
Input-Dependent Wave Attenuation in a Critically-
Balanced Model of Cortex
Xiao-Hu Yan, Marcelo O. Magnasco*

Laboratory of Mathematical Physics, Rockefeller University, New York, New York, United States of America

Abstract

A number of studies have suggested that many properties of brain activity can be understood in terms of critical systems.
However it is still not known how the long-range susceptibilities characteristic of criticality arise in the living brain from its
local connectivity structures. Here we prove that a dynamically critically-poised model of cortex acquires an infinitely-long
ranged susceptibility in the absence of input. When an input is presented, the susceptibility attenuates exponentially as a
function of distance, with an increasing spatial attenuation constant (i.e., decreasing range) the larger the input. This is in
direct agreement with recent results that show that waves of local field potential activity evoked by single spikes in primary
visual cortex of cat and macaque attenuate with a characteristic length that also increases with decreasing contrast of the
visual stimulus. A susceptibility that changes spatial range with input strength can be thought to implement an input-
dependent spatial integration: when the input is large, no additional evidence is needed in addition to the local input; when
the input is weak, evidence needs to be integrated over a larger spatial domain to achieve a decision. Such input-strength-
dependent strategies have been demonstrated in visual processing. Our results suggest that input-strength dependent
spatial integration may be a natural feature of a critically-balanced cortical network.
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Introduction

The brain analyses sensory input under a wide range of input

regimes, and employs a wide variety of strategies to extract

information in diverse and challenging environments. A number of

strategies employed in the primary sensors, such as gain control [1]

or light-level-dependent receptive field shapes [2], have been

intensively studied and shown to be optimal computational

strategies to make the best use of the signal-to-noise available

[3]. Less is understood at the level of the primary sensory cortices,

such as strategies that change the scale of spatial integration

according to input strength [4–6]. A recent study has shown [7]

that effective lateral interactions in the primary visual cortex of

cats and monkey appear to be modulated by the contrast level in

the input. At high stimulus contrasts, small amount of lateral

interactions are measured. As the contrast is lowered, waves

propagate further away from their place of origin, until at zero

contrast spontaneous waves of activity appear to decay extremely

slowly with distance to their epicenter. This behavior has been

interpreted as gating of the functional connectivity by the input.

We offer a simple model which quantitatively reproduces this

phenomenologywithminimalassumptions.Thecentralhypothesis is

that interactions between neurons are adjusted in such a way that

excitation and inhibition are precisely balanced, not just globally, but

in local patches. By construction our model is poised at a massive,

high-dimensional Hopf bifurcation. A recent model of self-tuned

critical neural nets has shown how anti-Hebbian interactions lead to

such dynamical states and maintain them, and explained their

relationship to self-organized criticality [8]; in our construction, we

shall forgo the dynamical poising mechanisms and assume the system

is already poised at such a state, to analyze the dynamical

consequences of such poising. The second postulate is that

interactions are local within the two-dimensional surface of our

abstract cortex, and that nonlinearities are local, in fact confined to

individualneurons.Fromthesepostulatesweshall showit follows that

the system possesses infinitely-long-ranged susceptibilities at zero

input, and that the range of the susceptibility, measured by its

exponential decay length, decreases with increasing input.

The ease with which the brain changes tasks and activities,

adapts to new sensory regimes or environments, and with which

different areas communicate has long suggested to researchers that

some features of brain function, and in fact of many biological

systems, can be fruitfully studied in the context of critical systems

[9]. Such systems have hitherto come in two varieties. Statistical

criticality refers to systems related to statistical-mechanics models of

phase transitions at a critical point [10,11]; the system may require

tuning of an external parameter [12] (a temperature or magnetic

field in the original models), or may be self-organized, meaning the

system spontaneously operates in a regime giving rise to wide

(usually power-law) distributions, such as avalanche behavior [13–

15] and long-range susceptibilities [16,17].

