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Abstract

The massive energetic costs entailed by reproduction in most mammalian females may increase the vulnerability of
reproductive success to food shortage. Unexpected events of unfavorable climatic conditions are expected to rise in
frequency and intensity as climate changes. The extent to which physiological flexibility allows organisms to maintain
reproductive output constant despite energetic bottlenecks has been poorly investigated. In mammals, reproductive
resilience is predicted to be maximal during early stages of reproduction, due to the moderate energetic costs of ovulation
and gestation relative to lactation. We experimentally tested the consequences of chronic-moderate and short-acute food
shortages on the reproductive output of a small seasonally breeding primate, the grey mouse lemur (Microcebus murinus)
under thermo-neutral conditions. These two food treatments were respectively designed to simulate the energetic
constraints imposed by a lean year (40% caloric restriction over eight months) or by a sudden, severe climatic event
occurring shortly before reproduction (80% caloric restriction over a month). Grey mouse lemurs evolved under the harsh,
unpredictable climate of the dry forest of Madagascar and should thus display great potential for physiological adjustments
to energetic bottlenecks. We assessed the resilience of the early stages of reproduction (mating success, fertility, and
gestation) to these contrasted food treatments, and on the later stages (lactation and offspring growth) in response to the
chronic food shortage only. Food deprived mouse lemurs managed to maintain constant most reproductive parameters,
including oestrus timing, estrogenization level at oestrus, mating success, litter size, and litter mass as well as their overall
number of surviving offspring at weaning. However, offspring growth was delayed in food restricted mothers. These results
suggest that heterothermic, fattening-prone mammals display important reproductive resilience to energetic bottlenecks.
More generally, species living in variable and unpredictable habitats may have evolved a flexible reproductive physiology
that helps buffer environmental fluctuations.
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Introduction

A fundamental assumption in life-history theory is that re-

production is costly [1]. For most small mammals, energy

requirements generally increase throughout the reproductive cycle

[2–4]. Prior to fecundation, the energetic cost of reproductive

effort (gametogenesis, courtship, mating) is probably sex-depen-

dent and possibly high [5], but overall poorly quantified [6].

Gestation and lactation are critical periods of energy expenditure

[7]. During gestation, foetal growth and the development of

reproductive organs (uterus, placenta, mammary), entail a drastic

increase of energy expenditure. After birth, lactation is even more

costly [4,8–11]. For instance, in the guinea pig (Cavia porcellus), the

daily energy expenditure during gestation is 2.4 times the basal

metabolic rate (BMR) and 3.7 times the BMR during lactation

[12]. The extent of such costs place reproductive decisions at the

core of life-history trade-offs [13,14].

In seasonal environments, breeding phenology has been selected

so that the costliest reproductive stages match the annual peak in

food availability [15–17]. Some organisms even use the same

proximate cues to time both the energy balance and reproduction

[18–20]. However, new concerns arise from climate change since

it generates phenological mismatches between the energetic needs

of animal reproduction and environmental productivity

[17,21,22]. Primary and secondary producers seem to track

changes in the timing and intensity of climatic variations with

relative accuracy; in contrast, consumers, particularly those with

a slow reproductive rate, would be less flexible [23–26]. Re-

productive resilience - defined as the ability to maintain a constant

reproductive output despite unexpected environmental distur-

bances – is an alternative response that received much less

attention than phenological adjustments [27,28]. Understanding

whether, and to which extent, females can flexibly adjust their

energetic investment to reproduction according to unpredicted
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food shortages is essential to predict whether organisms could

compensate climate changes by plastic phenotypic adjustments

[22,28,29].

Physiological studies documented various effects of food re-

striction on female reproductive output. In small laboratory

mammals, it can inhibit mating behavior [30–33] and delay sexual

maturation, potentially resulting in acyclicity or anoestrus [34,35].

Gestation can be shortened and even compromised by a higher

risk of miscarriage and fetal death, while fetal growth can be

reduced. Eventually, energetic deficits can affect juvenile growth,

behavior and survival [36,37]. Despite all these potentially

deleterious effects of food shortage, skipping a reproductive event

can be a risky decision. This is particularly true for seasonal

breeders with fast life histories because survival to the next cycle is

uncertain, while an entire lifetime offers, at best, a handful of

reproductive opportunities [38]. Thus, it might still prove safer to

prioritize immediate over future reproduction, at least if a flexible

reproductive physiology allows it.

