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Abstract

Background: The nervous functions of an organism are primarily reflected in the behavior it is capable of. Measuring
behavior quantitatively, at high-resolution and in an automated fashion provides valuable information about the underlying
neural circuit computation. Accordingly, computer-vision applications for animal tracking are becoming a key
complementary toolkit to genetic, molecular and electrophysiological characterization in systems neuroscience.

Methodology/Principal Findings: We present Sensory Orientation Software (SOS) to measure behavior and infer sensory
experience correlates. SOS is a simple and versatile system to track body posture and motion of single animals in two-
dimensional environments. In the presence of a sensory landscape, tracking the trajectory of the animal’s sensors and its
postural evolution provides a quantitative framework to study sensorimotor integration. To illustrate the utility of SOS, we
examine the orientation behavior of fruit fly larvae in response to odor, temperature and light gradients. We show that SOS
is suitable to carry out high-resolution behavioral tracking for a wide range of organisms including flatworms, fishes and
mice.

Conclusions/Significance: Our work contributes to the growing repertoire of behavioral analysis tools for collecting rich
and fine-grained data to draw and test hypothesis about the functioning of the nervous system. By providing open-access
to our code and documenting the software design, we aim to encourage the adaptation of SOS by a wide community of
non-specialists to their particular model organism and questions of interest.
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Introduction

In a similar way that detailed knowledge of the dynamics of ion

channels enhance our understanding of neurons, precise behav-

ioral characterizations help to unravel the function of neural

circuits. However, natural behaviors are usually complex, variable

and multidimensional, with no universal language such as that of

action potentials. Therefore, quantifying behavior at high-resolu-

tion, efficiently, and in an unbiased fashion remains a challenge in

most neurobiological studies [1]. Indeed, though manual annota-

tion is common, ad hoc performance indices defined by the

experimenter may fail to capture the information relevant to the

transformation of sensory input into behavioral output. An

alternative approach consists in measuring unconstrained behavior

from its most fundamental components — the time course of the

animal’s posture — to search for principles simplifying the

apparent complexity of the phenomenon [2]. This requires new

techniques to systematically collect and analyze behavioral data.

Computer-vision offers a fundamental tool in the study of

animal behavior. Several companies provide commercial software

specifically devised to study a particular paradigm (e.g. the Morris

water maze for rodents). Although these solutions can be onerous

and difficult to customize, they have the advantage of working out

of the box for the specific tasks they were designed for. In addition,

a series of custom-made tracking software written by neurobiol-

ogists is now available, enabling behavioral measurements of

individual animals at an unprecedented resolution in nematodes

[3,4,5], flies [6,7,8,9] and rodents [10]. Software capable of

tracking multiple animals simultaneously [11,12,13] has augment-

ed the toolkit for high-throughput screening. While the use of these

tools is becoming common practice, it takes considerable effort to

adapt and extend the codes to different behavioral paradigms or

model organisms. We believe that there exists a scope for free,

simple, and customizable software between sophisticated freeware

and commercial packages.
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Multipurpose tracking systems that measure motor responses

and simultaneously infer the corresponding sensory input during

unconstrained orientation behavior are scarce. To assess the

sensory information accessible to an animal, it is important to

determine not only the position of the center of mass (the animal

being described as a moving dot in space), but also its posture and

the kinematics of specific points along the body. For instance,

while olfactory inputs are collected by sensors at the tip of the head

in Drosophila larva, thermosensory and visual inputs arise from

sensory neurons covering the whole body [14,15,16]. Similarly,

escape responses and turning maneuvers in fishes involve intricate

muscle activity patterns where body curvature and tail accelera-

tion play a key role. In general, it is valuable to know not only

where the animal is located in space but also what inputs are

stimulating its sensors (visual and otherwise) together with its

relative orientation to particular landmarks or other organisms.

Here we have developed Sensory Orientation Software (SOS) to

extract and analyze fine-grained information about the posture

and motion of single animals behaving in sensory landscapes. The

SOS system consists of a series of custom-made Matlab codes for

online animal tracking and offline processing and analysis. We

provide access to all our scripts as File S1. The scripts are

commented and documented in a step-by-step tutorial. We

provide a test dataset (File S1) and include a movie illustrating

the application of SOS to track different animals (Movie S1). Our

software targets a community of non-experts in computer-vision or

programming: it offers a flexible basis adaptable to several

paradigms and organisms. Together with an accompanying

manuscript by Colomb et al., this work presents a free,

customizable and pedagogical tool for behavioral tracking and

analysis.

