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Abstract

Background: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of
glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as
increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R), present in most tissues, have been
proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of
the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties
of the five marketed insulin analogues towards IR/IGF1R hybrids.

Methodology: To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed
Bioluminescence Resonance Energy Transfer (BRET) assay that permits specific analysis of the pharmacological properties of
hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3
phosphate (PIP3) production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP3

production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells.

Results: Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was
significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP3 production in MCF-7 cells
but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for
hybrid receptors stimulation, PIP3 production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared
to insulin.

Conclusion: Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and
M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in MCF-7 cells.
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Introduction

The link between the quality of glycemic control and diabetic

complications is now clearly established. However, in diabetic

patients, injections of human insulin do not achieve an optimal

control of glycemia. Indeed, in normal individuals, food intake

induces a rapid increase in plasma insulin, which reaches its

maximal level after 30 to 45 min. Insulin concentration then

decreases to reach its basal level within 2 to 3 h. However, in

diabetic patients, injection of human insulin does not mimic this

profile [1]. Indeed, insulin has a tendency to self-associate and it is

found in a hexameric form when injected in the subcutaneous

tissues. Insulin can only be absorbed through the capillary wall

into the circulation in a monomeric form, therefore the
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appearance of injected insulin in the blood is delayed [1,2]. This

can result in post-prandial hyperglycaemia as well as increased risk

of hypoglycemia before the following meal. Insulin analogues,

displaying either slow (glargine, detemir) or rapid pharmacokinet-

ics (aspart, lispro, glulisine) have been developed to mimic basal

insulin levels and rapid insulin secretion peaks that occur after

eating. However, concerns have been raised about the potential

mitogenic and anti-apoptotic properties of fast- and slow-acting

analogues [3–5]. Moreover, recent epidemiological studies gave

contradictory results concerning a potential association between

the use of glargine and cancer risk, notably breast cancer [6–8].

The controversy raised by these studies underlines the importance

of a detailed characterization of the pharmacological properties of

these insulin analogues.

The properties of these analogues towards insulin receptors (IR)

and IGF1 receptors (IGF1R) have already been evaluated [3,9],

however their potential effects on insulin/IGF1 hybrid receptors

still remains a major question. The IR and the IGF1R are both

heterotetramers consisting of one aß subunit pair complexed with

another aß subunit pair ((aß)2). The a-subunits are extracellular

and bind ligands, whereas the ß-subunits possess an intracellular

tyrosine-kinase activity [10]. A large number of studies have

Figure 1. Effect of insulin, glargine and IGF1 on IR homodimers and IR/IGF1R hybrid receptors. HEK-293 cells were co-transfected with
IRA-Luc/IRA-YFP, IRB-Luc/IRB-YFP, IRA-Luc/IGF1R-YFP or IRB-Luc/IGF1R-YFP. Receptors were partially purified by WGL chromatography. Ligand
binding induces a conformational change that brings the two ß-subunits in close proximity, resulting in an energy transfer between the
luciferase and YFP. BRET assays were performed in the presence of increasing ligand concentrations. (A) Typical experiments showing basal and
insulin or IGF1 stimulated BRET signals. (B) Dose-response curves showing the effect of insulin, IGF1 and glargine on IR homodimers and IR/
IGF1R hybrids. Ligand-induced BRET (BRET above basal) was determined at each ligand concentration and was used to establish dose-response
curves. Results are the means 6 S.E.M. of 4 to 6 independent experiments. EC50 for insulin, IGF1, glargine and other insulin analogues are given
in Table 1.
doi:10.1371/journal.pone.0041992.g001
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demonstrated the existence of IR/IGF1R hybrid receptors,

consisting of an aß subunit pair of the IR associated with an aß

subunit pair of the IGF1R [11,12], in both normal [13,14] and

pathological situations, including diabetes [15] and cancer [16]. In

tissues from insulin resistant or diabetic patients, the expression of

IR/IGF1R hybrids is increased while IR expression is decreased

[15,17–19]. This may contribute to decreased insulin sensitivity in

these patients, since hybrid receptors were shown to display lower

affinity for insulin and higher affinity for IGF1 [18,20]. Due to

these ‘‘IGF1R-like’’ properties, hybrid receptors may also play a

role in breast cancer [16], thyroid cancer [21] and colonic cancer

cells [22]. In view of their ‘‘IGF1R-like’’ properties and increased

expression in diabetic patients, it is of considerable importance to

evaluate the pharmacology of insulin analogues on IR/IGF1R

hybrids. However, these hybrids are technically difficult to study

because cells expressing hybrid receptors also express homodi-

meric IR and IGF1R.

