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Abstract

The multiligand Receptor for Advanced Glycation End products (RAGE) is involved in various pathophysiological processes,
including diabetic inflammatory conditions and Alzheimer̀s disease. Full-length RAGE, a cell surface-located type I
membrane protein, can proteolytically be converted by metalloproteinases ADAM10 and MMP9 into a soluble RAGE form.
Moreover, administration of recombinant soluble RAGE suppresses activation of cell surface-located RAGE by trapping RAGE
ligands. Therefore stimulation of RAGE shedding might have a therapeutic value regarding inflammatory diseases. We
aimed to investigate whether RAGE shedding is inducible via ligand-induced activation of G protein-coupled receptors
(GPCRs). We chose three different GPCRs coupled to distinct signaling cascades: the V2 vasopressin receptor (V2R) activating
adenylyl cyclase, the oxytocin receptor (OTR) linked to phospholipase Cb, and the PACAP receptor (subtype PAC1) coupled
to adenylyl cyclase, phospholipase Cb, calcium signaling and MAP kinases. We generated HEK cell lines stably coexpressing
an individual GPCR and full-length RAGE and then investigated GPCR ligand-induced activation of RAGE shedding. We
found metalloproteinase-mediated RAGE shedding on the cell surface to be inducible via ligand-specific activation of all
analyzed GPCRs. By using specific inhibitors we have identified Ca2+ signaling, PKCa/PKCbI, CaMKII, PI3 kinases and MAP
kinases to be involved in PAC1 receptor-induced RAGE shedding. We detected an induction of calcium signaling in all our
cell lines coexpressing RAGE and different GPCRs after agonist treatment. However, we did not disclose a contribution of
adenylyl cyclase in RAGE shedding induction. Furthermore, by using a selective metalloproteinase inhibitor and siRNA-
mediated knock-down approaches, we show that ADAM10 and/or MMP9 are playing important roles in constitutive and
PACAP-induced RAGE shedding. We also found that treatment of mice with PACAP increases the amount of soluble RAGE in
the mouse lung. Our findings suggest that pharmacological stimulation of RAGE shedding might open alternative treatment
strategies for Alzheimers disease and diabetes-induced inflammation.
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Introduction

The Receptor for Advanced Glycation End products (RAGE) is

a type I transmembrane protein belonging to the immunoglobulin

superfamily and is usually expressed at low levels in epithelial,

neuronal and vascular cells. The lung is the sole organ having high

expression of RAGE under normal conditions [1].

RAGE has been shown to play a crucial role in chronic

inflammatory diseases, late diabetic complications, atherosclerosis

and Alzheimers disease [2]. Proteins and peptides such as

advanced glycation end products (AGEs), Ab peptides, S100/

calgranulin family members and HMGB1 (amphoterin, high-

mobility group protein B1) have been identified as ligands for

RAGE [3]. Ligand binding of RAGE induces production of

proinflammatory cytokines from macrophages [4], [5] and

amplifies inflammatory responses [6]. Moreover, the expression

of RAGE is induced by an autocrine mechanism upon the binding

of RAGE ligands [7]. The concentration of AGEs is enhanced

under some pathological circumstances such as diabetes mellitus,

inflammation, oxidative stress, renal failure [8] and Alzheimers

disease [9]. Therefore, in these pathological conditions the ligand-

induced increase of full-length RAGE expression contributes to

the severity of these diseases.

Numerous studies have shown that administration of soluble

RAGE (sRAGE) can alleviate full-length RAGE-mediated harmful

processes by trapping RAGE ligands and preventing RAGE

signaling. For example the application of sRAGE slowed-down

tumor growth and reduced the amount of metastases in mice [10].

Other studies demonstrate that treatment with sRAGE can

completely suppress diabetic atherosclerosis [11] and reverse

vascular hyperpermeability in diabetic rats [12]. Injection of

soluble RAGE into the brain of an Alzheimers disease mouse

model reduced the levels of Ab, Ab plaques and BACE1 (beta-site

APP Cleaving Enzyme 1) [13]. We as well as others have shown

that full-length RAGE is subjected to protein ectodomain shedding

conducted by metalloproteinase ADAM10 [14], [15], [16].

ADAM10 (A Disintegrin And Metalloproteinase 10) is a multido-

main type I transmembrane zinc-dependent metalloproteinase

[17]. Shedding processes are known to be inducible by calcium

ionophores and phorbol esters. Moreover a-secretase-mediated

shedding of the amyloid precursor protein (APP) is achievable by

ligand-induced activation of G protein-coupled receptors (GPCRs)

[18], [19], [20].
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As soluble RAGE alleviates pathophysiological processes

mediated by full-length RAGE, the stimulation of RAGE shedding

may be used as a therapeutic attempt in the treatment of diseases

such as Alzheimer and diabetes mellitus. The aim of our study was

to investigate whether full-length RAGE is proteolytically con-

verted into soluble RAGE following activation of G protein-

coupled receptors (GPCRs). To answer this question, we in-

vestigated GPCRs stimulating various main signaling networks:

the V2 vasopressin coupled to adenlylyl cyclase [21], the oxytocin

receptor linked to phospholipase Cb [22] and the PAC1 (pituitary

adenylate cyclase-activating polypeptide) receptor known to be

able to activate adenylyl cyclase, phospholipase Cb, calcium

signaling and MAP (mitogen-activated protein) kinases [23].

The neuropeptide PACAP exhibits anti-inflammatory and

neuroprotective properties primarily mediated through the

PAC1 receptor [23]. Moreover, in previous studies we demon-

strated that activation of the PAC1 receptor induces a-secretase
ADAM10-mediated APP cleavage in cultured cells [19] and in vivo

[24]. Thus, the PACAP/PAC1 system provides an ideal model to

investigate signaling pathways involved in metalloproteinase-

induced RAGE shedding. Since PACAP receptors are also present

in the lung, being the main source of endogenous RAGE, we

analyzed lung samples of mice treated with the PACAP-38 peptide

for 3 months.

Results

The Shedding of RAGE is Inducible by Activation of
Different G Protein-coupled Receptors
For investigation whether the proteolytic machinery responsible

for the shedding of RAGE is inducible via activation of G protein-

coupled receptors, we generated cell lines co-expressing RAGE

and a respective GPCR. The PAC1 receptor, the V2 vasopressin

and the oxytocin receptor were included in the study because these

GPCRs act through different major signaling pathways. In all

three cases we found the shedding of RAGE to be inducible by

agonist-induced GPCR activation (Figure 1). In culture superna-

tant of cells challenged with respective agonist the amount of

soluble RAGE was significantly increased. Whereas arginine

vasopressin (AVP) treatment doubled the amount of sRAGE,

PACAP and oxytocin (OT) treatment induced the shedding of

RAGE 4 to 5-fold. The doublet band of sRAGE in the

supernatant of PAC1/RAGE cells represents glycosylated and,

with lower molecular weight, unglycosylated soluble RAGE [16].