The structure of the paper is as follows. First, we describe the

online tracking system. We estimate relevant spatial, temporal and

data constraints related both to the animal’s characteristics and the

tracking procedure itself. Next, we explain how to compute

postures from raw body shape images. We illustrate this approach

in fruit fly larvae, flatworms, fish and mice. In the Drosophila larva,

we show how to accurately infer the sensory stimuli to which

particular loci along the larval body are exposed in a sensory

landscape. We validate our approach by examining, at high-

resolution, the sensorimotor trajectories of larvae in odor,

temperature and light gradients.

Materials and Methods

Fly stocks and animal preparation
Fly stocks were maintained on conventional cornmeal-agar

molasses medium at 22uC and kept in a 12 h dark-light cycle. The

Drosophila melanogaster Canton-S strain was used as ‘wild type’. In all

behavioral experiments, 6-day-old third instar foraging larvae

were tested during the day. Room temperature was kept between

21 and 23uC and relative humidity between 50 and 60%. Larvae

were washed from food medium by pouring a solution of 15%

sucrose in the food vial. Individuals floating at the surface of the

sucrose solution were transferred to the arena for behavioral

tracking. Single animals were monitored while crawling on a 3%

agarose slab.

Sensory landscapes
Orientation behavior in Drosophila larvae was tested in

controlled odor, temperature and light gradients. For chemotaxis,

an airborne odor gradient was created by loading an odor droplet

on the condensation ring of the lid of a 96-well plate, which was

inverted on a surface of agarose to form a closed arena [17]. Ethyl

butyrate (CAS number 105-54-4) was used as odorant. The odor

concentration was estimated via infrared spectrometry [17]. For

thermotaxis, a linear spatial thermal gradient was created with two

thermoelectric temperature controllers (TC-48-20, TE Technolo-

gy) maintaining the two extremes of the plate at different constant

temperatures. The agarose layer was placed right on top of the

metal plate and its temperature was directly measured with a

thermometer (MM2000 Handhold Thermometer, TM Electron-

ics). The experiment started after the establishment of a stationary

gradient in the agar. For phototaxis, a bright light pad (5000

Kelvin color temperature radiation, Slimlite Lightbox, Kaiser) was

placed perpendicularly to the agarose layer surface where the

animal crawled, creating a sideways gradient.

Behavioral arenas
A video camera (Stingray Camera, Allied Vision Technologies;

Computar lens, 12–36 mm, 1:2:8, 2/30 C) fixed on a stand was

used to monitor larval behavior. Larval tracking lasted a

maximum of five minutes and was interrupted when the animal

left the field of view. Frames were streamed at 7 Hz live from the

camera by the Image Acquisition toolbox of Matlab (The

MathWorks, Natick, USA), which automatically recognizes

DCAM compatible FireWire cameras upon installation of the

CMU 1394 Digital Camera Driver. The installation of the Image

Processing toolbox of Matlab is necessary to ensure the

functionality of SOS. To maximize the effectiveness of the image

processing, different conditions of illumination were designed to

study each modality. For chemotaxis, a light pad (5000 Kelvin

color temperature radiation, Slimlite Lightbox, Kaiser) illuminated

the arena from above creating uniform daylight conditions, while

the camera recorded images from below. This configuration

allowed us to reduce the shadow from the condensation rings of

the lid of the arena. For thermotaxis, the camera was placed above

the agarose layer and the setup was illuminated by sideways red

LEDs (620 nm wavelength, 30 lm luminous flux, Lumitronix

LED, Technik GmbH). For phototaxis, the camera was placed

above the agarose layer and sideways white-light illumination

(Slimlite Lightbox, Kaiser) was sufficient to enable tracking. The

light intensity was assumed to decay from the source position.