We previously developed a BRET-based method to monitor

ligand-induced conformational changes within the IR [23,24]. By

generating insulin receptors with one ß-subunit fused to Renilla

luciferase (Luc) and the other ß-subunit fused to yellow

fluorescent protein (YFP) (Fig. 1A), we demonstrated that

ligand-induced conformational changes produced a BRET signal

that reflects the activation state of the receptor [23]. More

recently, we demonstrated that this method constitutes a unique

tool to specifically monitor the activation of IR/IGF1R hybrids

[25,26] by utilizing constructs where the ß-subunit of the IR is

fused to Luc and the ß-subunit of the IGF1R is fused to YFP

(Fig. 1A). With this method only hybrid receptors are BRET

competent, which allows specific pharmacological studies on

these hybrids [25]. In the present study, we took advantage of this

method to establish, for the first time, the pharmacological profile

of insulin analogues towards insulin/IGF1 hybrid receptors.

Increased risk of breast cancer has been associated with diabetes

in numerous epidemiological studies [27], therefore we also

studied the effect of insulin analogues on the production of PIP3

in breast cancer derived cell lines using a new, highly sensitive

BRET-based assay.

Methods

Reagents
All chemical reagents have been described previously

[23,25,28]. Human insulin (actrapid) and human insulin analogues

[glargine (A21Gly,B31Arg,B32Arg-insulin), detemir (B29Lys(e-

tetradecanoyl),desB30)-insulin), lispro (B28Lys,B29Pro-insulin),

glulisine (B3Lys,B29Glu-insulin) and aspart (B28Asp-insulin)] were

kind gifts from Profs. B. Fève, J. Bertherat and J-D. Chiche (AP–

HP, Paris). Glargine metabolites, M1 (A21Gly-insulin) and M2

(A21Gly,B30desThr-insulin) were made available by Process

Development Biotechnology (Sanofi-Aventis, Frankfurt, Ger-

many). Immunoprecipitation of IR and IR/IGF1R hybrids was

performed using a monoclonal anti-IR antibody (CT1) covalently

bound to sepharose beads [29]. Immunoblotting was performed

using anti-IR (Santa Cruz C-19), anti-IGF1R (Santa Cruz C-20),

anti-Erk2 (Santa-Cruz C-14), anti-Akt (Santa-Cruz H-136), anti-

phospho-Erk (Cell Signaling 9101) and anti-phospho-Akt (Cell

Signaling 9271) antibodies.

Expression vectors
cDNAs coding for Luc- or YFP-tagged receptors have been

described previously [23,25,30]. The cDNA coding for YFP-

targeted to the plasma membrane (pEYFP-Mem) was from

Clontech. The cDNA coding for Luc-Akt-PH was obtained by

fusing the Pleckstrin Homology (PH) domain of mouse Akt1 to the

C-terminus of Renilla luciferase.

Cell culture, transfection, partial purification of receptors
and BRET assays

Culture of HEK-293 cells, transfection and purification of

receptors by wheat-germ lectin (WGL) chromatography have been

described previously [23]. MCF-7 and MDA-MB-231 cells were

cultured as described previously [31,32]. For studies of PIP3

production, MCF-7 and MDA-MB-231 cells were transfected with

0.7 mg Luc-Akt-PH and 0.3 mg pYFP-Mem cDNAs per 10.3 mm

dish and transferred in a 96 well plate 24 h before BRET

experiments. BRET experiments were performed exactly as

described previously [23,28,33].

Akt and Erk1/2 phosphorylation, gene expression and
thymidine incorporation in MCF-7 cells

Akt and Erk1/2 phosphorylation were evaluated both by

classical western-blotting [34] and by using in-cell western as

described previously [35]. Total RNA for quantitative PCR was

isolated [36] and reverse-transcribed as described previously [37].