Due to lower RAGE expression, only glycosylated RAGE is

shedded from the other cell lines. The amount of full-length

RAGE in cell lysates was unaltered following shedding induction

(Figure 1A). For identification of the signaling pathways involved

in GPCR-induced RAGE shedding we focused on the PAC1

receptor because this receptor uses a multi-branched signaling

network which also covers the signaling routes usually used by the

V2R and OTR. While the PAC1 receptor is known to be coupled

to adenylyl cyclase, phospholipase Cb, calcium signaling and MAP

kinases, the OTR is mainly linked to phospholipase Cb and

calcium signaling and the V2R to adenylyl cyclase.

Since ectodomain shedding is taking place at the cell surface, we

quantified the amount of RAGE at that cellular compartment. For

this purpose, cell surface proteins were labeled with a membrane-

impermeable biotinylation reagent and after that shedding was

induced for 2 hours with PACAP-27. Biotinylated proteins in cell

culture supernatants and intact cells were isolated separately.

Biotinylated secreted and full-length RAGE variants were

quantified by Western blot analysis. In these experiments,

PACAP-27 treatment increased the amount of secreted RAGE

in the cell culture supernatant two-fold (Figure 2A) and

significantly decreased the amount of plasma membrane-located

full-length RAGE by 30% (Figure 2B). This experiment demon-

strates that soluble RAGE is not released from intracellular pools

by exocytosis, instead it is generated by proteolytic cleavage of full-

length RAGE at the cell surface.

The Shedding of RAGE is Inducible by Activation of the G
Protein-coupled PAC1 Receptor in a Dose-dependent
Manner
The PAC1 receptor is able to bind different PACAP ligands

with similar high affinity. Treatment of PAC1/RAGE cells with

300 nM of either PACAP-27, PACAP-38 or acetylated PACAP-

38 resulted in a strong and comparable induction of RAGE

shedding (Figure 3A). In addition to natural PACAP peptides,

acetylated PACAP-38 was used due to its increased stability

against aminopeptidases. However, this did not influence the

potency of shedding induction. The ligand VIP (Vasoactive

Intestinal Peptide), which has a thousand-fold lower binding

affinity for the PAC1 receptor than PACAP peptides (KD 500 nM

vs. 0.5 nM) [25], [26] was not able to induce the shedding of

RAGE. To demonstrate further that the PAC1 receptor is

required for the PACAP-induced stimulation of shedding, we also

analyzed the effect of PACAP on HEK cells expressing only

RAGE but not the PAC1 receptor. In these cells PACAP-27 was

not able to induce the shedding of RAGE (Figure 3B). To validate

that the shedding machinery is intact in these cells, the cells were

also treated with the well-known shedding inducer PMA.

Treatment with PMA (1 mM for 4 h) caused a 4-fold increase in

the amount of sRAGE (Figure 3B). The phorbol ester PMA is

a protein kinase C activator and a well-known shedding inducer

[27] which activates RAGE shedding via calcium-dependent PKC

isoforms PKCa and PKCbI [16].
Same experiments were performed on HEK/RAGE cells

lacking OTR and V2R expression. On these cells, neither OT

nor AVP were able to induce the release of RAGE (data not

shown). Thus agonist-induction shedding of RAGE strictly

requires the presence of respective GPCR.

Next we analyzed whether the shedding of RAGE in PAC1/

RAGE cells is dependent on the PACAP concentration. Cells were

treated with different PACAP-27 hormone concentrations up to

3 mM for 4 h, and then the amount of shedded RAGE was

determined by Western blot analysis (Figure 4). PACAP-27

induced the shedding of RAGE in a dose-dependent and saturable

manner. 300 nM PACAP-27 caused a 2.5 fold increase of soluble

RAGE (sRAGE) and a 4-fold increase was detected after

application of 1 mM and 3 mM PACAP-27 (Figure 4). In cell

lysates, the amount of full-length RAGE (RAGE fl) was unaltered.

Thus, increased amounts of sRAGE are not caused by increased

RAGE expression.

To analyze the kinetic of PACAP-induced RAGE shedding, we

investigated shedding over a time period of six hours. Detectable

amounts of sRAGE were noticed after 30 min of stimulation, and

the amount of sRAGE continuously increased during the first

three hours of 300 nM PACAP-27 treatment (Figure 5A). Longer

lasting stimulation increased the amount of sRAGE only

marginally and had no effect on the expression of full-length

RAGE (RAGE fl). Prior to incubation with PACAP-27, cells were

pre-treated with the protein biosynthesis inhibitor cycloheximide

to ensure that an enhanced amount of RAGE cannot be caused by

de novo gene expression.

To estimate the potency of PACAP-induced RAGE shedding in

our cellular system, the observed effects were compared to effects

of phorbol ester-mediated RAGE shedding.

GPCR Activation Induces Shedding of RAGE
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Time-dependent treatment of PAC1/RAGE cells with PMA

(1 mM) resulted in an increased shedding of RAGE. The kinetic of

PMA-induced RAGE shedding was comparable with the PACAP-

induced kinetic (Figure 5A vs. Figure 5B).

In a previous study we demonstrated that zinc-dependent

metalloproteinases ADAM10 and MMP9 (Matrix-Metalloprotei-

nase 9) conduct RAGE shedding [16]. Therefore, we analyzed

whether PACAP-induced shedding is also mediated by metallo-

proteinases. Treatment of PAC1/RAGE cells with the broad

spectrum metalloproteinase inhibitor GM6001 (20 mM) strongly

reduced PACAP-27-mediated RAGE shedding (Figure 6). To

investigate the contribution of ADAM10 and MMP9 in PACAP-

Figure 1. Stimulation of RAGE shedding via ligand-induced activation of different G protein-coupled receptors in HEK cells. The cell
line co-expressing RAGE and the PAC1 receptor (PAC1/RAGE) was stimulated with PACAP-27, cells co-expressing RAGE and the V2 vasopressin
receptor (V2R/RAGE) were treated with arginine-vasopressin (AVP) and cells co-expressing RAGE and the oxytocin receptor (OTR/RAGE) were
stimulated with oxytocin (OT). As control, cell lines were mock-stimulated with comparable volumes of water. After stimulation with 300 nM of each
hormone for 4 h the cell culture supernatant was collected and the proteins were precipitated. Secreted RAGE (sRAGE) was detected by Western
blotting using the polyclonal antibody 3260, followed by an anti-rabbit antibody labeled with horseradish peroxidase and ECL. Full-length RAGE and
actin were detected in cell lysates by Western blot analysis. For quantification the experiments were done in triplicates. (A) Western Blots for secreted
RAGE (sRAGE) in cell culture supernatants, full-length RAGE (RAGE fl) and Actin in cell lysates. (B) Quantitative analysis: Shown are the mean effects 6
S.D., significance was determined by the One-way ANOVA Bonferroni test (* = P,0.05; ** = 0.01; *** = P,0.001).
doi:10.1371/journal.pone.0041823.g001