Results

Online tracking: from video streaming to animal postures
During online tracking camera frames are acquired live and

preprocessed. Raw images of the animal in the arena are cropped

into a bounding box enclosing the two-dimensional projection of

its body shape. Together with the coordinates of the box, the

sequence of cropped images is saved for offline analysis, optimizing

the storage of raw data and making the subsequent processing

more efficient. The operations allowing monitoring the behavior

of a single animal in real time are schematized in the flowchart

diagram of Figure 1.

The program is initiated by typing track(x,y) in the command

prompt, where the argument x specifies the sampling interval in

seconds and y is the total number of frames to be tracked. The

tracking frequency is controlled by a built-in timer function.

Messages are displayed at the prompt guiding the user and

indicating the status of the tracker. The software connects to the

camera and displays a live image of the arena on screen so that the

experimenter can adjust, amongst other features, the field of view,

the focus and the illumination intensity. This is important since the

target recognition procedure is based on differences in contrast.

The tracker detects the animal as the largest object with the

highest contrast (darkest or brightest, depending on the illumina-
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tion and the arena). The input grayscale frame is converted into a

binary black-and-white image based on a threshold operation,

whose value can be iteratively and automatically adjusted by the

user before tracking starts.

Before capturing the body contour to be used for posture

tracking, a steady background image of the whole field of view is

acquired. By subtracting the background from the current image,

the animal posture can be automatically and robustly segmented.

Depending on the illumination, the stimulus delivery system, and

the particularities of the arena, segmentation can be either

straightforward or more complex. In the simplest case, the animal

is the only salient object and the background is essentially uniform.

Then, no background subtraction is necessary. When static objects

are present in the image, the background can be built as an

average over the whole time sequence [18]. However, that solution

only works for offline tracking. Provided that there are no slight

displacements of the arena during the experiment, saving an initial

snapshot of the background before the animal is introduced in the

arena should work. More generally, SOS reconstructs the

background after the animal is loaded in the arena via the

following procedure: it detects the animal as the largest salient

object; it crops a small box around it; it saves the outer image;

finally, it completes the outer image with the inner image of the

bounding box once the animal has moved away from it. This

prevents confounding the animal with water droplets, small pieces

of dirt, and shades produced by the arena. Animal postures can be

faithfully tracked anywhere in the arena (see Text S1).

The background is subtracted from the current frame and the

remaining grayscale image is transformed through a threshold into

a binary (black and white) image. Unsuitable thresholds can lead

to fragmented or noisy binary postures. Even with the appropriate

threshold, the binary image may still contain undesirable objects

due to pixel noise artifacts or impurities in the substrate. Since

these objects are usually smaller than the animal, they are easily

erased by retaining only the largest object in the image via

standard Matlab functions. When an image of the animal shape is

the only object left, a smooth contour is easily obtained offline.

Once the tracker has successfully detected the animal from the

background, it creates a small bounding box around it. This region

of the arena corresponds to the most likely area where the animal

will be found in the next frame. From then on, computations will

only take place in that region of interest, speeding up the image

processing. The software enters a loop where the animal shape is

found and saved, together with the coordinate positions of the

cropped bounding box in the arena system of reference. Tracking

stops when the animal leaves the field of view, or if the preset

sampling frequency is faster than the time the computer takes to

acquire and process each frame. Data acquisition can also be

terminated at any time by following the prompts generated by the

program. At the end of each trial, the data (background, postures

and coordinates) are saved in a folder named after the current date

and time of the experiment.

Getting to scale: selecting appropriate temporal and
spatial resolutions of a tracking experiment

Spatial resolution, temporal resolution and data storage

requirements are mutually dependent. It is therefore convenient

to estimate the tracking resolution limits given the arena

constraints, animal features, and hardware-software computation-

al characteristics (Figure 2A). These typical scales can be

Figure 1. From experiments to animal shapes. (A) Flowchart of the sequential steps of the online software. (B) Illustration of the image
processing. The quality of the object segmentation depends critically on the threshold used to binarize the image. Frames streamed from the camera
are used to reconstruct the background, detect the animal, and track its motion. The body posture and location of points of interest are saved as the
animal freely moves in the arena.
doi:10.1371/journal.pone.0041642.g001
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estimated, related and exploited in a useful manner. We

summarize the most relevant relationships in Figure 2 as a guide

for behavioral tracking experiments.