Quantitative PCR was performed using a Lightcycler system and

SYBR Green I using the following primer sequences: EGR1:

Forward: GCACCTGACCGCAGAGTCTT, Reverse: AGTG-

GTTTGGCTGGGGTAACT; IGFBP1 Forward: TAT-

GATGGCTCGAAGGCTCT, Reverse, TAGACGCACCAG-

Table 1. EC50s of insulin, insulin analogues and IGF1 towards IR homodimers and IR/IGF1R hybrids.

IRA/IRA IRB/IRB IRA/IGF1R IRB/IGF1R

EC50 (nM) EC50 (nM) EC50 (nM) EC50 (nM)

Insulin 2.7060.65 2.5660.69 130.28641.05 69.61634.60

IGF1 34.38613.36 ** 50.03612.89 ** 3.0160.66 ** 2.8760.66 **

Glargine 2.3860.32 2.3960.50 18.0768.54 ** 7.6062.99 **

Detemir 5.1362.75 5.2461.79 335.396224.19 174.99642.61

Aspart 1.4860.26 2.9761.50 127.62636.23 34.13610.51

Glulisine 1.6160.39 1.6460.33 183.22663.08 107.48641.15

Lispro 1.6560.10 2.4660.94 55.67622.78 22.97614.62

Results are the means 6 S.E.M. of 4 to 6 independent experiments.
**: statistically significant differences at p,0.01 when compared to insulin.
doi:10.1371/journal.pone.0041992.t001
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Figure 2. Effect of insulin, glargine and IGF1 on PIP3 production in intact living cells. Activation of tyrosine kinase receptors by their
ligands stimulates the activity of PI-3 kinase, leading to increased phosphorylation of phosphatidyl-inositol 2 phosphate (PIP2) into
phosphatidyl-inositol 3 phosphate (PIP3) and subsequent recruitment of Akt to the plasma membrane through its pleckstrin homology (PH)
domain. To monitor the production of PIP3 induced by receptor activation, cells were co-transfected with cDNAs coding for the PH domain of
Akt fused to luciferase (Luc-Akt-PH) and YFP fused to the membrane localization sequence of neuromodulin. Cells were pre-incubated for
10 min with coelenterazine and then stimulated with increasing ligand concentrations. (A) Typical experiment showing real-time insulin or IGF1
effects on PIP3 production in MCF-7 cells. (B) Dose-dependent effect of insulin, glargine and IGF1 on PIP3 production in MCF-7 and MDA-MB231
cells. Ligand-induced BRET (BRET above basal at the plateau) was determined for each ligand concentration and was used to establish dose-
response curves. Results are the means 6 S.E.M. of 5 to 6 independent experiments. EC50 for insulin, IGF1, glargine and other insulin analogues
are given in Table 2. (C) Left panel: Receptors were partially purified from MDA-MB231 and MCF-7 cells by WGL chromatography. WGL eluates
(12 mg of protein) were submitted to electrophoresis and western-blotting. IR and IGF1R expression levels were evaluated by immunoblotting
(IB) using anti-IR (C-19) and anti-IGF1R (C-20) antibodies. Right panel: After normalization of the eluates for IR content, immunoprecipitation (IP)
was performed using anti-IR antibody (CT1) and hybrid receptors were detected using anti-IGF1R antibody. Blots were then stripped and
reprobed with anti-IR antibody. Results are representative of 6 immunoprecipitation experiments performed on three independent batches of
receptor preparations (**, p,0.01).
doi:10.1371/journal.pone.0041992.g002
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CAGAGTCC; Cyclophyline A Forward: GGTGACTTCA

CACGCCATAATG, reverse, ACAAGATGCCAGGACCCG-

TAT. DNA synthesis was determined by [14C]thymidine incor-

poration in MCF-7 cells as described previously [38].

Statistical analysis
Determination of EC50 was performed with Prism software by

non-linear regression analysis of the dose-response curves using a 4

parameter logistics model. Statistical analysis was performed using

ANOVA followed by Dunnett’s post-test.

