assignment,

selection functions, crossover operators, mutation operators and

multiple subpopulation support. In this work we used the function

crtbp to create the binary initial population, the linear-ranking and

non-linear-ranking algorithms ranking to transform the raw

objective function values into non-negative figures of merit for

each individual, a selection function reins to effect fitness-based

reinsertion when the entire population is not reproduced in each

generation, a high-level entry function select to provide a

convenient interface to the selection routines, a high-level entry

function recombine to provide all the crossover operators, and the

routine mut to perform binary and integer mutations.

The genetic algorithm was run over 500 generations for each

rate estimate, and we used a population of 100 individuals in each

generation. The values of rate constants were taken initially from

the uniform distribution in the range of [0,Wmax], and the value of

Wmax was fixed to 1000 for each rate constant. The initial estimate

of rate constants can be changed by using different random seeds

in the MATLAB toolbox, leading to different final estimates of the

rate constants.

The estimation error was measured by the weighted distance

between the simulated kinase activities and experimental data

[68]. The weight of each kinase was determined by its

corresponding maximal activity. The total error is calculated by

E~
XN

i~1

XM
j~1

Dxi(tj){x�ij D

max
j

xi(tj)
� � ð6Þ

where x�ij and xi(tj) are the simulated and experimentally

measured activities of kinase xi at time point tj , respectively. Note

that in the ‘‘Estimation of model kinetic rates’’ section

max
j

xi tj

� �� �
~1. However, in the ‘‘Model refinement’’ section,

the total concentration of each kinase was scaled by its maximal

activity; but for the MEK and ERK activities in different cellular
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locations,

max
j

xi(tj)
� �

~1:

Robustness analysis
We used the concept defined by Kitano [34] to measure the

robustness property of the proposed model. The robustness

property of a mathematical model with respect to a set of

perturbations P is defined as the average of an evaluation function

Ds
a,P of the system over all perturbations p[P, weighted by the

perturbation probabilities prob(p), given by

Rs
a,P~

ð
p[P

prob(p)Ds
a,Pdp ð7Þ

Here we proposed to use the following measure to evaluate the

average behavior

RM
a,P~

X
i,j

ð
p[P

prob(p)xij(p)dp

� �
ð8Þ

which is the mean of kinase activities that should be close to the

simulated kinase activity obtained from the unperturbed rate

constants. In addition, the impact of perturbations on nominal

behaviour is defined by

RN
a,P~

X
i,j

ð
p[P

prob(p)(xij(p){xij(p))2dp

� �
ð9Þ

where xij(p) and xij are the simulated activities of kinase xi at time

point tj with perturbed and unperturbed rate constants, respec-

tively, and xij(p) is the mean of xij(p) over all the perturbated

kinetic rates.

For each rate constant ki, the perturbation is set to

ki~max ki(1zm(U{0:5)),0f g ð10Þ

with a uniformly distributed random variable U(0,1) or

ki~max ki(1zmN),0f g ð11Þ

with the standard Gaussian random variable N(0,1). Here m
represents the perturbation strength.

Supporting Information

Figure S1 Kinase activities at 5 min inhibited by
phosphatases PP2A and MKP3. (A, B, C) Simulated Raf,

MEK and ERK activities at 5 min when the MAP kinase module

was stimulated by different signal inputs and inhibited by

phosphatase PP2A with different concentrations. (D, E, F)

Simulated Raf, MEK and ERK activities at 5 min when the

MAP kinase module was stimulated by different signal inputs and

inhibited by the phosphatase MKP3 with different concentrations

(blue-line: Ras = 0.004; red-line: Ras = 0.02; black-line:

Ras = 0.04; green-line: Ras = 0.4).

(TIF)

Figure S2 Kinase activities at 20 min inhibited by
phosphatases PP2A and MKP3. (A, B, C) Simulated Raf,

MEK and ERK activities at 20 min when the MAP kinase module

was stimulated by different signal inputs and inhibited by

phosphatase PP2A with different concentrations. (D, E, F)

Simulated Raf, MEK and ERK activities at 20 min when the

MAP kinase module was stimulated by different signal inputs and

inhibited by the phosphatase MKP3 with different concentrations

(blue-line: Ras = 0.004; red-line: Ras = 0.02; black-line:

Ras = 0.04; green-line: Ras = 0.4).

(TIF)

Table S1 Model kinetic rates.

(DOCX)

Supporting Information S1 Section 1. Chemical reactions.

Section 2. Mathematical model.

(DOCX)
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