Species that evolved in poorly predictable, harsh environments

are good candidates to document reproductive resilience to

unexpected food shortages [27,39]. Our model is a small

heterothermic primate, the grey mouse lemur (Microcebus murinus),

which evolved under the unpredictable climatic conditions of the

dry forests of Madagascar [40]. There, the alternation of seasons is

typically predictable, with abundant food during the wet season,

and drastic food shortage during the dry season. But the high

interannual climatic variability, connected to El Niño and the

Indian Ocean Dipole oscillations [40] makes the suitability of the

wet season and the harshness of the dry season poorly predictable,

essentially through important between-year variations in the

abundance and temporal distribution of rainfall. Organisms with

a wide range of energy saving mechanisms were selected by food

shortage caused by both the seasonality, and recurrent climatic

anomalies [40]. These include daily torpor (periodic hypometa-

bolism; [41,42]) and energy storage in adipose tissues. Torpor use

is flexibly adjusted to energetic constraints such as caloric

restriction [43–45], and can be used by reproductive females

[46]. However, it remains unknown whether, and to which extent,

such mechanisms might allow maintaining reproductive output

under energetic shortage.

Mouse lemurs display relatively fast life-history. They reach

sexual maturity within their first year, breed seasonally once a year

[47,48], and reproduce on average twice in their life [49]. In the

wild, they mate at the end of the dry season when food availability

is minimal and when fat stores are depleted, meaning that female

grey mouse lemurs have probably evolved to cope with limited

energy supply before the mating season [1,48]. Given this life-

history, we expected that female mouse lemurs would prioritize

immediate over future reproduction in situations of food shortage,

and would maintain energetic allocation to reproduction, poten-

tially at the expense of their own survival.

To quantify the extent to which female reproductive effort and

output is adjusted to unusual, unfavorable conditions, we exposed

captive female mouse lemurs, maintained at thermoneutrality

[52], either to food available ad libitum (control), to a chronic food

shortage (40% food restriction over eight months) or to an acute

food shortage (80% food restriction over a month). The moderate,

long-term restriction was designed to simulate a relatively bad year

due to below-average primary and secondary production, with

long-lasting effects over a full reproductive cycle [50]. The acute,

short-term restriction was designed to simulate a harsh climatic

event occurring shortly before the onset of the reproductive season

[28]. The dependency of female reproductive performances on

energetic availability was assessed at two crucial stages: (i) during

ovulation and gestation - the least energetically costly stages, and

(ii) during lactation - the most expensive stage. We predicted that

(i) early stages would be the most resilient to food shortage. In

contrast, (ii) during lactation, when the energetic demand peaks

and the ontogenetic program of offspring development is fully

launched, the physiological adjustments may not suffice to

compensate food shortages, and such energetic deficit should

occur at greater expense for the females (in terms of body mass

loss). Hence, offspring growth is expected to be less resilient to food

shortage than the initial reproductive effort.

Materials and Methods

Ethics Statement
All experiments were performed in accordance with the

European Communities Council Directive (86/609/EEC). The

research was conducted at authorized facilities (#91–305) by

authorized experimenters (#91–439 & #91–455, issued by the

Departmental Veterinary Service of Essonne, France), and proto-

cols had been approved by the internal review board of UMR

7179. The levels of calorie restriction that were used in

experiments do not induce chronic physiological stress [43,51].

At the end of the experiments, all animals were returned to

standard living conditions.

Animals and Housing Conditions
Grey mouse lemurs were obtained from our laboratory breeding

colony (Brunoy, Museum National d’Histoire Naturelle, France,

European Institution Agreement No. 962773). The animals used

in experiments were sexually mature and multiparous females,

aged between 2 and 4 years. All animals are maintained in mono-

sexual groups (apart for mating days) under standard breeding

conditions at thermo-neutral ambient temperature (24–25uC; [52])
and a relative humidity of 55%. Experiments were implemented at

thermoneutrality to remove the potentially confounding effects of

energetic costs related to thermoregulation, and to ensure

comparability across studies. Seasonal variations of physiological

functions are artificially maintained by alternating a 6-month

period of summer-like long days (14 h of artificial light per day),

with a 6-month period of winter-like short days (10 h of artificial

light per day) [53]. Animals were fed with a standardized

homemade mixture of spice bread, egg, concentrated milk, white

cheese, baby cereals and mixed fresh banana blended all together

with water [44]. The macronutrient composition of the mixture is

50% carbohydrates, 20% proteins, and 30% lipids, with a caloric

value of 4.8 kJ.g21. Water was available ad libitum.

Experimental Designs
Two experiments were conducted to measure adjustments of

the reproductive investment in response to chronic (Experiment 1)

and acute (Experiment 2) food shortage. Experiment 1 consisted in

twelve control females fed ad libitum (AL) and 12 females facing

a 40% chronic caloric restriction (CR60; i.e., their daily food

supply represented 60% of the food mass offered to AL females).

This moderate, long-term caloric restriction lasted over eight

months, from the beginning of the previous winter season to the

weaning of juveniles. In Experiment 2, 36 females were divided

into two groups: 18 control females were fed ad libitum (AL) and 18

females were exposed to an 80% acute caloric restriction (CR20;

i.e., their daily food supply represented 20% of the food mass

offered to AL females). This acute, short-term restriction lasted

35.560.8 days. It started three weeks before the transition to long

days, and was maintained until the first day of oestrus. This acute

food shortage was not extended to the subsequent, more
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energetically demanding, stages of reproduction since it was

judged potentially too invasive with respect to animal welfare.