Results

Pharmacological properties of insulin analogues towards
the IR/IGF1R hybrids

Alternative splicing of the IR mRNA results in two isoforms

which differ by the absence (IRA) or presence (IRB) of 12 amino

acids located at the C-terminal end of the a-subunit. Since these

isoforms display different biological and pharmacological proper-

ties [39,40], we studied the effect of insulin analogues towards IRA

and IRB homodimers as well as IRA/IGF1R and IRB/IGF1R

hybrids. As described previously, insulin stimulated the IR

homodimers more efficiently than IGF1 [23], whereas IGF1 was

more efficient on IR/IGF1R hybrids [25] (Fig. 1A).

We then evaluated the effect of the five marketed insulin

analogues towards IR homodimers and IR/IGF1R hybrids

(Fig. 1B and Table 1). Interestingly, whereas glargine’s pharma-

cological profile towards IR homodimers was superimposable to

that of insulin, its potency towards both types of hybrid receptors

was significantly higher compared to insulin (Table 1). No

significant differences in pharmacological profiles were observed

for the other insulin analogues, although lispro tended to have a

slightly higher potency than insulin towards IR/IGF1R hybrids,

and detemir tended to have a lower potency on homodimers and

hybrid receptors (Table 1). Thus, among the five analogues used

for the treatment of diabetes, only glargine showed a profile similar

to that of IGF1 towards hybrid receptors.

Effect of insulin analogues on PIP3 production in living
cells

We then studied the effects of these ligands on PIP3 production

induced by endogenous receptors in living cells, using a new

BRET assay (Fig. 2A). This assay is based on the recruitment of

the PH domain of Akt (Akt-PH) to the plasma membrane in

response to PI-3 kinase-induced PIP3 production. We observed

that insulin and IGF-1 stimulated BRET in a dose dependent

manner (Fig. 2A). This effect was inhibited by the PI-3 kinase

inhibitor LY294002 (Fig. S1) indicating that the BRET signal

measured in these experiments indeed reflected PIP3 generated by

activation of PI-3 kinase.

Using this method, we studied the pharmacological profile of

IGF1, insulin and insulin analogues on PIP3 production in

MCF-7 and MDA-MB231 breast cancer cells (Fig. 2B and

Table 2). In MCF-7 cells, IGF-1 was much more potent than

insulin for activation of PIP3 production. Among the five

insulin analogues, only glargine stimulated PIP3 production

with higher potency compared to insulin (Fig. 2B and Table 2).

In contrast, in MDA-MB231 cells, insulin and insulin

analogues stimulated PIP3 production with similar high-

affinity (Fig. 2B and Table 2), suggesting that their effects

were mediated by IR in these cells.

To determine whether the different results obtained in the

two cell lines were due to differences in IGF1R, IR or hybrid

receptor expression, receptors were partially purified from

MCF-7 and MDA-MB231 cells by WGL chromatography.

Western-blotting experiments indicated that the expression of

IGF1R was similar in both cell lines, whereas the expression of

IR was significantly higher in MDA-MB231 cells (Fig. 2C, left

panel). To detect hybrid receptors, IR were immunoprecipitated

from WGL eluates using an anti-IR antibody and submitted to

western blotting using an anti-IGF1R antibody. The specificity

of this procedure for the detection of hybrid receptors was

verified in previous experiments using IR-Luc/IGF1R-YFP

hybrids (Fig. S2). Then, equivalent amounts of IR from MCF-7

or MDA-MB231 cells were immunoprecipitated using the anti-

IR antibody and immunodetected with the anti-IGF1R

antibody (Fig. 2C, right panel). We observed that the amount

of IGF1R precipitated with anti-IR antibody (i.e., the relative

amount of IR engaged in IR/IGF1R hybrids) was two-fold

higher in MCF-7 than in MDA-MB231 cells, in agreement with

previous results [16].

Effect of glargine metabolites M1 and M2 on hybrid
receptors and PIP3 production in MCF-7 cells

Previous studies indicated that in vivo, glargine is converted into

metabolites M1 and M2 (Figure 3A) [41,42], which have a

metabolic potency comparable to that of insulin but a lower

growth-promoting activity than insulin [38]. Therefore, we

evaluated the effect of M1 and M2 on hybrid receptors. We

observed that, in contrast to glargine, M1 and M2 were less

efficient than insulin in stimulating IRA/IGF1R and IRB/IGF1R

hybrids (Fig. 3B and Table 3). M1 and M2 were also less efficient

than insulin in stimulating IRA homodimers, suggesting a

decreased affinity towards this isoform. We also evaluated the

effect of M1 and M2 on PIP3 production in MCF-7 cells,

previously shown to be more sensitive to glargine than to insulin.