A related but different concept, based on the notion of a

dynamical bifurcation, is dynamical criticality, broadly inspired in the

classic works of Gold [18] and Ashby [19]. These systems are

poised at the onset of dynamical instabilities such as a Hopf

bifurcation [20–23], or create an otherwise marginal configuration
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such as a line attractor [24–26]. It again comes in two varieties,

one in which a parameter has to be adjusted to achieve poising,

and self-tuned criticality [21], in which the system spontaneously

poises itself at the dynamical transitions [27] Dynamical criticality

shows a number of the hallmarks of statistical criticality, including

avalanche-like bursts of activity [8]. We show the presence of

another hallmark: an infinitely long-ranged susceptibility. But this

susceptibility does not take an arbitrary form; as we shall show, this

susceptibility emerges in the absence of an input to the system,

while the presence of an input dampens the responses to finite

range. This specific signature relates now dynamical criticality also

to input-dependent spatial integration.

Analysis

For a typical differential equation, the characteristic physical

scales of its solutions are set by constant parameters that can be

read-off directly from the differential equation proper; for example,

the decay lengthscale in a production-diffusion-degradation model

is the square root of the diffusion coefficient divided by the

degradation rate, and is therefore a constant. Even if there was a

nonlinear diffusion or nonlinear degradation, the lengthscale would

still be the quotient of the diffusion coefficient evaluated at low

concentrations over the degradation rate evaluated at low

concentrations. However, when an equation is poised at the onset

of a dynamical transition, the linearized equation around zero does

not fully determine the solution, and higher-order terms need to be

employed. As a result, the parameters in question are set by the

local values of the equation’s terms evaluated at the solution. For

example, consider a system at the onset of a Hopf bifurcation, a

model widely employed to describe cochlear dynamics [20,22,28]:

_zz~iv0z{DzD2zzI(t) ð1Þ

If a periodic input I(t)~Feiv0t at the resonant frequency v0 is

presented, the solution z(t) undergoes a transient until it settles

into the steady-state solution z~F1=3eiv0t.

We now show that the timescale for relaxation of this transient is

not set by the coefficients in the equation, but rather by the

magnitude of the input. Consider the solution

z(t)~(dzF1=3)eiv0t, where d is a distance to the steady-state

solution, i.e. the transient proper [29]. Substituting this ansatz into

the equation above and canceling terms shows d satisfies the

equation

_dd~{3F2=3d ð2Þ

and hence the relaxation timescale is a function of the input

amplitude F rather than depending only on the internal

parameters of the equation. In general, whenever physical scales

such as timescales or lengthscales are sensitive functions of the

input to the system, and vary with varying input, we may suspect

the system to be poised near a dynamical instability conferring on

the solution a great deal of sensitivity to the input’s characteristics.

In our abstract model neurons interact with one another

through a matrix Aij that is assumed to have purely imaginary

eigenvalues, and all other interactions are mediated by higher-

order terms in the normal form. The equation is

_xxi~
X

j

Aijxj{x3
i zIi(t) ð3Þ

where I(t) is an input. A fuller treatment would include also an

internal noise term j(t) but we shall not use it here.

The simplest such matrix Aij is shown in Figure 1: neurons are

arranged on the sites of a chessboard and interact with their 4

nearest neighbors; neurons are declared excitatory if they are on

the white squares of the chessboard, inhibitory in the black

squares, and the strength of all excitation and inhibition is

identical. The interaction matrix Aij therefore is antisymmetric

and has purely imaginary eigenvalues.

It is manifest that equation (3) is a high-dimensional version of

equation (1). However care should be exercised in noting that eq

(3), unlike (1) is not a normal form for the Hopf bifurcation,

because the structure of the nonlinearities in this equation is not

generic for a high-dimensional space: the nonlinear terms are local

to each of the neurons and do not couple the internal states of

different neurons. While we consider this assumption to be

reasonable in our context (we do not expect faraway neurons to

interact strongly by means other than through their synaptic

connections), it is mathematically quite strong.

Results

We shall now show that equation (3), when equipped with the

matrix described in Fig 1, has solutions whose behavior is similar

to that experimentally shown in [7] for spike-triggered LFPs in cat

and monkey visual cortex.

In the absence of input, eq (3) supports propagating waves

which attenuate algebraically, as shown in Figure 2 by direct

numerical integration of Eq. (3). This algebraic decay is central to

our argument, and important in tying together the dynamically

critical models with the more widely studied self-organized critical

models, so we shall discuss its origin in a bit more detail.