To control individual food intake, all females were housed

individually in cages (50650650 cm) with branches and two nest-

boxes. Following the transition to long days, female reproductive

state was monitored daily. Females were given the opportunity to

mate by housing them with three males the first day of their

vaginal opening (indicating oestrus). Female grey mouse lemurs

are sexually receptive during a short time window lasting few

hours around oestrus day, meaning that all copulations occur

during one single night per year [48,54]. During mating nights,

food was provided ad libitum but sexual harassment by males

largely prevented females from feeding [5]. Non-mated females

were returned to their individual cage when vagina resealed, on

average 2.660.5 days after oestrus (maximum: 3 days).

Reproductive Traits
The influence of both chronic (Experiment 1) and acute

(Experiment 2) food shortages was tested on the early stages of

reproduction (mating success, fertility), whereas, for ethical reasons

(cf. here before), only the effect of chronic food shortage

(Experiment 1) was tested on the later stages of reproduction

(gestation, reproductive output, lactation, and offspring growth).

Mating success and fertility (Experiments 1–2). The

timing of reproduction was characterized by the date of oestrus,

defined as the number of days separating the onset of the long day

period from the day of vaginal opening. Mating success was

determined by checking for the presence (mating success) or

absence (no mating) of a vaginal plug and/or sperm in the vaginal

tract [54].

Fertility was assessed by estradiol variations at oestrus, measured

in urine samples (0.25–1 ml) collected on the day of oestrus 1–

1.5 hour before night, and stored at 280uC. Since they were

collected by spontaneous urination during handling, urine samples

were only obtained for a subset of females (n = 26 AL, n= 9 CR60

and n= 15 CR20). Urinary 17ß-Estradiol (later referred to as

urinary E2) concentrations were measured on 25 ml of urine in

duplicates using an enzyme-linked immunosorbent assay (DE-

2693, Demeditec, Germany). Percentages of cross-reactivity are:

Estradiol-17ß 100%, estrone 0.2%, estriol 0.05%. The mean intra-

and inter-assay coefficients of variation are 4.7 and 7.8%

respectively. The minimum detectable level in urine was

9.7 pg.mL21. To control for variations in diuresis, the concentra-

tion of creatinine of each sample was measured with an enzyme

immunoassay (8009, MetraHCreatinine, Quidel Corporation, San

Diego, USA). Urinary E2 values were expressed in pg of E2 per

mg of Creatinine (pg.mg21.Cr [49]).

Gestation and reproductive output (Experiment 1). Ma-

ternal allocation to fetal growth was related to gestation length and

litter characteristics. Pregnant females were weighed (60.1 g)

every 15 days from the day of oestrus to 60 days post-oestrus.

Pregnant females were monitored daily around the expected date

of parturition. Gestation length was defined as the difference

between copulation date and parturition date. Fetal growth was

calculated by dividing the litter mass at birth by gestation length.

Gestational effort was calculated as (total litter body mass at birth/

maternal body mass at oestrus)*100. Litter size is defined as the

number of pups per female at birth. Litter sex-ratio was

determined at birth. Reproductive success was defined as the

number of pups weaned and measured 45 days after birth [55].

Lactation and offspring growth (Experiment 1). Mater-

nal energetic investment in offspring growth was quantified

through body mass variations of the mother and pups from the

day of parturition until day 45. Lactating mothers were weighed

every five days. Offspring femur length was measured with

a numerical caliper (60.01 mm, three measures) 5 days after birth

and then every 5 days during 45 days. Body mass was taken

(60.1 g) on the same dates, to measure body condition growth

(i.e., body mass growth after adjusting for body size growth). ‘AL

pups’ and ‘CR pups’ were named after the food supply of their

mother (ad libitum and CR60, respectively).

Data Analyses
Data are reported as mean 6 standard error of the mean

(SEM). All statistical analyses were implemented with R ver. 2.8.1

[56]. Non-parametric tests were applied for non-binary data when

sample sizes were less than 15 observations.

Standard statistical analyses. Urinary concentration of

estradiol (after log-transformation), female body mass at oestrus,

gestation length and gestational effort were analyzed with linear

models. The date of oestrus was analyzed with GLMs fitted with

a Poisson distribution and a log-link function. Mating success was

fitted with a binomial distribution and a logit-link function. In case

of overdispersion, quasi-distribution models were used. Body

masses of gestating, lactating females and of pups were analyzed

with linear mixed models (LMM). The random effects were female

identity to account for the non-independence among repeated

measures when analyzing maternal body mass, and litter identity

to account for the non-independence of offspring within litters

when analyzing pup body mass. These LMMs were built with the

‘lme’ function from the ‘nlme’ package. Model fits were adjusted

for non-independencies of residual data points due to hetero-

scedasticity among treatments or to temporal autocorrelation [57].