We observed a lower potency of M1 and M2 metabolites in

stimulating PIP3 production in MCF-7 cells compared to insulin

and glargine (Fig. 3C and Table 4).

Effect of glargine and its metabolites M1 and M2 on
downstream signaling events in MCF-7 cells

We compared the effects of insulin, glargine, M1, M2 and

IGF1 on Akt and Erk1/2 phosphorylation in MCF-7 cells using

both western-blot (Fig. 4A) and in-cell western (Fig. 4B). In

agreement with the results obtained with these ligands in BRET

Table 2. EC50s of insulin, insulin analogues and IGF1 for PIP3

production in MCF-7 and MDA-MB231 cells.

MCF-7 MDA-MB231

EC50 (nM) EC50 (nM)

Insulin 38.2168.32 0.5560.07

IGF1 0.4460.08 ** 0.7160.10

Glargine 4.6460.75 ** 0.7860.18

Detemir 164.686104.42 2.3060.18 **

Aspart 43.41627.64 0.5960.10

Glulisine 124.23625.20 * 0.8460.18

Lispro 58.48625.90 0.4360.13

Results are the means 6 S.E.M. of 5 to 6 independent experiments.
*, **, p,0.05 or p,0.01 respectively, when compared to insulin.
doi:10.1371/journal.pone.0041992.t002
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experiments (Fig. 3), glargine stimulated Akt and Erk with

significantly higher potency compared to insulin, whereas the

effects of M1 and M2 were similar to those of insulin (Fig. 4A, B

and Table 4). Using quantitative RT-PCR, we also evaluated the

effect of these ligands on the expression of two genes involved in

the regulation of cell proliferation (Fig. 4C). EGR1 is a

transcription factor that acts as a tumor suppressor in breast

cancer cells [43], whereas IGFBP1 regulates cell proliferation by

binding to and inhibiting IGF1 effects [44]. We observed that the

expression of EGR1 and IGFBP1 was significantly inhibited by

overnight treatment with 10 nM glargine. Inhibition by insulin

was less marked, whereas M1 and M2 had no significant effect. In

agreement with these results, glargine stimulated thymidine

incorporation into DNA with higher potency, whereas M1 and

M2 displayed similar or lower potency than insulin (Fig. 4D and

Table 4).

Figure 3. Comparison of the pharmacological profiles of glargine and its metabolites M1 and M2. (A) Conversion of glargine into M1
and M2 metabolites. (B) Effects of M1 and M2 on IR/IGF1R hybrids and on IR/IR homodimers. Receptors were prepared as described in figure 1. BRET
assays were performed in the presence of increasing concentrations of insulin, glargine, M1, M2 or IGF1. (C) Dose-dependent effect of insulin,
glargine, M1, M2 or IGF1 on PIP3 production in MCF-7 cells. BRET assays were performed in the presence of increasing concentrations of ligands.
Ligand-induced BRET (BRET above basal at the plateau) was determined for each ligand concentration and was used to establish dose-response
curves. Results are the means 6 S.E.M. of 4 to 6 independent experiments. EC50 for insulin, IGF1, glargine and its metabolites are given in Table 3 and
4.
doi:10.1371/journal.pone.0041992.g003
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Discussion

Insulin analogues are widely used for the treatment of millions

of diabetic patients, but their effects on IR/IGF1R hybrids had

never been studied. Expression of hybrid receptors have been

detected in human skeletal muscle, heart, coronary artery smooth

muscle cells, endothelial cells, adipose tissue, fibroblasts, spleen,

red and white blood cells and placenta [13,14,45,46]. Since the

expression of IR/IGF1R hybrids appears to be increased in tissues

from diabetic patients [15,18,19], it is highly important to

determine the pharmacological properties of marketed insulin

analogues towards these hybrids. Indeed, in addition to potential

pro-mitogenic effects associated with IR/IGF1R stimulation,

undesirable effects in some tissues may also occur even in fully

differentiated, non-proliferating cells. For instance, in 3T3L1

adipocytes, the proportion of IR/IGF1R increases during

differentiation, and activation of these receptors in mature

adipocytes stimulates glucose uptake [47]. Thus, differential

pharmacodynamic or pharmacokinetic activities of insulin ana-

logues in diabetic patients, which over-express hybrid receptors in

adipose tissue [19], may influence weight gain associated with

insulin therapy [48].