Figure 2. Induction of RAGE shedding at the cell surface with PACAP-27. Cell-surface proteins of full-length RAGE and PAC1 coexpressing
cells (PAC1/RAGE cells) were biotinylated using a membrane-impermeable biotinylation reagent. PACAP-27 and control treatment was then
performed for 2 h. The amount of secreted biotinylated (A) and cell-anchored biotinylated RAGE (B) was determined separately under constitutive or
PACAP-stimulated conditions after isolation of biotinylated proteins. RAGE was detected by Western blotting using antibody Mab5328 and ECL;
typical blots are shown. Left image, amount of secreted biotinylated RAGE; right images, cell surface-located biotinylated RAGE and actin in total cell
lysates. For quantification the experiments were performed in triplicates. Shown are the mean effects 6 S.D., significance was determined by the
One-way ANOVA Bonferroni test (* = P,0.05; ** = P,0.01).
doi:10.1371/journal.pone.0041823.g002

GPCR Activation Induces Shedding of RAGE
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induced RAGE shedding we used the ADAM10/MMP9 selective

inhibitor GI254023X. In in vitro assays with recombinant

proteinases, the IC50 values for ADAM10 and MMP9 are 5.3

and 2.5 nM, respectively [28]. In cellular assays, even in a high

micromolar concentration (30 mM), GI254023X did only mar-

ginally inhibit PMA-induced shedding processes [28], [29].

GI254023X applied in 25 mM concentration strongly inhibited

constitutive (72% inhibition) as well as the PACAP-induced

shedding (86% inhibition) of RAGE (Figure 7A). At a concentra-

tion of 1 mM constitutive shedding of RAGE was reduced about

67% and PACAP-induced shedding about 75% (Figure 7B). Even

at a concentration of 100 nM (Figure 7C), GI254023X slightly

inhibited the shedding of RAGE, suggesting that ADAM10 and/

or MMP9 are playing important roles in PACAP-induced RAGE

shedding. Just like the biotinylation experiment, the data obtained

with metalloproteinase inhibitors clearly demonstrate that shed-

ding and not exocytosis is responsible for the generation of soluble

RAGE.

To confirm that ADAM10 and MMP9 act as sheddases on

RAGE, we additionally performed siRNA-mediated knock-down

experiments. Here we investigated the contribution of ADAMs 10

and 17 as well as of MMPs 2 and 9. Whereas the knock-down of

ADAM10 and MMP9 resulted in a , 50% reduction of

constitutive RAGE shedding, the release of soluble RAGE was

only slightly influenced after the knock-down of ADAM17 and not

at all after knock-down of MMP2 (Figure 8). PACAP-induced

RAGE shedding was mostly reduced after knock-down of

ADAM10 and MMP9 expression. However, decreased PACAP-

induced RAGE proteolysis was also evident after reducing

ADAM17 expression. In all cases siRNA-mediated knock-downs

Figure 3. Stimulation of RAGE shedding with different PACAP peptides in PAC1/RAGE cells. (A) PAC1/RAGE cells were incubated for 4 h
with either 300 nM acetylated PACAP-38, PACAP-38, PACAP-27 or VIP; H2O: mock-treated cells (negative control). Then sRAGE was detected and
quantified by Western blotting as described in Figure 1. Shown are the mean effects 6 S.D., significance was determined by the One-way ANOVA
Bonferroni test (ns = P.0.05; *** = P,0.001). (B) RAGE expressing cells were incubated for 4 h with PMA (1 mM), PACAP-27 (300 nM) or DMSO as
control. Detection and quantification of secreted RAGE as well as significance was determined as described in figure part A; (ns = P.0.05; ** =
P,0.01).
doi:10.1371/journal.pone.0041823.g003

Figure 4. PACAP-induced dose-dependent shedding of RAGE. PAC1/RAGE cells were treated for 4 h with increasing PACAP-27
concentrations (ranging from 10 nM up to 3000 nM). Afterwards the medium was collected and sRAGE was identified with the Ab3260 as described
in Figure 1. For quantification, the experiments were done in triplicates. Shown are the mean effects6 S.D. Full-length RAGE and actin were detected
in total cell lysates by Western blot analysis.
doi:10.1371/journal.pone.0041823.g004

GPCR Activation Induces Shedding of RAGE
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did not prevent expression of the target protein completely and

due to variations in knock-down efficiencies a comparative analysis

of the contribution of metalloproteinases is impossible. Neverthe-

less, the result of our siRNA-mediated knock-down experiments

reinforce our previous interpretation that ADAM10 and MMP9

are important players in PACAP-induced RAGE shedding. In

addition, the new experiments demonstrate an involvement of

ADAM17 in PACAP-induced RAGE shedding and exclude the

contribution of MMP2.

Analysis of the Signaling Pathways Involved in PACAP-
induced RAGE Shedding
Binding of a PACAP agonist to the PAC1 receptor leads to

activation of several intracellular signaling cascades including the

adenylate cyclase system, stimulation of phospholipase C and the

MAP kinase pathway [23]. Our next aim was to elucidate the

signaling pathway(s) involved in PACAP-induced RAGE shed-

ding.

As the name PACAP implies, it activates the adenylate cyclase/

protein kinase A (PKA) pathway. Therefore the effects of H89

(5 mM), a cell-permeable inhibitor of PKA, and KT5720 (1 mM),

a more specific cell-permeable inhibitor of PKA, on the

stimulation of RAGE shedding were tested. Both inhibitors had

no effect on the PACAP-induced shedding of RAGE (Figure 9A,

B).

We also analyzed the effect of direct adenylate cyclase/PKA

activation on RAGE shedding. For this purpose RAGE expressing

cells were treated with either Forskolin (50 mM), an activator of the

adenylate cylcase, or 8-Bromoadenosine 39, 59-cyclic monopho-

sphate (8-Br-cAMP, 1 mM), an activator of PKA. Both compounds

Figure 5. Time dependence of RAGE shedding induced by either PACAP (A) or PMA (B). Upper figure part: representative Western blots
for detection of sRAGE, full-length RAGE (RAGE fl) and actin; middle figure part: Quantitative analysis of sRAGE amounts; lower figure part:
Quantification of full-length RAGE expression. PAC1/RAGE cells were incubated for different periods of time (15 min up to 360 min) using either
300 nM PACAP-27 or 1 mM PMA. sRAGE was detected and quantified as described in Figure 1. Full-length RAGE and actin were analyzed in cell lysates
by Western blotting using either the monoclonal anti-RAGE antibody 5328 or anti-actin antibody A2066. Detection was performed with ECL. For
quantification of sRAGE and full-length RAGE, the experiments were done in triplicates. Shown are the mean effects 6 S.D.
doi:10.1371/journal.pone.0041823.g005

GPCR Activation Induces Shedding of RAGE
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did not activate the shedding of RAGE (Figure 9C) supporting the

assumption that the adenylate cylase/PKA signaling cascade does

not contribute to the regulated proteolysis of RAGE. As control,

the biological activity of Forskolin was validated using the

GloSensor cAMP assay (Promega), data not shown.