The level of detail at which the animal posture is tracked

determines the number of body pixels to be processed and saved,

therefore setting a trade-off between posture resolution, tracking

frequency, and data size. Along the same lines, zooming in to

acquire higher resolution postures implies tracking a smaller field

of view, thus restricting the area where the animal can be tracked

(Figure 2B). The animal-to-arena ratio provides a useful quantity

to be related to the typical speed of the animal, image size, and

frames per second. How fast the animal moves imposes a lower

bound on the tracking speed and an upper bound on the total

tracking time before the animal is likely to contact the arena

boundaries (Figure 2C). In turn, given a particular posture

resolution, a field of view and tracking frequency, the duration

of the experiment will determine the total amount of data to be

saved for that particular experiment (Figure 2D).

Spatial constraints related to animal posture resolution and

motion in the arena arise mainly for setups where the camera is

fixed. In closed-loop tracking systems where the camera follows

the animal, very high postural resolution can be achieved in large

arenas [19,20]. Spatial and temporal constraints of the online

tracking can be relaxed by acquiring frames as fast as needed

without any preprocessing, at the expense of generating large

volumes of video data. Sequences of high-resolution raw images

for a single experiment can easily fill gigabytes of disk space. Our

system is well suited to minimize the data stored upon completion

of an experiment, saving only the relevant information as the

experiment takes place, reducing the volume of data storage and

making the subsequent offline analysis more efficient.

Offline processing: analyzing sequences of animal
posture

During the offline analysis, each image is automatically

processed to obtain animal-centric posture descriptors and loci

of interest. The main steps to obtain postures are depicted in

Figure 3A. We show how similar principles and operations can be

applied for the high-resolution tracking of animals as distinct as

fruit fly larvae, fishes or mice.

Figure 2. Spatial and temporal scales of a tracking experiment. (A) Scheme of the main spatial and temporal scales of the tracking: organism
typical size (l), behavioral arena field of view length (L), temporal resolution of the tracking (t), and total time of the experiment (T). (B) Scaling of the
organism posture resolution in pixels as a function of the relative field of view (considering a 1024-pixel frame resolution in length). Labeled areas
represent different resolution limits. (C) Tracking time before the animal reaches the arena’s edge (corresponding to an arena/organism ratio of 20 at
a posture resolution of 50 pixels) as a function of the typical motion speed of an organism expressed in body length units. Labeled areas represent
different locomotion speeds in relationship to the time to reach the boundaries of the arena. (D) Total data storage requirements for experiment
lasting 5 minutes in the conditions of the previous panel, as a function of the tracking frequency in frames per second. The continuous line
corresponds to disk space usage to save only a bounding box enclosing the organism posture, while the dashed line involves saving the complete
frame, which considerable increases the storage needs.
doi:10.1371/journal.pone.0041642.g002
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From the raw frames collected during the experimental session,

the goal now is to generate high-resolution trajectories of the

animal’s posture that quantitatively describe the time course of its

behavior. In short, we automatically trace the animal contour to

compute its curvature and skeleton, in order to extract the position

of several points of interest, including head and tail.

Once the original image has been segmented and binarized, the

body edge is detected as the boundary between black and white

pixels. If necessary, the shape can be smoothed by standard image

processing procedures (see Text S1). Next, we find the skeleton

using a thinning operation, which recursively removes pixels from

the boundary until a single-pixel-wide connected skeleton is

obtained (Figure 3B). The body skeleton is convenient for two

reasons. First, it gives access to the local curvature of the animal

along its anterior-posterior axis — a representation which

permitted to make fundamental discoveries in C. elegans [2].

Second, the two end-points of the skeleton can be used as a proxy

for animal head and tail positions, as is discussed below. The

thinning process can produce spurious branches that lead to

skeletons with more than two endpoints. The code keeps track of

the fraction of such cases. If the contour is smooth and regular, as

is the case for the Drosophila larva, spurs are rare and problematic

frames can be discarded from the analysis. Depending on the

particular organism that is being tracked, one could make use of

such extra branches of the skeleton to detect relevant posture

features such as legs, wings or fins. Alternatively, a second

approach to obtain head and tail positions relies on the

identification of points of maximum curvature along the animal’s

contour (see Figure 3B). The skeleton is then built from such points

by tracing bisectors along left and right sides of the animal

perimeter [13].