In the present study, to establish the pharmacological profile of

these analogues, we have used a unique BRET-based assay that

specifically monitors the effect of different ligands on the activity of

IR/IGF1R hybrids. We show that among the five insulin

analogues presently used to treat diabetes, only glargine displays

a significantly higher potency than insulin in stimulating IRA/

IGF1R and IRB/IGF1R (Fig. 1B and Table 1). Interestingly, we

observed a tendency towards an increased potency of lispro on

IRB/IGFR, which might deserve further investigation as in-

creased proliferation rates have been reported for this ligand in

different cell lines [4,49].

We also introduced a new, highly sensitive BRET assay to

monitor PIP3 production induced by activation of endogenous

receptors in living cells. The sensitivity and robustness of this

assay permit the establishment of the pharmacological profile of

activation of this pathway by different ligands. In contrast to

MDA-MB231 cells, we observed that glargine stimulated PIP3

production with higher potency than insulin in MCF-7 cells.

Moreover, in these cells, downstream effects of glargine,

including phosphorylation of Akt and Erk, inhibition of anti-

proliferative gene expression and stimulation of DNA synthesis

were more pronounced. These effects could be mediated by IR/

IGF1R hybrids, which are more sensitive to glargine than to

insulin (Fig. 1B). Indeed, we observed that in MCF-7 cells,

relatively high amounts of IR are engaged in IR/IGF1R hybrids

compared to MDA-MB231 cells (Fig. 2C). However, other

mechanisms, including subtle differences in IGF1R, IRA or IRB

expression levels or in signal transduction efficiency in the two

cell lines may also play a role in the differential effects of

glargine.

Although glargine’s potency towards hybrid receptors is higher

than that of insulin, it is important to note that its EC50 towards

hybrids is far above peak serum levels (about 200–300 pM)

reached after injection in diabetic patients [50–52]. In vivo, glargine

was shown to be converted into active metabolites M1 and M2

[41,42]. We observed a lower potency of M1 and M2 towards IR/

Table 4. EC50s of insulin, IGF1, glargine and glargine metabolites for PIP3 production, Akt and Erk activation and thymidine
incorporation in MCF-7 cells.

pAkt pERK1/2 PIP3 MCF-7 [14C]thymidine MCF-7

EC50 (nM) EC50 (nM) EC50 (nM) EC50 (nM)

Insulin 35.667.7 107628 44.9168.93 15.9463.51

Glargine 4.3761.09 ** 24.966.6 * 9.3363.18 * 3.8960.64 **

M1 42.5269.29 211653 307.88684.36 * 29.3061.53*

M2 44.54610.52 170650 341.126122.26 * 20.0061.25

IGF1 0.6760.26 ** 6.762.2 ** 0.7660.23 ** 0.4260.04 **

Results are the means 6 S.E.M. of 4 to 6 independent experiments.
*, **, p,0.05 or p,0.01 respectively, when compared to insulin.
doi:10.1371/journal.pone.0041992.t004

Table 3. EC50s of insulin, IGF1, glargine and glargine metabolites towards IR homodimers and IR/IGF1R hybrids.