PAC1 receptor activation also leads to stimulation of phospho-

lipase C (PLC) which produces the second messenger molecules

DAG and IP3 (Inositol trisphosphate) [23]. Afterwards calcium is

released from intracellular stores leading to activation of protein

kinase C (PKC).

Figure 6. Effect of metalloproteinase inhibitor GM6001 on PACAP-induced RAGE shedding. PAC1/RAGE cells were pre-treated for 1 h
with either 20 mM GM6001 or solvent, then 300 nM PACAP-27 was added for 2 h; DMSO: mock-treated cells (negative control). Secreted RAGE was
detected and quantified as described in Figure 1. Full-length RAGE and actin were detected in total cell lysates by Western blot analysis. Shown are
the mean effects 6 S.D., significance was determined by the One-way ANOVA Bonferroni test (ns = P.0.05; ** = P,0.01). Full-length RAGE and
actin were detected in total cell lysates by Western blot analysis.
doi:10.1371/journal.pone.0041823.g006

Figure 7. Effect of metalloproteinase inhibitor GI254023X on PACAP-induced RAGE shedding. PAC1/RAGE cells were pre-treated for 1 h
with either 25 mM (A), 1 mM (B) or 100 nM (C) GI254023X or solvent (DMSO), then 300 nM PACAP-27 was added for 2 h; DMSO: mock-treated cells
(negative control). Soluble RAGE was detected and quantified as described in Figure 1. Full-length RAGE and actin were detected in total cell lysates
by Western blot analysis. Shown are the mean effects 6 S.D., significance was determined by the One-way ANOVA Bonferroni test (ns = P.0.05; ***
= P,0.001).
doi:10.1371/journal.pone.0041823.g007
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For analysis of PACAP-induced activation of different PKC

isoenzymes, two different PKC inhibitors were applied: Gö6976

selectively inhibits calcium-dependent PKC isoforms (PKCa,
PKCbI); Gö6983 selectively inhibits the PKC isozymes PKCa,
PKCb, PKCc, PKCd and PKCf but it does not block PKCm
(IC50 = 20 mM). Both PKC inhibitors reduced the PACAP-

induced shedding of RAGE: Treatment with Gö6976 and

Gö6983 (both 1 mM) resulted in an approximate 60% and 50%

inhibition of PACAP-stimulated RAGE shedding (Figure 10A).

For further analysis of the contribution of Ca2+ in the shedding of

RAGE, the PAC1/RAGE cells were pre-treated with the IP3

receptor antagonist 2-APB (75 mM) and then the shedding process

was induced for 2 h with PACAP-27. Compared to mock-treated

cells, 2-APB decreased the PACAP-induced release of soluble

RAGE about 40% (Figure 10B).

Besides PKC, Ca2+ also activates calmodulin dependent protein

kinase II (CaMKII) and PACAP-initiated stimulation of CaMKII

has been described [30]. Treatment of PAC1/RAGE cells with

CK59 (20 mM), a cell-permeable CaMKII inhibitor

(IC50,10 mM), decreased the PACAP-induced shedding of

RAGE about 43% (Figure 10C). These results demonstrate that

Ca2+ signaling, PKCa/PKCbI and CaMKII play substantial roles

in the activation of metalloproteinase-mediated RAGE shedding.

Since Ca2+ appears to be a dominant regulator of induced

RAGE shedding, we analyzed whether agonistic activation of our

cell lines leads to elevated intracellular Ca2+ levels. Depending on

the coexpressed GPCR, RAGE expressing cells were treated with

either PACAP-27, AVP or OT (each 300 nM). In all RAGE/

GPCR coexpressing cells agonist treatment induced a strong

intracellular Ca2+ signal as measured via calcium sensor Fura-2-

AM (Figure 11). In HEK cells neither hormone induced calcium

signaling. Thus activation of GPCRs is required for elevation of

intracellular calcium levels. The finding that also activation of the

V2 receptor can modulate intracellular calcium is an explanation

for its involvement in induced RAGE shedding, because by using

PKA inhibitor KT5720 we could exclude an involvement of

cAMP/PKA signaling in V2R-induced RAGE shedding (data not

shown).

Since PACAP is also able to activate the phosphatidylinositol 3-

kinase (PI3-kinase) [31] and mitogen-activated protein kinases

(MAP kinases) [32], [33], we also investigated whether these

signaling pathways contribute to the PACAP-induced shedding of

RAGE. Treatment of PAC1/RAGE cells with 50 mM LY294002

(a specific, cell-permeable inhibitor of PI3-kinase) decreased

PACAP-induced shedding of RAGE about 50% (Figure 12).

The use of PD98059 (50 mM), which is a selective, reversible and

cell-permeable inhibitor of MAP kinases MEK1 and MEK2,

decreased PACAP-induced shedding of RAGE about 34%

(Figure 13).

By using various inhibitors we identified several signaling

pathways contributing to RAGE shedding. Next we analyzed

whether these signaling pathways are contributing in parallel to

the shedding of RAGE. Combinatorial treatment of cells with

MAP kinase inhibitor and either PKC or CamKII inhibitor did

not result in an enhanced inhibition of PACAP-induced RAGE

shedding (Figure 14). When compared to the presence of only

one inhibitor, parallel inhibition of PI3 kinase and PKC resulted

in reduced shedding of RAGE. The latter result suggests that

activation of metalloproteinase-mediated RAGE shedding via

PI3K and PKC is mediated by signaling pathways acting in

parallel. CamKII and PKC appear to rather contribute to

cascade-like signaling which also involves MAP kinases

(Figure 15).

Figure 8. Effects of RNAi-mediated knock-down on the shedding of RAGE. PAC1/RAGE cells were transfected with stealth RNAi
oligonucleotide duplexes (Invitrogen) targeting either ADAM10 (AD10), ADAM17 (AD17), MMP9 or MMP2. As control (-) cells were transfected with
a stealth RNAi control oligonucleotide duplex (Invitrogen). Experiments were performed 48 h after transfection. Secretion of RAGE was analyzed
under unstimulated (H2O, n = 10) and PACAP-induced (300 nM, n= 5) conditions for 3 h. (A) Typical Western blots and gelatin zymography are
shown, (B) Quantitative analysis of secreted RAGE. RAGE secreted into the cell culture supernatant and full-length RAGE in cell lysates were detected
with antibody Mab5328. The enzymatic activity of MMP9 and MMP2 in cell culture supernatants was determined by gelatin zymography as described
in Materials and Methods. In cell lysates full-length RAGE (fl-RAGE), ADAM10 (pro and mature (m) forms), and ADAM17 (pro and mature (m) forms)
were detected with suitable antibodies (see ‘‘Materials and Methods’’). As a loading control actin was detected in cell lysates by Western blotting.
Shown in the quantitative analysis (B) are the mean effects6 S.D., significance was determined by the One-way ANOVA Bonferroni test (ns = P.0.05;
* = P,0.05; ** = P,0.01; *** = P,0.001).
doi:10.1371/journal.pone.0041823.g008
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Analysis of RAGE Shedding in Mouse Lungs
Finally we were interested whether PACAP-stimulated shedding