Fixed effects were tested with likelihood-ratio tests (or F-tests in

case of overdispersion) among nested models, by deletion from the

final model containing only significant effects. Date of oestrus,

urinary E2 and mating success were analyzed using models

containing data from both Experiments 1 and 2. To adjust data for

potential differences in baseline levels among experiments (i.e.,

different means for AL individuals), we included the effect of

Experiment identity (1 or 2) as a fixed effect in the analysis. Then,

the test of the ‘Food effect’ accounted for the effect of food

shortage (CR individuals, whatever the level of food shortage)

versus no food limitation (AL individuals). In this analytical design,

a difference in the impact of chronic versus acute caloric restriction

was tested through the presence of an interaction between the

Experiment and the Food effects in our model. For later

reproductive stages (Experiment 1 only), we tested for the fixed

effect of food availability only. To analyze how females allocate

energy to gestation and lactation, we adjusted female body mass,

gestation length and gestational effort for the additive, linear effect

of litter size. Sampling date (‘Days effect’) was also introduced as

a fixed effect to model the linear temporal variation in the

response variable, and inter-individual variability in this temporal

response was accounted for by including a random slope

parameter for the Days effect [58]. All interactions among simple

effects (Food, Litter size, Days) were included in the initial models.

Growth and body condition analyses. Growth parameters

for offspring were estimated with 2-parameter Gompertz growth

curves ([59]; fitted with the ‘nlme’ function of package ‘nlme’ [60])

of the form:

Bi~A:e{e{K(i{1)

where Bi was the dimension measured (bone length or body mass)

at age i, A is the asymptotic value, and K is the daily exponential

growth rate. The model also included the fixed effects of the food
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treatment on A and/or K, and a random term for among-

individual variation.

Departure from a simple Gompertz curve would indicate that

the food treatment altered the regularity of growth. To test this, we

fitted a Gompertz model to femur length data for each food

treatment, and extracted the residuals. If the Gompertz growth

curve satisfactorily described the variation in body size with age,

residual size should not be related to age. If the relationship is

significantly non-linear, then growth actually differed from simple,

exponential growth, and irregularities in the pace of growth were

identified graphically (i.e., the predicted value for a given age

differed by more than 2 S.E from 0). This was done with

Generalized Additive Mixed Models (GAMMs; one per food

treatment) of the form: Residual Size , s(Age), where the term s (a

spline function) is a smoothing parameter for the effect of age. If

the number of degrees of freedom of s significantly differs from 1,

then the relationship is non-linear [60]. GAMMs were fitted with

the ‘gamm’ function of the ‘mgcv’ package.

The transition between lactation and weaning is expected to

have a greater influence on the trajectory of offspring body

condition for CR offspring than for AL offspring (at least in

captivity where food is provided ad libitum to juveniles), since

weaned offspring do not depend anymore on their mother to

acquire food. To test for such a ‘catch-up’ effect of weaning on

body condition, we proceeded as follow. To distinguish whether

body mass gain was due to size growth versus to an improving body

condition (i.e., the growing organs and fat stores), we analyzed

non-linear variations of body mass adjusted for body size (indexed

by femur length) with age [61]. This was done by fitting a GAMM

separately for each food treatment, with the form: Log(Body mass)

, Log(Femur) + s(Age). The spline function for the age effect

tested for the existence of a non-linear variation in body condition

Table 1. Effects of food availability on female condition (body mass), fertility (timing of oestrus, urinary estradiol level at oestrus -
noted urinary E2) and mating success.

Reproductive parameter (response variable)

Fixed effect Body mass Mating success Date of oestrus Urinary E2

[g, N = 60] [logit(%), N = 59] [log(day), N = 59] [log(pg.mg21Cr.), N = 52]

Experiment 3.8368.19 2.2160.96 20.4260.14 1.6460.30

F1,57 = 0.77, p = 0.32 x21 = 4.93, p=0.03 F1,57 = 9.00, p,0.01 F1,51 = 71.91, p,1023

Food 225.7668.73 0.3460.82 20.2060.14 0.2760.33

F1,56 = 39.46, p,1023 x21 = 0.59, p = 0.44 F1,56 = 0.41, p = 0.52 F1,50 = 3.82, p = 0.07

Food 6 Experiment 214.13611.20 21.5961.21 0.2660.20 0.1960.41

F1,55 = 1.60, p = 0.21 x21 = 1.80, p = 0.18 F1,55 = 1.84, p = 0.18 F1,49 = 0.22, p = 0.64

‘Experiment’ accounts for potential differences in baseline levels among experiments 1 and 2. ‘Food effect’ accounts for the effect of food shortage (CR individuals,
whatever the level of food shortage) versus no food limitation (AL individuals). ‘Food6Experiment’ interaction accounts for a difference in the impact of chronic versus
acute caloric restriction (see methods for more details). Estimates (mean 6SE) and tests were obtained from linear models for body mass and E2 (after log-
transformation), and with generalized linear models with a log-link (date of oestrus) or a logit-link function (Mating success). Significant differences are indicated in bold.
Urinary E2 values were expressed in pg of E2 per mg of Creatinine.
doi:10.1371/journal.pone.0041477.t001

Table 2. Reproductive parameters of females fed ad libitum (AL) or exposed to either a 40% chronic caloric restriction (CR60) or
a 80% acute caloric restriction (CR20).