Differentiating the head from the tail is necessary to robustly

reconstruct trajectories. When the temporal resolution is high,

classification is achieved via a simple ‘‘distance rule’’: the head in

the current frame is identified as the closest locus to the head in the

previous frame. This rule only requires human intervention to

define the head position in the first frame. The program displays

the first grayscale image of the animal on the screen and asks the

user to click first near the head and then near the tail positions.

From then on, head and tail are sorted automatically. This simple

clustering algorithm can robustly detect the head position even if

the animal is not moving or if it is engaged in backward

locomotion. The algorithm only requires a tracking frequency that

is faster than the typical speed of motion expressed in units of body

length (Figure 2). When the animal bends to such an extent that a

blob-like shape is created, the head and the tail can be swapped.

We automatically flag these events during the first round of

processing to allow for a correction if necessary (see Text S1).

Furthermore, a visual animation is displayed at the end of the

image processing so that the user can easily review any potential

problems in loci assignment. For all frames associated with a

potential error, the program pauses and invites the user to

disambiguate the classification.

Figure 3. Postures in motion. (A) Flow chart of the sequential image processing steps to obtain high-resolution trajectories of animal postures. (B)
Visual representation of the step schematics in (A) for three different organisms: fruit fly larvae, fish and mice. One can either perform a thinning
operation on the binary image of the animal shape to find a skeleton whose endpoints will correspond to head and tail, or alternatively compute
contour curvature maxima to determine the position of the head and tail. (C) Illustration of the tracking method for a temporal sequence of postures
(blue silhouettes) and head positions (red dots) for a crawling larva, a swimming fish and a walking mouse.
doi:10.1371/journal.pone.0041642.g003
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To illustrate the use of SOS, we tracked the postural dynamics of

four model organisms in neurobiology: a fruit fly larva (third instar

Drosophila melanogaster larva) crawling on an agarose surface, a

flatworm (planarian Schmidtea mediterranea) swimming away from a

light source, a fish (adult zebra fish Danio Rerio) swimming in a Petri

dish, and a mouse (Mus musculus) walking on a square arena and

swimming in a mater maze. The raw data was either generated by

the authors or kindly provided by other labs. Figure 3 illustrates in

detail the application of the segmentation scheme for a fly larva,

fish and mouse. The resulting movies for all organisms can be

found as Movie S1.

From the contour and skeleton images, the area, the perimeter

size and skeleton length are saved. This information can be used,

for instance, to normalize the size of the animal, to measure

rhythmic patterns of locomotion from body contractions or,

potentially, to detect hunching or rearing. Coordinates including

the animal’s centroid position and the middle point of the skeleton

are extracted as well. Next, the software translates all high-

resolution coordinates (positions of head, tail, centroid, midpoint,

ordered skeleton from head to tail, and contour) to the laboratory

frame of reference, and it converts these features from pixels to

units of physical length. Calibration implies a multiplication of the

coordinates by a conversion factor calculated from landmarks of

the arena available in the field of view. To define customized

landmarks, the code displays the arena background on the screen

and asks the user to click on key positions separated by distances

known to the experimenter. The spatial scale (pixels per

millimeter) and the temporal resolution (frames per second) of

the tracking are saved together with the arena landmarks.

High-resolution sensorimotor trajectories
In the presence of a stimulus landscape or during a particular

behavioral task, postural data can be used to infer the sensory

input to which the animal is exposed during the course of an

experiment. This yields to detailed sensorimotor trajectories. By

projecting the body shapes onto the plane of locomotion and

calculating postures in time and space, we can map the position of

the animal’s head with the corresponding stimulus intensity and

local gradient’s strength and direction. Aligning the motor data

with the reconstructed stimulus landscape, we can obtain, for

instance, the stimulus intensity at the head, its time derivative and

the relative orientation angle of the animal with respect to the local

gradient (Figure 4).