is also evident in vivo. For this purpose, mice were treated for 3

months intranasally with either PACAP-38 or mock administra-

tion solution [24]. Since highest amounts of RAGE are found in

the lung and PACAP receptors are also present in this organ,

mouse lungs were isolated and fractionated into portions contain-

ing either soluble lung proteins or membrane proteins. In the

fraction of soluble lung proteins the amount of sRAGE was

increased by about 60% in PACAP-treated mice (Figure 16). The

amount of membrane-bound full-length RAGE was not altered by

PACAP-treatment (Figure 16).

Discussion

In this report we provide evidence that metalloproteinase-

mediated shedding of the type I membrane protein RAGE is

inducible by activation of G protein-coupled receptors which are

expected to be linked to different main signal transduction

pathways. We demonstrate that RAGE shedding can be induced

via activation of the V2 vasopressin, the oxytocin and the PAC1

receptor. The shedding of RAGE was induced 2 to 5-fold after

activation of examined GPCR. Observed differences provide no

information about the efficiency of individual GPCR-activated

shedding induction, because cell lines expressing different amounts

of GPCR and RAGE were compared. Nevertheless, our results

Figure 9. Analysis of adenylate cyclase/protein kinase A (PKA) signaling on the PACAP-induced RAGE secretion. (A) and (B), effect of
protein kinase A inhibition; (C) effect of adenylate cyclase/protein kinase A activation. (A) and (B), PAC1/RAGE cells were pre-treated for 1 h with
either PKA inhibitor H89 (5 mM, figure part A) or KT5720 (1 mM, figure part B) then 300 nM PACAP-27 was added for 2 h. The effects of PKA inhibitors
were also analyzed in the absence of PACAP stimulation. Secreted RAGE was detected and quantified as described in Figure 1. Shown are the mean
effects 6 S.D., significance was determined by the One-way ANOVA (ns = P.0.05). For quantification the experiments were performed in triplicates.
(C) Cells were incubated with either adenylate cyclase stimulator Forskolin (50 mM) or PKA activator 8-Br-cAMP (1 mM) for 2 h. Secreted RAGE in the
cell culture supernatant was detected and quantified by Western Blot as described above. H2O, DMSO: mock-treated cells (negative controls).
doi:10.1371/journal.pone.0041823.g009

Figure 10. Effect of Ca2+ on the shedding of RAGE. PAC1/RAGE cells were pre-incubated for 1 h with respective inhibitor and then 300 nM
PACAP-27 was added for 2 h. Secreted RAGE in the cell culture supernatant was detected and quantified as described in Figure 1. Shown are the
mean effects6 S.D., significance was determined by the One-way ANOVA test (ns = P.0.05; ** = P,0.01; *** = P,0.001). (A) Effect of protein kinase
C inhibitors Gö6976 and Gö6983 (both 1 mM); (B) effect of the IP3 receptor modulator 2-APB (75 mM), and (C) effect of the calcium/calmodulin-
dependent protein kinase II inhibitor CK59 (20 mM). In all experiments effects of inhibitors were also analyzed in the absence of PACAP stimulation.
doi:10.1371/journal.pone.0041823.g010
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clearly demonstrate that the RAGE shedding machinery is

inducible via activation of various GPCRs. For the detailed

analysis of involved signaling pathways we focused on the multi-

branched signaling network of the PAC1 receptor since this also

covers the more restricted signaling routes of V2R and OTR.

By a biotinylation experiment, we demonstrated that PACAP-

induced RAGE shedding takes place at the cell surface where

a substantial amount of plasma membrane-located RAGE is

proteolytically cleaved after activation of PAC1 receptors. Similar

results have been published for PMA-induced RAGE shedding

[16]. A detailed analysis for the PAC1 receptor demonstrated that

Ca2+ signaling, PKCa/PKCbI, CaMKII, PI3 kinase and MAP

kinases are involved in the shedding activation process. A

contribution of adenylate cyclase/PKA signaling in PACAP-

induced RAGE proteolysis was not evident in our cellular system.

In V2R/RAGE cells we could also not detect an involvement of

adenylate cyclase/PKA signaling in AVP-induced RAGE shed-

ding. In all our cell lines expressing different GPCRs (PAC1/

RAGE, V2R/RAGE and OTR/RAGE) we observed agonist-

induced intracellular calcium signaling. Therefore we conclude

Figure 11. Measurement of intracellular calcium signaling. PAC1/RAGE (A), V2R/RAGE and OTR/RAGE cells (B) as well as HEK cells (A/B) were
incubated for 30 min with 1,5 mM fura 2-AM. Then the cells were suspended and collected by centrifugation (0.4 g), after suspending cells in calcium
buffer, measurements were performed with a spectrofluorometer. The respective agonists were applied to the cells after 100 s. As a negative control,
either PACAP-27 or OT and AVP were added to HEK cells. Rising intracellular Ca2+ levels are detected by an increase in the fluorescence ratio 340 nm/
380 nm.
doi:10.1371/journal.pone.0041823.g011

Figure 12. Role of phosphatidylinositol 3-kinase in PACAP-induced RAGE shedding. PAC1/RAGE cells were pre-incubated for 1 h with
PI3K inhibitor LY294002 (50 mM) and then 300 nM PACAP-27 was added for 2 h; DMSO: mock-treated cells (negative control). Secreted RAGE in the
cell culture supernatant was detected and quantified as described in Figure 1. Shown are the mean effects6 S.D., significance was determined by the
Student’s unpaired t test (*** = P,0.001).
doi:10.1371/journal.pone.0041823.g012
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that Ca2+ seems to be an important regulator of the RAGE

shedding machinery.

Analysis of lungs isolated from PACAP-treated mice further

showed that the shedding of RAGE is also inducible in vivo. So far

induced shedding of RAGE was demonstrated only for unphysio-

logical stimulators such as the phorbolester PMA and the calcium

ionophore A23187 [16].

In connection with the development of Alzheimers disease it is

important to consider that at least two aspects of metalloprotei-

nase-mediated shedding processes are essential: (i) cleavage of APP

by ADAM10 prevents generation of neurotoxic Ab peptides; (ii)

cleavage of full-length RAGE by ADAM10 prevents binding of the

RAGE ligand Ab to cell-bound RAGE [34]. Cell-bound RAGE is

known being an Ab transporter importing Ab from the blood into

the brain and also being a neuronal receptor mediating neurotoxic

effects of Ab. Thus activation of ADAM10-mediated cleavage of

RAGE and APP should counteract the development of AD, and

furthermore stimulation of RAGE shedding should prevent at least

some pro-inflammatory effects associated with diabetes mellitus.