Experiment 1 Experiment 2

AL CR60 AL CR20

Female fertility and mating success

Body mass at oestrus (g) 119.6613.6 83.364.6 113.967.3 74.062.8

Female mating success (%) 41.7 50 86.7 65

Date of oestrus (days) 18.161.2 14.861.5 11.961.2 12.761.1

Urinary E2 (pg.mg21 Cr) 149628.9 174.3621.9 864.36181.8 1207.86175.9

Gestation and reproductive output

Gestation length (days) 62.660.8 62.560.9 – –

Litter body mass at birth (g) 17.963.3 12.961.9 – –

Fetal growth (g.day21) 0.2860.05 0.2160.03 – –

Maternal body mass at oestrus (g) 119.6613.6 83.364.6 – –

Gestational effort (%) 12.761.8 14.661.9 – –

Litter size (nb pups at birth) 3.060.4 2.360.4 – –

Litter sex ratio at birth (males per females) 1.460.5 0.460.8 – –

Reproductive success (nb weaned pups) 2.460.4 260.4 – –

doi:10.1371/journal.pone.0041477.t002
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with age. The tipping-points in the growth of body condition were

identified graphically.

Results

Female Fertility and Mating Success
Food restriction effectively reduced the body mass at oestrus

(effect Food, Table 1), with a comparable magnitude in both

experiments (Table 2). However, it did not affect female mating

success (63%), the date of oestrus (13.960.7 days) and the urinary

concentration of estradiol at oestrus (719.66103.3 pg.mg21 Cr.,

Table 1). The summary statistics for these parameters are given in

Table 2. The interaction between food availability and experiment

was not significant for any of the reproductive parameters

examined, suggesting that females respond in similar ways when

they face brief and acute versus chronic and moderate food

shortage.

Gestation and Reproductive Success
The temporal variation of body mass was influenced by food

treatment (effect Days 6 Food; Table 3A, Fig. 1A). AL females

gained weight faster than CR60 females over the course of

gestation (1.160.06 and 0.460.07 g.day21, respectively). The

adjustment of gestation length to litter size depended on food

availability: when food was not limiting, gestation length was

longer when there were more pups (+1.560.6 days.pup21 in AL

females), whereas the relationship was in the opposite direction

when females faced a chronic food shortage (21.560.8 day-

s.pup21 in CR60 females; effect Food 6 Litter size, Table 4,

Fig. S1). Fetal growth did not differ according to food treatment

(0.2460.02 g.day21, Table 4; see Table 4 for more details on litter

body mass at birth). Relative gestational effort increased with litter

size (+4.160.5%.pup21, effect Litter size, Table 4, Fig. S2) and

was significantly influenced by food availability (Table 4): at birth,

AL and CR60 litter mass represented 12.761.8% and 14.661.9%

of the post-partum mass of females respectively (Table 2).

Litter size (2.660.3 pups) did not depend on food availability,

suggesting an absence of adjustment of litter size to food

availability (H=0.93, df = 1, p = 0.30). Litter sex-ratio tended to

differ between food treatments (x21 = 3.18, p = 0.07) with CR60

having more females than males (AL: 1.460.5 males per female;

CR60: 0.460.8).

Lactation and Offspring Growth
During lactation, daily loss in maternal body mass was greater

for AL females (21.760.2 g.day21) than for CR60 females

(21.160.1 g.day21; effect Days 6 Food, Table 3B, Fig. 1B).

The number of pups weaned (2.260.3) was not adjusted according

to food availability (H= 0.61, df = 1, p = 0.43).

Offspring body size increased with age following a classical 2-

parameters Gompertz function (Fig. 2). Perinatally food-restricted

pups grew slower than those whose mother was fed ad libitum: the

exponential growth rate (K) was 0.05860.005 for control pups and

0.03560.003 for CR pups (F1,181 = 11.4, p = 0.004, Fig. 2). The

asymptotic femur length was 34.761.0 mm for AL pups and

Figure 1. Effect of food availability on body mass over (A) gestation and (B) lactation. Body mass (6SEM) of females fed ad libitum (AL)
and calorie restricted females (CR60) (A) during the two months following oestrus, and (B) during the 45 days after birth.
doi:10.1371/journal.pone.0041477.g001

Table 3. Effects of food availability (Food effect: females fed
ad libitum vs. females exposed to a chronic food restriction),
time of gestation (Days effect; numbered from the day of
copulation), and their interaction, on body mass of (a)
gestating and (b) lactating females (N = 11 females from
Experiment 1).