After testing several animals independently (for instance

corresponding to the same sensory stimulus, genotype, develop-

mental stage, etc.), our offline analysis software allows for merging

files from all trials in a consistent way. Together with continuous

kinematic variables, SOS detects and saves discrete behavioral

events such as runs, turns and casts, by finding abrupt

reorientation speeds and large head bending angles [21]. On the

whole, the process produces a temporal sequence of high-

resolution sensory and behavioral data for all animals tested.

Hypothesis about neural computation can then be drawn from

statistical correlations between sensory inputs and motor outputs.

Orientation in sensory landscapes: chemotaxis,
thermotaxis and phototaxis in the Drosophila
melanogaster larva

From online tracking to offline processing and the generation of

sensorimotor trajectories, we illustrate the potential of the whole

SOS system by examining Drosophila larvae orienting to odor,

temperature and light gradients [22]. Our present aim is not to

conduct an exhaustive study of each modality, but to show how the

analysis can reveal interesting aspects of sensory orientation in the

larva. The trajectory of particular points along the body is used to

reconstruct both the positional dynamics of the sensory organs and

the behavior of the entire animal. As shown in Figure 5, we infer

the sensory input at the body locations where receptors are

located.

Drosophila larvae move towards increasing concentrations of

attractive odors [12,17,21,23,24,25]. The larval ‘‘nose’’ is located

at the tip of the head, where a pair of olfactory organs (dorsal

organs) host 21 olfactory sensory neurons [15,26]. It has been

shown that larval chemotaxis does not require stereo-olfaction,

namely, the detection of concentration differences between the left

and the right ‘‘noses’’ [17]. Reconstruction and analysis of the

odor concentration dynamics at the tip of the head during free

exploration has shown that head casts are a key process of the

reorientation mechanism [21]. Such trajectories revealed that

temporal integration of stimulus changes during head motion

represents the main input signal controlling the timing and

direction of turns. Lateral head sweeps constitute an active

sampling process that allows the animal to reorient in the odor

gradient [21]. As quantified in Figure 5A, lateral head movements

can be associated with rapid changes in odor concentration on the

order of a 5% relative difference (50 nM changes in a 1 mM

concentration background).

Drosophila larvae sense temperature by using a pair of detectors

located at the tip of the head (terminal organs) and chordotonal

neurons scattered along the body wall [14]. When exposed to a

temperature gradient, first instar larvae modulate the acceptance

of a new direction of motion during lateral head sweeps [27]. As

argued in reference [14], thermal equilibration from the surface to

the internal structure of first instar larvae should take place in less

than a tenth of a second. Applying the same scaling argument to

third instar larvae, we find that a few seconds are necessary for

thermal equilibration along the lateral axis of the body. In

contrast, the characteristic time for thermal equilibration along the

longitudinal axis (4 mm) is nearly one minute. This slow timescale

implies that, in principle, third instar larvae could measure

temperature differences along the antero-posterior axis. By

reconstructing the sensorimotor trajectory of a larva navigating

from low to high temperatures in a linear temperature gradient of

slope 0.1uC/mm, SOS provides a quantitative estimate of the

temperature differences along the larva’s body during orientation.

As shown in the Figure 5B, we find that variations along the

anteroposterior axis are of the same order of magnitude than those

associated with head casts.

Drosophila larvae display a strong photophobic behavior lasting

until wandering stage [28]. Two sensory organs (Bolwig’s organs)

are located in the head. Moreover, non-conventional photorecep-

tors tile the entire body wall [16]. From genetic dissections of light

driven behaviors in the fruit fly larva [29,30,31,32,33], there is a

growing interest in the quantification of orientation responses in

light gradients [34]. Instead of exposing individuals to all-or-none

light flashes, we tested larval behavior in response to a sideways

light gradient (Figure 5C). The orientation mechanism controlling

light responses is thought to involve body bends or head casts [28].