The therapeutic potential of PACAP in the treatment of AD was

investigated by us in an AD mouse model. Intranasal application

of PACAP-38 increased a-secretase-mediated APP processing,

induced expression of various neuroprotective genes and improved

memory in mice [24]. In the same study, we detected a strong

reduction of the RAGE mRNA level in the brain of PACAP-

treated mice. It is known that RAGE expression is induced by an

autocrine mechanism of ligand binding and RAGE signaling [7].

This activation loop can be disrupted by the shedding of

membrane-bound signaling capable RAGE and/or by decreasing

the amount of RAGE ligands such as Ab. In our mouse model

both options are likewise possible. This finding and our current

data demonstrate that shedding of at least APP and RAGE is

inducible by administration of PACAP in vivo. Thus, application of

PACAP may also have therapeutic potential for the treatment of

AD or inflammatory diabetic conditions in humans.

In cells coexpressing RAGE and the PAC1 receptor, the

shedding of RAGE was inducible by various PAC1 receptor

agonists. Induction of RAGE shedding was dose-dependent and

saturable. A similar effect has been observed for PACAP-induced

shedding of APP [19] suggesting activation of the same shedding-

machinery. The broad spectrum metalloproteinase inhibitor

GM6001 was able to prevent the PACAP-induced shedding of

RAGE. ADAM10 and ADAM17 are the main sheddases re-

sponsible for ectodomain shedding of a number of cell surface

proteins. However, in a previous study we found ADAM10 and

MMP9 to mediate RAGE shedding [16]. The contribution of

these proteinases in PACAP-induced RAGE shedding was

analyzed in more detail by using the ADAM10/MMP9-selective

inhibitor GI254023X. In our cellular assay 25 mM and even

a concentration of 1 mMGI254023X strongly reduced constitutive

RAGE shedding; also PACAP-induced shedding of RAGE was

significantly reduced. At a concentration of 100 nM, a slight

inhibition of RAGE shedding was still observed. In in vitro assays

with recombinant proteinases, GI254023X discriminates between

ADAM17 (IC50 = 541 nM) and ADAM10 (IC50 = 5.3 nM)/

MMP9 (IC50 = 2.5 nM) [28]. However, in cellular assays, IC50

values appear to be much higher: at 30 mM GI254023X has been

reported to reduced PMA-induced shedding by only 20% [28],

[29]. In the case of ADAM10-mediated CD23 shedding, 1 mM of

GI254023X was sufficient to block about 75% of CD23 release

[35]. Thus, our observation that the constitutive as well as the

PACAP-induced shedding of RAGE was inhibited with 1 mM
GI254023X about 67% and 75% strongly argues for a contribu-

tion of ADAM10 in that process. By applying siRNA-mediated

knock-down experiments we could confirm the role of ADAM10

and MMP9 in constitutive and PACAP-induced RAGE shedding

and in addition a contribution of ADAM17 in PACAP-induced

RAGE shedding was observed. According to our experimental

setting, we cannot exclude the contribution of other proteinases in

RAGE shedding. However, the involvement of ADAM10 in

constitutive RAGE shedding is supported by findings of other

Figure 13. Role of the MEK1 MAP kinase pathway in PACAP-induced RAGE shedding. PAC1/RAGE cells were pre-incubated for 1 h with
MEK1 Inhibitor PD98059 (50 mM) and then 300 nM PACAP-27 was added for 2 h. Secreted RAGE was detected and quantified as described in Figure 1.
Shown are the mean effects 6 S.D., significance was determined by the One-way ANOVA test (ns = P.0.05; ** = P,0.01).
doi:10.1371/journal.pone.0041823.g013
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research groups where either experiments with genetically

modified mouse embryonic fibroblasts or an ADAM10 over-

expression strategy were utilized [14], [15].

Our comparative analysis of PACAP-induced RAGE shedding

versus phorbol ester-induced shedding revealed a similar kinetic in

the examined cellular system. Shedding increased continuously

during the first three hours after its induction and reached

a maximum after about four hours. Similar results for PMA-

induced shedding have been described [36]. The potency of

GPCR-mediated cellular activation and hence the induction of

ectodomain shedding depends on the GPCR density on the cell

surface and on the agonist concentration. Our finding that

intranasal application of PACAP to mice is sufficient for induction

of RAGE shedding in the mouse lung demonstrates that an

increased shedding of RAGE is achievable by activation of

endogenously present PACAP receptors. Large amounts of full-

length RAGE are expressed in the lung [1]. Therefore the lung

can possibly serve as a pool for the release of soluble RAGE into

the blood stream upon shedding induction. As already mentioned,

soluble RAGE prevents proinflammatory full-length RAGE

signaling.

The name PACAP (Pituitary adenylate cyclase-activating polypeptide)

implies adenylate cyclase and subsequently protein kinase A (PKA)

as targets of PACAP receptor activation. However, in our study we

did not observe any effects of either adenylate cyclase/PKA

activation or inhibition on the shedding of RAGE. PACAP-

induced APP processing was also identified to occur independently

from the adenylate cyclase/PKA system [19]. ADAM-mediated

shedding processes seem to be largely independent from adenylate

cyclase/PKA signaling. Instead, calcium signaling is playing an

important role. Our finding that AVP-induced activation of the

vasopressin V2 receptor also induced RAGE shedding indepen-

dent from adenylate cyclase/PKA signaling, can be explained by

the fact that besides activation of adenylate cyclase/PKA

signaling, intracellular calcium levels are also increased upon V2

receptor activation [37]. We observed a reduction of PACAP-

induced RAGE shedding after treatment of cells with various

inhibitors interfering with Ca2+ signaling. Inhibition of intracel-

Figure 14. Influence of simultaneously added kinase inhibitors on the shedding of RAGE. PAC1/RAGE cells were pre-incubated for 1 h
with (A) MEK1 inhibitor PD98059 (50 mM) and PKC inhibitor Gö6983 (1 mM); (B) MEK1 inhibitor PD98059 (50 mM) and CaMKII inhibitor CK59 (20 mM) or
(C) PI3K inhibitor LY294002 (50 mM) and PKC inhibitor Gö6983 (1 mM). Then 300 nM PACAP-27 was added for 2 h. Secreted RAGE was detected and
quantified as described in Figure 1. Shown are the mean effects 6 S.D., significance was determined by the One-way ANOVA test (ns = P.0.05; * =
P,0.05).
doi:10.1371/journal.pone.0041823.g014
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lular calcium release as well as blockade of calcium-dependent

PKC isoforms or calcium/calmodulin-dependent protein kinase II

(CaMKII) significantly reduced the PACAP-induced RAGE

shedding. The importance of Ca2+ signaling in the induction of

RAGE shedding is supported by our finding that activation of the

oxytocin receptor leads to elevated sRAGE levels; this receptor is

known to be connected to Ca2+ signaling [22].