Fixed effect Estimate Test

(a)Gestation

Days 0,7860.07 F1,43 = 122.3, p,1023

Food 240.70611.90 F1,9 = 13.4, p,1022

Food 6Days 20.4060.09 F1,42 = 20.4, p,1023

(a)Lactation

Days 20.9160.16 F1,108 = 124.5, p,1023

Food 235.6768.56 F1,9 = 33.4, p,1023

Litter size 9.0161.68 F1,108 = 39.1, p,1023

Days 6 Food 0.7460.19 F1,105 = 4.1, p=0.04

Days 6 Litter size 20.3260.07 F1,105 = 4.7, p=0.03

Food 6 Litter size 4.9263.15 F1,105 = 1.4, p = 0.23

Days 6 Food 6 Litter size 0.0760.15 F1,104 = 0.0, p = 0.96

For lactation, we also accounted for the effect of litter size. Estimates (mean
6SE) and tests were obtained from linear mixed models. Significant differences
are in bold.
doi:10.1371/journal.pone.0041477.t003
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36.763.4 mm for CR pups (F1,181 = 36.18, p,0.001). In offspring

raised by mothers fed ad libitum, body size growth was satisfactorily

described by the Gompertz curve, as there was no relationship

linking the residuals of femur length to age (spline function,

F1,100 = 0.23, p= 0.63, Fig. S3A). In contrast, the non-linear

dependence of residual femur length on age in CR animals (spline

function, F3.7,100.3 = 3.9, p,0.001) revealed a delayed growth

between 25 and 34 days of age (Fig. S3B), and a return to a normal

growth trajectory afterwards.

Body mass increased with body size, but the relationship linking

both variables differed between treatments (effect log(femur) 6
Food, F1,182 = 5.47, p= 0.02), with body condition of AL pups

gaining 1.7160.07 g per mm of femur growth, whereas CR pups

gained only 1.4760.06 g.mm21. The increase of body condition

(i.e., of body mass adjusted for femur growth) with age was non-

linear (significant spline functions for AL pups, F5,95 = 16.25,

p,0.001, and for CR pups, F6.2,97.8 = 15.48, p,0.001). Body

condition increased slower than femur length until the age of 10–

13 days. Afterward, the positive residuals indicate that AL

individuals maintained a constant, high body mass increase

relative to body size growth (Fig. 3A). CR juveniles followed

a markedly different trajectory: their body mass increased linearly

with body size until 32 days of age, after which they suddenly

initiated a sustained increase in body condition (Fig. 3B). Since

weaning usually takes place around the age of 45 days (Fig. 3A;

[55]), this indicated an early weaning in CR offspring.

Discussion

Our study highlights the reproductive resilience of a small,

heterothermic primate to experimentally-induced unpredictable

food shortages simulating those induced by ‘bad’ years or extreme

climatic events (summarized in Table 5). As predicted, the early

stages of reproduction (from ovulation to birth) appeared to be the

most resilient to food reduction. Food-deprived females, even

under intense calorie restriction, ovulated, mated [5], and became

pregnant at similar rates as control females. Their estrogenization

was independent of food availability (and is also independent of

body mass, [62]). They did not delay nor skip a reproductive cycle,

which is congruent with the fact that reproductive timing is under

strong photoperiodic control [47,63,64]. During gestation,

mothers prioritized resource allocation to fetuses over their own

body condition: they maintained birth litter size and mass constant

despite gaining less mass than control females. During the later

stages of reproduction (from birth to weaning), food-deprived

females fell short of energy and could not ensure a normal

offspring growth, which suggests that their physiological capacity

to optimize energy allocation was not unlimited. Delayed pup

growth before weaning probably resulted from reduced milk

production in food restricted females, which is supported by their

lower daily loss in body mass compared to control females. This

lower resilience of reproductive performances to food shortage fits

the distribution of energetic costs in mammalian reproduction,

which peaks during lactation [1,11]. Furthermore, the chronology

of the female reproductive cycle implies that females might

exhaust their fat reserves prior to lactation. Taken together, our

results show that food deprived females managed to maintain one

of the most significant fitness components, i.e. their number of

surviving offspring at weaning. We are aware that the acceptance

of null hypotheses (i.e. no effect of a treatment) is not a formal

demonstration of the absence of an effect, i.e. reproductive

resilience. Nonetheless, the accumulation of non-significant tests

Table 4. Effect of food availability to mothers (Food effect: females fed ad libitum or exposed to a 40% chronic caloric restriction)
and of litter size on gestation length, fetal growth and gestational effort (N = 11 females from Experiment 1).