Preserving only the linear part of (3) and iterating it twice to obtain

_xx~A2x, we note the matrix A2 decouples the excitatory and

inhibitory sublattices. Concentrating on the excitatory sites, the

matrix couples each location in space to the nearby excitatory site

in a pattern

0 � {1 � 0

{2 � {2 �
{1 � {4 � {1

{2 � {2 �
0 � {1 � 0

0
BBBBBB@

1
CCCCCCA

where the {4 is the self-coupling to the center site. These

connections can be seen as a discrete implementation of

{+2{16, where +2 is the Laplacian operator, and suggests we

should take a passage to the continuum limit. We shall need to

rename our original activities x as w, to reuse (in an admitted

abuse of notation) the x as our spatial variables now, since we need

to make space explicit to be able to use +2. Thus we map

xi(t)?w(x,t) Taking the standard passage to the limit entails

taking smaller and smaller lattices, of lattice width d, while scaling

the original synaptic strength s so that the quotient c~sd remains

finite, and leads to the equation

L2
t wz4c2+2wz16w~I(t) ð4Þ

where c has units of space over time, i.e. a speed. This equation, a

Helmholtz equation in euclidean space-time [30], has as a Green

function
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Figure 1. The simplest connectivity of a critically-balanced model of cortex. Black units are inhibitory, white units are excitatory, and all
synaptic strengths are identical. Considering a lattice of edge E, and the site at column c and row c gets index i~czEr, then the matrix is

Aij~({)p(i)s(dii+1zdii+E ) where p(i) is the parity of site i; assuming i is even, p(i)~(i mod E{int(i=E)).
doi:10.1371/journal.pone.0041419.g001

Figure 2. Numerical evolution of equation (1). The activity in a 1D slice of the 2D array (the central row) is displayed. Horizontal axis, time;
vertical axis, horizontal coordinate in the array. An initial perturbation at time 0 expands outwards at asymptotically constant speed, with
characteristic ripples looking like a ‘‘wave’’ which attenuates algebraically as it goes out.
doi:10.1371/journal.pone.0041419.g002
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G(y)~
eikDyD

DyD
y~

x

2c
,t

� �

which indeed looks like the propagating waves shown in Figure 2.

Care should be taken in referring to these Green functions as waves,

because they are not the solution of a wave equation –– the equation above is

elliptic, not hyperbolic. Pictorially, the equation describes the

eigenmodes of a 3D membrane whose coordinates are space (2D)

and time (1D). If we look at the solution for one given time, one

observes a cut through this shape, which displays peaks and valleys. As

one moves forward in time, the valleys and peaks appear to be

moving, in what seems to be wavelike fashion. To some extent it is

profitable to describe these motions in terms of waves, even though

from a strict perspective they are not, because they are not the solution

to a wave equation. From an alternative viewpoint we can see the

matrix in equation (3), (or alternative the differential operator in

equation (5)) has eigenmodes whose spatial frequency k is related to

the imaginary component of the corresponding eigenvalue (its

temporal frequency v) through an equation of the form

c2k2zv2~1, called the dispersion relation of the system. Thus v and

k lie on a circle and are inversely related to one another, rather than

lying on a line (directly related to one another) which is the dispersion

relation of a wave equation. While the system does show a dispersion

relation, and to that extent we can describe its behavior as waves, its

dispersion relation goes against the normal one for wave equations,

with increasing spatial frequency for decreasing temporal frequency.

Returning to the case in which there is a nonzero input, we need

to distinguish between the ongoing activity x(t) and the extra

activity xzdx that would be observed elsewhere due to a

perturbation at a given site. In the experiment described in [7] the

spike-triggered averaging of the LFP is done so as to extract the

extra activity that follows a given neural spike at a particular

neuron. Since our model is continuous and not formulated in

terms of spikes, we shall use a perturbative formulation as the

analysis most close in spirit to that experimental measurement. A

small perturbation dx(t) riding on top of a pre-existing activity

level x(t) (i.e. a Floquet-Lyapounov analysis [29]) satisfies

L(xzdx)i

Lt
~
X

j

Aij(xzdx)j{(xzdx)3
i zI(t)

which to lowest order in dx will see the expectation value of x2
i as a

damping coefficient (in time):

d _xx&
X

j

Aijdxj{3Sx2
i Tdxi ð5Þ

where the S � � � T denote an average or expectation value. As the

amplitude of stimulation is increased we observe that the waves

attenuate exponentially with distance, rather than algebraically,

because the variance of the ongoing activity Sx2
i T enters the

equation for the perturbation as an effective damping coefficient.