A role for the phosphatidylinositol 3-kinase (PI3-kinase)

pathway has been demonstrated for the anti-apoptotic effect of

PACAP [31]. Therefore, we analyzed whether PI3-kinase is also

involved in PACAP-mediated RAGE proteolysis. Inhibition of

PI3-kinase using LY294002 strongly reduced the PACAP-induced

RAGE shedding. We also identified MAP kinase signaling to

contribute to PACAP-induced RAGE shedding. MAP kinases play

important roles in the signal transduction of receptor tyrosine

kinases (RTKs) such as the insulin receptor. Moreover, insulin

signaling has been demonstrated to induce ADAM10-mediated

shedding of Klotho [38]. Therefore, it is likely that also the

ADAM10-mediated cleavage of APP and RAGE is inducible via

activation of insulin receptors; for APP processing this has already

been demonstrated [39], [40].

Given that increased Ca2+ levels are sufficient for induction of

ADAM-mediated shedding processes, the activation of RAGE

ectodomain shedding should be achievable via stimulation of

different receptor classes including GPCRs, RTKs and ligand-

controlled Ca2+ channels.

It is well documented that shedding processes can be induced by

quite distinct stimuli. For example, the catalytic activity of

ADAM17, but not that of ADAM10, can rapidly and reversibly

be induced by signaling pathways stimulated by thrombin, EGF,

lysophosphatidic acid and TNFa. Activation of ADAM17 was

independent from its cytoplasmic tail but required the presence of

the transmembrane domain and led to the exposure of the

ADAM17 catalytic site [41]. It is elusive how these observations

are linked on the molecular level, but they rather argue against

a direct inside-out signaling mechanism. On the other hand, the

C-terminus of ADAM10 is required for the induction of ADAM10

activity by calcium [42] and a putative PKC phosphorylation site

and SH3 domains in the ADAM10 C-terminus are possibly

involved in shedding activation [43]. Collectively viewed, the

molecular mechanisms linking GPCR activation and protein

ectodomain shedding appear to be multilayered and they also

seem to be different for specific proteinases.

Independent from the missing links of cell and sheddase

activation, our presented data provide evidence that pharmaco-

logical stimulation of RAGE shedding may open alternative

treatment strategies for AD or RAGE-mediated diabetic compli-

cations in the future.

Figure 15. Model of the intracellular pathways involved in PACAP-induced RAGE shedding. In this study we demonstrated an
involvement of MAP kinase, PI3-kinase, PKC and CaMKII in PAC1 receptor-induced activation of metalloproteinase-mediated RAGE shedding.
Molecular mechanisms linking signaling cascades with metalloproteinase activation are still unknown (dotted lines). CaMKII: calmodulin-dependent
protein kinase II; DAG: diacylglycerol; IP3: inositol 1,4,5-triphosphate; MAP kinase: mitogen-activated protein kinase; PI3-kinase: phosphatidylinositol
3-kinase.
doi:10.1371/journal.pone.0041823.g015
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Materials and Methods

Antibodies and Reagents
The following antibodies were used: anti human RAGE N-

terminal antibody Mab5328 (Millipore) detecting membrane-

bound RAGE and rabbit serum Ab3260 detecting secreted RAGE

[16]. For detection of RAGE in mouse samples, the antibody

MAB1179 from R&D Systems was used. This antibody recognizes

the extracellular domain of murine RAGE. The anti-actin

antibody (A2066) was from Sigma-Aldrich. Anti ADAM10

(AB19026) and ADAM17 (AB19027) antibodies directed against

cytosolic ADAM domains were from Millipore.

Secondary anti-rabbit and anti-mouse peroxidase-coupled anti-

bodies and the ECL detection reagent were from Pierce (Rockford,

USA). The anti-rat POD-coupled secondary antibody was from

Merck (Darmstadt). All peptide hormones were from Bachem. All

other chemicals were either from Merck Biosciences or Sigma-

Aldrich.

Expression Vectors
RAGE: The untagged wild-type human RAGE expression

vector pcDNA6-RAGE was generated by using the human RAGE

cDNA, including its own translation termination codon. The

human RAGE cDNA was subcloned from clone IRAL-

p962E1737Q2 into EcoRI/XbaI sites of pcDNA6/V5-HisB.

PAC1: The rat PACAP type I receptor, which has 92% amino

acid identity compared to the human receptor, was used in the

experiments. The PAC1 coding region was fused at the 59end to

a myc epitope coding sequence and was combined at the 39end to

an oligonucleotide adaptor coding for a Rho epitope in a pcDNA3

vector. Expression plasmids for the C-terminal HA-tagged bovine

V2 vasopressin and human oxytocin receptor carrying a N-

terminal c-myc and FLAG epitopes and a C-terminal GFP-tag are

described elsewhere [44], [45]. The HA-tagged bovine V2

vasopressin receptor cDNA sequence was subsequently subcloned

into plasmid pcDNA3 (Invitrogen) generating pcDNA3-V2R-HA.

Transfection of Cells
HEK Flp-InTM 293 cells (human embryonic kidney cells)

(Invitrogen) were transfected with pcDNA3-PAC1 expression

plasmid using Lipofectamine 2000 (Invitrogen) and selected via

G418 to generate a stable cell line.Thenone cell clone expressing the

PAC1 receptor was transfected with pcDNA6-RAGE expression

plasmid using Lipofectamine 2000 and selected via Blasticidin.

HEK 293 cells (ATCC) stably expressing the oxytocin receptor

(OTR) [45] were transfected with the RAGE expression vector

pcDNA6-RAGE to generate stably OTR/RAGE coexpressing

cells. A single cell clone expressing RAGE and OTR was isolated

via G418 and Blasticidin selection.

HEK 293 cells (ATCC) stably expressing the bovine vasopressin

receptor (V2R) were generated by us by transfection of HEK 293

cells using plasmid pcDNA3-V2R-HA. A V2 vasopressin receptor-

expressing cell clone was isolated by using G418 selection.

Subsequently, this cell clone was transfected with plasmid

pcDNA6-RAGE and a RAGE/V2R coexpressing cell clone was

isolated via G418 and Blasticidin selection.

Small Interference RNA Experiments
Stealth RNAi duplexes were purchased from Invitrogen, and

transfections were performed according the manufacturer’s pro-

tocol. The RAGE cleavage assay was performed 48 h after

transfection.