Reproductive parameter (response variable)

Fixed effect Gestation length Fetal growth Gestational effort

(days) (g.day21) (%)

Food 20.2461.41 20.0260.02 4.7361.08

F1,8 = 0.03, p = 0.87 F1,8 = 0.81, p = 0.39 F1,8 = 19.06, p,1023

Litter size 20.2160.72 0.0860.01 4.0960.55

F1,8 = 0.06, p = 0.80 F1,8 = 68.65, p,1023 F1,8 = 39.87, p,1023

Food 6 Litter size 23.0061.05 20.0360.02 0.8961.14

F1,7 = 8.13, p=0.02 F1,7 = 2.65, p = 0.15 F1,7 = 0.61, p = 0.46

Estimates (mean 6SE) and tests were obtained from linear mixed models. Significant differences are indicated in bold.
doi:10.1371/journal.pone.0041477.t004

Figure 2. Effect of food availability to lactating mothers on
offspring femur growth. Femur length grew slower and less for pups
reared by calorie restricted females (CR60, open circles, grey line) than
for those reared by females fed ad libitum (AL, black dots, black line).
Lines draw the growth curves estimated per treatment with 2-
parameters Gompertz models.
doi:10.1371/journal.pone.0041477.g002
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on independent variables (Table 1) still conveys information on the

globally weak effect of caloric restriction on reproduction.

The Physiological Bases of Reproductive Resilience
Our results stand in contrast with virtually all previous

experimental work (also conducted at thermoneutrality) on the

impact of food shortage on the reproduction of small mammals

(see Introduction). This difference is likely explained by compen-

satory physiological strategies. First, mouse lemurs have an

exceptional propensity to store fat over prolonged periods to

overcome the long dry season [65]. Fat deposits accumulated

during the non-reproductive period could serve as an additional

energy supply gradually depleted over the breeding season, as

hares do [66]. The gradual shift from a predominantly ‘capital’

(where females rely on their body fat stores) to an ‘income’ (where

females rely on their daily food intake) strategy over the breeding

season [67], should be faster in food restricted females as

demonstrated by their rapid drop in body mass (see also [68]).

Second, food restriction enhances the expression of energy saving

mechanisms, particularly the reduction of thermoregulatory costs

through torpor use [43,44,69]. In non-reproductive mouse lemurs,

a 40% food restriction induces an increase by 7 to 8 hours of

torpor duration [43,44,69]. Torpor has been observed in pregnant

and lactating females of various species [70–74], including mouse

Figure 3. Effect of food availability to lactating mothers on the variation of offspring body condition with age. Non-linear temporal
variation of log (body mass) residuals [adjusted for log (femur length)] of offspring from females fed ad libitum (AL, panel A) and from calorie
restricted females (CR, panel B). The curve describing the age effect (solid line) was extracted from GAMMs. Dashed lines depict 2 standard error
point-wise confidence bands, and black dots provide partial residuals. In panel A., red dashed line points the date at which body condition is above
average, thereby signing a sustained high body mass increase relative to body size growth. In panel B., red dashed lines and bold labels delimit the
period of delayed growth.
doi:10.1371/journal.pone.0041477.g003

Table 5. Summary table of the effects of food shortage on female reproductive parameters in the present study.

Reproductive stage Variable Type of adjustment
Statistical impact of food
shortage Table or Figure

Early Date of oestrus Timing of allocation None Table 1

Exp. 1 - AL/CR60, Exp. 2 - AL/CR20 Urinary estradiol levels at oestrus Allocation None Table 1

Mating success Allocation None Table 1

Early Gestation length Timing of allocation Decreased for large litters Table 3, Fig. S1

Exp. 1 - AL/CR60 Fetal growth Allocation None Table 3

Gestational effort Allocation Increased Table 3, Fig. S2

Litter size at birth Allocation None _

Litter sex-ratio at birth Allocation None (but a trend for more
females)

_

Late Offspring size growth rate Allocation Decreased and delayed Fig. 2, S3

Exp. 1 - AL/CR60 Offspring asymptotic size Allocation Increased Fig. 2

Offspring body condition growth Allocation Delayed, with catch-up growth Fig. 3

Date of weaning Timing of allocation Advanced Fig. 3

Reproductive success (Nb of
weaned pups)

Allocation None _

The non-detection – or positive – statistical effects of food shortage (in bold) are considered as indicative of resilience of the allocation to reproduction to food
shortage. ‘Exp.’ holds for Experiment.
doi:10.1371/journal.pone.0041477.t005
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lemurs [46]. It allows them to re-allocate energy typically spent

into basal metabolic costs to reproductive costs, with a flexible

schedule adjusted to environmental variations [75]. The energetic

efficiency of torpor use may be further enhanced by social

thermoregulation: when related, reproductive females aggregate in

the same nests [76,77] as in reproductive bats [78]. The

physiological responses should be different in free-ranging mouse

lemurs due to competing energetic demands between reproduc-

tion, foraging and thermoregulation. It would thus now be

interesting to complement our experimental results with an

investigation of the extent of phenotypic plasticity in reproductive

traits of wild females across a gradient of environmental pro-

ductivity [78].