Turning direction might also be inferred from a comparison of the

light exposure on the left and on the right sides of the body. In our

arena the animal controls light exposure by modifying its

orientation with respect to the direction of the source. In

Figure 5C, we use SOS to quantify the temporal evolution of the

percentage of body surface exposed to light. Together with the

light intensity at the Bolwig’s organs, our system allows us to

estimate subtle differences in illumination along the left and right

Tracking Animal Posture and Movement
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sides of the body — a possible parallel source of information

exploited by the larva during phototaxis.
Discussion

Adaptive behavior refers to the ability of an animal to produce

and react to changes in internal and external signals by means of

motion [35]. At the same time, behavior often implies an active

Figure 4. High-resolution sensorimotor trajectories. The posture and position of each animal are mapped onto the arena system of reference
and then used to infer, from the gradient landscape, the sensory dynamics at different loci of interest. The temporal sequences of all sensory and
motor variables correspdonding to different animals are compiled in a single data file.
doi:10.1371/journal.pone.0041642.g004

Figure 5. Drosophila larval orientation in odor, temperature and light gradients. Top: stimulus landscape overlaid with one representative
head-and-tail trajectory for every sensory modality. Bottom: reconstructed time course of a sensory variable relevant to the behavioral modality under
study. (A) Concentration changes due to head casts as the animal returns to the odor source. (B) Thermal differences along the body axis skeleton
with respect to the head as the animal reorients in the temperature gradient. (C) Percentage of light on the body contour as the larva moves away
from the light source. For all panels, gradient direction and direction of motion are illustrated with grey and black arrows, respectively. Numbers
indicate the occurrence of sampling events reported in the bottom panel.
doi:10.1371/journal.pone.0041642.g005
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process to collect sensory information, rather than a passive

response. Motion, perception, and proprioception are not

independent but are interwoven in a sensorimotor feedback loop.

With the aim of improving and sharing behavioral quantification

tools, we have developed software for high-resolution tracking of

single animals that are freely moving in two-dimensional sensory

environments. By monitoring the postural changes of an individual

over time, our system reveals the stimulus history to which specific

sensors are exposed in space and time. This reconstruction of

trajectories in sensory and motor spaces represents a necessary step

in the analysis of the neural processes controlling active sampling

during orientation behavior.

Across the animal kingdom, quantitative measures of motor

responses have provided invaluable information about the

computation underlying orientation behavior [12,36,37,38,39].

Historically, the advent of high-resolution tracking of Escherichia

Coli in chemical gradients [40,41] laid the foundation for an

understanding of the biochemical pathways controlling chemotaxis

in unicellular organisms. Similar behavioral analysis conducted in

Caenorhabditis elegans [42,43,44] and in Drosophila melanogaster larvae

[17,21,27] have shed light on the neural mechanisms controlling

active sampling and decision making. Here, we demonstrate the

use of our tracking software on three sensory modalities in the fruit

fly larva: chemotaxis, thermotaxis and phototaxis. Our analysis

produces behavioral features associated with the detection and

computation of sensory stimuli in each modality: odor concentra-

tion changes due to side-to-side head movements during

chemotaxis; temperature gradients along the larval body during

thermotaxis; and differences in photostimulation between the left

and right sides of the animal during phototaxis.

The software SOS is a tracking and analysis system that can be

used in behavioral screens to characterize subtle sensorimotor

deficiencies associated with selected phenotypic traits. Precise

behavioral tracking is also convenient for phenotypic scoring in

genetic mapping studies [45]. SOS can be adapted to make use of

anatomical features specific to the organism under study such as

sharp edges, large protrusions, darker parts, and expression of

fluorescent markers or tags. It can also be extended to analyze

orientation behavior in other sensory landscapes such as humidity,

gravity, or simply foraging strategies in homogeneous sensory

landscapes. Finally, SOS can be applied to monitor a wide range of

organisms from Planarian [46] and marine zooplankton [47] to

larvae from other species [48], fishes and mice. We hope that

novel ways of measuring and analyzing animal behavior will

contribute to the development of new concepts, theories and

principles about how neurons process sensory information to

produce coordinated motor responses [49].

Supporting Information

Text S1 Step-by-step tutorial detailing the use and
functionality of SOS.

(PDF)

Movie S1 Illustrative movie of posture tracking in
flatworms, fruit fly larvae, fishes and mice.

(M4V)

File S1 Tracking and analysis codes of SOS together
with a test dataset generated from larvae behaving in an
odor gradient. Updated code versions will be uploaded on the

website of the Louis lab: http://www.crg.es/matthieu_louis.

(ZIP)
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