Figure 16. Analysis of PACAP-induced RAGE shedding in vivo. Mices (N = 6) were treated intranasally with PACAP-38 for 3 months. Afterwards
mouse lungs were dissected and membrane proteins and soluble proteins were separated following tissue homogenization by ultracentrifugation.
Secreted RAGE (sRAGE) and full-length RAGE (RAGE fl) were detected by Western blotting using an antibody directed against mouse RAGE (MAB1179)
followed by an anti-rat antibody labeled with horse radish peroxidase, as loading control actin was detected. Shown are the mean effects 6 S.D.,
significance was determined by the Student’s unpaired t test (ns = P.0.05; * = P,0.05).
doi:10.1371/journal.pone.0041823.g016
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Measurement of Intracellular Free Calcium Ion
Concentration [Ca2+]i
Cells were incubated with 1,5 mM fura 2-AM in DMEM for

30 min at 37uC. Afterwards they were detached by using PBS/

0,5 mM EDTA and centrifuged at 100 g for 5 min. Pellets were

washed and resuspended in calcium buffer (10 mM HEPES,

pH 7.4, 140 mM NaCl, 5 mM KCl, 0,5 mM MgCl2, 1,5 mM

CaCl2, 10 mM glucose). Aliquots of the suspension were added to

calcium buffer and transferred into a cuvette that was placed into

a thermostatically controlled (37uC) holder. The agonists (final

300 nM) were applied to the cells after 100 s, and the changes of

the [Ca2+]i were monitored spectrofluorimetrically (Photon

Technology Int., Birmingham (USA)).

The emission wavelength was set at 510 nm, and dual-

wavelength excitations were performed at 340 and 380 nm. The

change of the Ca2+ concentration was calculated by using the ratio

340 nm/380 nm.

RAGE Cleavage Assays and Inhibitor Treatments
Cells coexpressing RAGE and GPCRs were seeded onto poly-

L-lysine-coated 6 well plates and grown for 24 h to 80-90%

confluence. Cells were washed twice with serum-free DMEM and

then secretion medium (serum-free DMEM supplemented with

2 mM glutamine) was added. Experiments in the presence of

inhibitors were performed by preincubating cells with the inhibitor

in secretion medium for 1 h at 37uC and then PACAP hormones,

arginine-vasopressin or oxytocin were added. After the appropri-

ate incubation time, cell culture supernatants were collected

centrifuged for 10 min at 660 g and proteins were precipitated

with 10% trichloroacetic acid at 4uC. Proteins were analyzed by

Western blotting. For detection of cellular proteins, the adherent

cells on the 6 well plates were washed with PBS, then dissolved in

reducing Laemmli buffer and assayed by Western blot analysis.

For comparative and quantitative analysis, effects observed with

solvent-treated cells were used as control and were set to 100%. As

a further control, the effect of the inhibitors on RAGE shedding

was also analyzed in the absence of hormones.

Biotinylation of Cell Surface Proteins
Adherent cells were washed twice with PBS and then incubated

for protein biotinylation with PBS containing 0.1 mM Sulfo-NHS-

LC-Biotin (Pierce Biotechnology) for 30 min at room temperature.

After washing with Tris-buffered saline (pH 7.4) the cells were

incubated in secretion medium for 2 hours. The cells and

supernatants were collected separately, and the supernatants were

adjusted to 0.1% SDS. The cells were dissolved in 5% SDS, and

then SDS was diluted to 0.1% by adding PBS. Biotinylated

proteins were captured with NeutrAvidin Biotin-binding agarose

(Pierce) for 2 h at 4uC. After that, the agarose beads were washed
three times with PBS/0.1% SDS. Proteins were eluted from the

binding agarose with reducing Laemmli buffer and analyzed by

Western blotting. Actin could not be detected in isolated

biotinylated protein fractions, thus demonstrating the integrity of

the cells during the course of the experiment. As a control, actin

could be detected in the cell lysate (5% SDS fraction; see above).

Western Blotting
Proteins of the cell culture supernatant or cell lysates were

separated by 10% SDS-PAGE and blotted to nitrocellulose

membranes (GE Healthcare). Membranes were probed with the

appropriate primary and secondary antibodies and the labeled

proteins were detected by chemiluminescence using the VersaDoc

system (Bio-Rad Laboratories, Munich, Germany) and quantified

via the AIDA 4.25 software (Raytest, Straubenhardt).

Gelatin Zymography
Cells were washed twice with serum free DMEM, then serum

free DMEM was added to the cells. After 18 h of incubation at

37uC, supernatants were collected and cleared from cells by

centrifugation (6606g, 10 min). For gelatin zymography 30 ml of
serum-free cell culture supernatant was mixed with 10 ml of 46
NuPAGE LDS Sample Buffer (Invitrogen), and subsequently

proteins were separated under non-reducing conditions in 10%

SDS-polyacrylamide gels containing 0.1% gelatin. After electro-

phoresis gels were washed in 2.5% Triton X-100 at room

temperature for 1 h and then incubated for 16 h at 37uC in

reaction buffer (100 mM Tris-HCl, pH 7.5, 10 mM CaCl2).

Finally the gels were stained with Coomassie Blue. Clear areas

within the stained gel result from digestion of gelatin by the

gelatinase activity of either MMP9 or MMP2.

Treatment of Mice and Samples Preparation
Ethics Statement. All animal experiments performed com-

ply with the current German laws. Approval of animal studies by:

Landesuntersuchungsamt Rheinland-Pfalz, Dienststelle

Tierschutz, Mainzerstraße 112, 56068 Koblenz, Germany.

Approval ID: 177-07/051-17.
Treatment. Three-month-old male APP[V717I] mice were

treated with PACAP38 for additional 3 months. The peptide

solution (1 mg/ml in 0.5% chitosan glutamate and 0.5% NaCl in

water; pH 4) was prepared as described [46]. The solution of

PACAP38 was administered intranasal to APP[V717I] mice 5

days a week, for 3 months. The mice were treated with 10 mg
PACAP38 per day, 10 ml for each mouse (5 ml/nostril); 5 ml/
nostril of the inert carrier was given to the control group. Mice

were sacrificed and then removed lungs were frozen on dry ice,

and then stored at 280uC.
Samples preparation. Mouse lung samples were divided

into pieces in liquid nitrogen and ice cold homogenization buffer

(1,4 M NaCl/20 mM Tris/HCl pH 7,5 with 1 proteinase in-

hibitor tablet Complete Mini (Roche) per 10 ml) in the fourfold

volume of the lung weight was added. Samples were homogenized

in a tissue lyser (Qiagen, 30 Hz, 262 min) and the suspension was

centrifuged for 2 h (100 000 g, 4uC), then the supernatant was

transferred in a new tube. The pellets containing insoluble lung

material were resuspended in the fourfold volume of homogeni-

zation buffer with the tissue lyser (30 Hz, 262 min) and afterwards

centrifuged for 15 min (16 000 g, 4uC). Then the supernatant was

discarded and the remaining pellet was suspended in a twofold

volume of TBS (with proteinase inhibitor tablet Complete Mini)

using the tissue lyser. This suspension was used for analysis of

membrane proteins.

The protein contents of the soluble and membrane protein

fractions were determined by the Bradford method. Proteins were

analyzed by Western Blotting.
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