The Ecological Significance of Reproductive Resilience
Considering the ecology of mouse lemurs further helps to

understand why they evolved this capacity to compensate food

shortages during early reproductive stages. Female mouse lemurs

invest their ultimate energetic reserves to mate and become

pregnant at the end of the dry season, 3.5 months before the

annual peak in food availability [4,47,48,79]. Hence female

physiology may have been selected to allow mating and gestating

despite minimal energy availability. In contrast, lactation typically

takes place after the first rains when food availability is expected to

be maximal [4,77,80–82]. Yet, the risk of falling short of energy

during the late phase of their reproduction is non-negligible,

because the temporal fluctuations and quality of food are still

prone to strong inter-annual climatic variations, for instance in El

Niño years [40,83]. Consequently, the ability to launch physio-

logical mechanisms of energetic compensation during lactation

may also have been selected for.

Increasing gestational effort to maintain litter size under

uncertain foraging conditions might appear like a risky decision.

But delaying the first (and often unique: [48]) reproductive event

of the year would cause a shift of offspring weaning time, or of the

second births. In both cases, offspring might not be able to grow

and build-up fat stores to face their first dry season. Furthermore,

relying on the chance of having better, future reproductive options

would be particularly risky given that a female reaching maturity

has a short life expectancy (2.3 years: [49]), and that favorable

conditions are poorly predictable [40]. Hence, females would

better grasp any immediate chance of reproducing, whatever the

environmental conditions are, possibly counting on future rains to

enhance offspring condition and refill their own stores (e.g., [82]).

The Extent and Limits of Reproductive Resilience
The resilience of the female reproductive output may not fully

buffer against food shortage. Several direct and indirect costs may

still compromise the inclusive fitness of food deprived females.

First, by reallocating their own energy stores towards offspring,

females might compromise their own survival prospect or future

fecundity [84]. Second, food shortage delayed offspring growth,

because females failed to maintain their energetic balance, or

because some of the compensatory physiological mechanisms,

such as torpor, had negative side-effects on nursing or milk supply

[72,85–88]. Delayed growth can impact offspring fitness in several

ways. First, it can impair survival to the first dry season. Second, it

can lower reproductive performances during the first mating

season [89–91]. Third, there is increasing evidence that early

maternal environment, by contributing in shaping adult pheno-

types, can alter lifetime performances and fitness [92]. Energetic

limitation during ontogeny could alter offspring cognitive

performances (although, in our experiments, these impairments

became undetectable by the age of 10 months with ad libitum

feeding; [93]). Fourth, the offspring of food deprived mothers

underwent a catch-up growth after weaning (as in [94]). Although

such a compensatory growth likely allows the recovery of normal

chances of survival, it may still bear significant lifetime costs

through an accelerated senescence [95]. Eventually, food shortage

could even reduce the inclusive fitness of females. Mouse lemur

females are polyandrous, and mating with multiple partners might

allow them to obtain high quality sperm, and possibly good genes

for their offspring [96]. However, food shortage would prevent

access to these benefits because only females in good condition are

polyandrous [5]. Overall, the relative importance of these costs

and the extent to which they limit the adaptive potential of

reproductive resilience to food shortage remains to be established.

Conclusion
Organisms that evolved under unpredictable, drastically

seasonal environments might have developed flexible reproductive

strategies to cope with predictable intra-annual, as well as less

predictable inter-annual, food shortages. Captive mouse lemurs,

under thermo-neutral conditions, maintain a high gestational

effort despite food shortage to maintain birth timing and litter size,

at the cost of depleting their own reserves and weaning lighter

offspring. We propose that reproductive resilience can be

interpreted into a coherent ecological framework, following the

evolution of energy saving mechanisms and predictions generated

by life-history theory. Progress in understanding the eco-physio-

logical rules driving reproductive decisions in response to

environmental unpredictability now requires gathering experi-

mental data from organisms with diverse life-histories exposed to

a range of energetic constraints (thermoregulatory and foraging

costs). There is a real need to exploit field observations to

document the responses of heterotherms to natural, unpredicted

energetic bottlenecks, for instance by taking advantage of climatic

accidents.

Supporting Information

Figure S1 Effects of food availability and litter size on
gestation length. AL holds for females fed ad libitum (plain lines),

and CR60 for calorie restricted females (dashed lines). Lines

illustrate the predicted values of the final linear model controlling

for experiment identity.

(TIF)

Figure S2 Effect of litter size on gestational effort. AL

holds for females fed ad libitum, and CR60 for calorie restricted

females. The line represents the predicted values of a linear model

controlling for experiment identity.

(TIF)

Figure S3 Effect of food availability to lactating mothers
on the regularity of offspring femur growth. Temporal

variation of femur length residuals (i.e., adjusted for Gompertz

growth) of offspring from females fed ad libitum (AL, panel A.) and

calorie restricted females (CR, panel B.). A value of 0 for the spline

term indicates average residual femur length. The spline curve

describing the smoothed effect of age (solid line) was estimated

using a GAMM. Dashed lines depict 2 standard error point-wise

confidence bands, and black dots provide partial residuals. In

panel B., red dashed lines and bold labels delimit the period of

delayed growth.

(TIF)
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