IRA/IRA IRB/IRB IRA/IGF1R IRB/IGF1R

EC50 (nM) EC50 (nM) EC50 (nM) EC50 (nM)

Insulin 2.1560.40 3.6861.13 84.30622.74 48.15613.72

Glargine 2.0460.50 3,8861.25 10.1961.29 ** 6.2861.37 **

M1 16.6963.16 ** 9.6462.18 225.40647.69 147.08635.25

M2 13.8162.47 ** 6.3160.98 314.60671.85 * 169.20618.87 *

IGF1 50.63613.45 ** 130.04660,95 ** 4.2360.82 ** 3.0561.10 **

Results are the means 6 S.E.M. of 4 to 6 independent experiments.
*, **, p,0.05 or p,0.01 respectively, when compared to insulin.
doi:10.1371/journal.pone.0041992.t003
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IGF1R hybrids (Fig. 3B) compared to insulin and glargine. Similar

results were obtained in MCF-7 cells for the stimulation of PIP3

production (Fig. 3C), Akt and Erk phosphorylation, gene

expression and DNA synthesis (Fig. 4). Therefore, whereas

glargine may show pro-mitogenic properties in cultured cells,

these properties should be abrogated in vivo if glargine is rapidly

converted into M1 and M2, as suggested by previous studies

[41,42].

Supporting Information

Figure S1 Inhibition of insulin and IGF1-induced BRET
by the PI-3 kinase inhibitor LY294002. HEK-293 cells co-

transfected with Luc-Akt-PH and Mem-EYFP were pre-incubated

for 1 h in presence of 50 mM LY294002 or vehicle (DMSO).

After addition of coelenterazine, cells were stimulated with

100 nM insulin or IGF1 and BRET measurements were

performed in real time during more than 30 min. Basal and

Figure 4. Downstream biological effects of insulin, glargine and its metabolites M1 and M2 in MCF-7 cells. (A) Effect of insulin, IGF1,
glargine and its metabolites M1 and M2 on Akt and Erk1/2 phosphorylation in MCF-7 cells. MCF-7 cells were starved overnight and then incubated for
5 min in presence of 10 nM of insulin, glargine, M1, M2 or IGF1. Ligand-induced phosphorylation of Erk1/2 and Akt was evaluated by western
blotting. (B) Dose-dependent effect of insulin, IGF1, glargine and its metabolites M1 and M2 on Akt and Erk1/2 phosphorylation in MCF-7 cells. Cells
were stimulated for 20 min and ligand-induced phosphorylation of Akt and Erk1/2 was evaluated by in-cell western. Results correspond to mean 6
SEM of 4 to 6 independent experiments. (C) MCF-7 cells were incubated for 18 h in serum free medium in the presence or absence of 10 nM of
insulin, glargine, M1, M2 or IGF1. mRNA expression level was measured by qRTPCR. Results are normalized to the expression of cyclophilin A mRNA
and correspond to the mean 6 SEM of 4 to 8 independent experiments (*, **, p,0.05 or p,0.01 respectively, when compared to the control
condition). (D) Subconfluent MCF-7 cells cultured in Cytostar-T scintillation microplates were starved for 4 h and then incubated for 19 h with
increasing concentrations of IGF-1, insulin or analogues in serum free medium. [14C]thymidine was added for an additional 6 h and the radioactivity
measured in a Wallac 1450 Micro Beta Trilux Scintillation counter. Data are means 6 SEM of at least 6 independent experiments. EC50 for insulin,
IGF1, glargine and its metabolites on Akt and Erk1/2 phosphorylation and on thymidine incroporation are given in Table 4.
doi:10.1371/journal.pone.0041992.g004
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ligand-induced BRET were markedly inhibited by LY294002,

indicating that these signals reflect the activity of PI-3 kinase in the

cell.

(TIF)

Figure S2 Validation of the method used for detection of
IR/IGF1R hybrids. Partially purified receptors prepared from

HEK-293 cells transfected as described in Fig. 1 were used to

establish the specificity of the immunoprecipitation and immuno-

blotting experiments. (A) WGL eluates were submitted to SDS-

PAGE followed by immunoblotting (IB) using anti-IR (Santa Cruz

C19) or anti-IGF1R antibodies (Santa Cruz C-20). (B) Luciferase

and YFP-tagged IR, IGF1R and hybrid receptors were immuno-

precipitated (IP) using an anti-IR antibody (CT1) immobilized on

sepharose beads, submitted to SDS-PAGE followed by immuno-

blotting using anti-IGF1R (Santa Cruz C-20) and anti-IR (Santa

Cruz C-19) antibodies. After immunoprecipitation with anti-IR

antibody, only hybrid receptors were detected when immunoblot-

ting with anti-IGF1R antibody.

(TIF)
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