Exactly how the variance Sx2
i T of the response changes with the

input’s amplitude will be dependent on the spatiotemporal

structure of the input Ii(t); in what follows we shall assume the

input to be (or have properties essentially equivalent to)

spatiotemporal Gaussian white noise of amplitude [:

Ii(t) ~ [ gi(t) Sgi(t)gj(s)T~dijd(t{s)

and we will assume that the perturbation [ is confined, at time

zero, to a single site i0: dx(t~0)~[0dii0
. Henceforth we shall

describe the wavelike properties of dx, the perturbation riding on

top of the ongoing activity xi(t) caused by Ii(t)

At short times dx initially spreads just like in Figure 2. As the

‘‘wave’’ propagates outwards at constant speed, the temporal

damping of dx in equation (4) manifests as a spatial damping, so

that at large distances the ‘‘wave’’ is exponentially attenuated with

distance because it takes a time O(distance) to reach there. This

effect is shown in Figure 3, where numerical solutions are shown of

the perturbation dx riding on top of a solution x(t) in response to

input of specified amplitude. More specifically, Figure 3a shows

the maximum value m(d) that dx acquires at any given time for

times tw0, for a given specified distance d from the epicenter of

the perturbation as a function of distance d:

m(d)~ max
tw0

max
Di{i0 D~d

Ddxi(t)D

and Figure 3b shows the range l, the reciprocal of the decay

constant b of m(d), as a function of the input’s strength [:

m(d)& exp ({bd): exp ({
d

l
) d&1

Discussion

Recent work [7] addressed an ancient dispute in visual

neurophysiology: whether visual cortex is primarily driven by its

inputs, or whether it is primarily driven by lateral recurrent

interactions within cortex, with a relatively small nudge from the

inputs. In support of the first view, substantial work from many

labs had shown that the responses to visual stimulation in cortex

do not change substantially if cortex is inactivated––if it is

inhibited from firing through pharmacological or electromagnetic

means. Supporting the second view, similarly substantial work

from many labs had shown that the strength of intracortical

inhibition and excitation is much larger than the overall input

from thalamus––it is the nearly perfect balance between excitation

and inhibition which permits thalamus to sway activity one way or

the other; in fact, in the absence of stimulation cortex activates

spontaneously in patterns which agree with those that would have

been evoked by pieces of imagery––it literally hallucinates little

lines [31]. The results in [7] show that both views are correct at

different strengths of the driving input, in this case the visual

contrast: at high contrast there is little lateral interaction, while at

low or null contrast lateral interactions dominate.

We have demonstrated an extremely compact model reproduc-

ing the results of [7]. Our model has but one strong assumption:

precise balancing of excitation and inhibition. It offers over the

horizontal connection gating model three advantages. First, there

is no gating of connectivity at all in our model, as the model has

constant parameters without nonlinear interactions; all nonlinea-

rities are strictly local. Gating could be tricky to implement

because it cannot be a function of the output of cortex, but rather

only of its input, requiring thus that thalamic input to cortex be

duplicated: one copy to drive the cortical neurons, the other copy

to gate the lateral connections between neurons. Second, the

attenuation length is naturally a graded function of the magnitude

of the input. In a gated connectivity model it would be extremely
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hard to arrange the gating to be such a graded function over a

wide range of input contrasts. Third, the attenuation length, in the

absence of input, is naturally infinite because the balanced cortex

produces algebraically-decaying waves. In a functional gating

scenario, signal propagation in the absence of input still could

either grow or shrink exponentially; to have an algebraic

propagation already presupposes balancing internal parameters

precisely, which is mostly our only assumption.

Future work on this model should address whether the predicted

propagation speed of the outward wave matches the physiolog-

ically observed 0:3m=s, even when taking into account physio-

logically-relevant synaptic delays. Understanding this will require

further elucidation of whether such waves ‘‘take shortcuts’’

through long-range connections, and what their effective speed

is when propagating through a tissue with a large spread in

connectivity distances. If the mechanism we propose indeed

underlies changing integration scale with input intensity, then

further work should also attempt to elucidate functional depen-

dences of the local activity level (and thus the attenuation length)

with the input, and relate these predictions, measured in distances

on the cortex, to the appropriate sensoritopic scales, such as

visuotopic units.
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