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Abstract

The labyrinth is the highly vascularized part of the rodent placenta that allows efficient transfer of gases, nutrients, wastes,
and other molecules between the maternal and embryonic circulations. These two blood compartments are separated by
blastocyst-derived trophoblasts and endothelial cells with an intervening basement membrane that contains laminin and
other typical basement membrane components. Previously we reported that the labyrinth of laminin a5 knockout (LMa52/
2) embryos exhibits reduced vascularization and detachment of endothelial cells from the basement membrane, which
normally contains LMa5. As very little is known about the origin of this vascular basement membrane, we investigated the
cellular requirements for LMa5 expression in the mouse placental labyrinth. By fluorescence-activated cell sorting and RT-
PCR we confirmed that both endothelial cells and trophoblasts normally express LMa5. Using Cre-loxP technology and
doxycycline-mediated gene expression, we generated genetically mosaic placentas in which either the trophoblasts or the
endothelial cells, but not both, expressed LMa5. We found that the overall architecture of the labyrinth was normal as long
as one of these two cell types expressed LMa5, even if it was transgene-derived human laminin a5. These results suggest
that laminin trimers containing a5 that are synthesized and secreted by endothelium or by trophoblasts are capable of
integrating into the basement membrane and promoting normal vascularization of the placenta. Additional studies showed
that endothelium-expressed human LMa5 can support vascularization of the kidney glomerulus, consistent with previous
studies using a tissue grafting approach.
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Introduction

Basement membranes (BMs) are thin sheets of specially

organized extracellular matrix proteins associated with many

different cell types, including all endothelial and epithelial cells.

BMs promote proliferation and survival, provide signals, path-

ways, and barriers for cell migration, and are responsible for

establishing and maintaining compartmentalization within tissues.

All BMs contain four major classes of proteins: laminin (abc
heterotrimers), collagen IV (a chain heterotrimers), nidogen, and

heparan sulfate proteoglycan (both monomers).

Because there are numerous protein isoforms within these

classes distributed in BMs in distinct cell- and tissue-specific

fashions, all BMs are not alike. In many cases, differences in BM

composition have been shown to contribute to their functional

specificities. For example, the synaptic cleft BM at neuromuscular

junctions contains the laminin a2b2c1 (LM-221), laminin a4b2c1
(LM-421) and laminin a5b2c1 (LM-521) heterotrimers, whereas

the extrasynaptic BM contains primarily laminin a2b1c1 (LM-

211) [1]. In knockout mice lacking LMb2, the synaptic laminin

trimers cannot assemble, resulting in severe defects in differenti-

ation, structure, and function of the neuromuscular synapse,

despite substitution by other laminin trimers [1,2].

Each of the five mammalian laminin a chains contains a large

COOH-terminal laminin globular (LG) domain that harbors

binding sites for cell surface receptors, such as integrins and

dystroglycan [3]. Different affinities for different receptors likely

contributes a significant degree of specificity to laminin trimers

and thus to BM function. The LMa5 chain is widely expressed in

mouse tissues [4]. Mutation of Lama5 (LMa5) in mice causes

a diverse array of complex developmental defects and perinatal

lethality [5–13]. One of the best-characterized defects is in the

formation of kidney glomeruli, highly vascularized structures

required for filtration of the blood. In the absence of LMa5, which
is expressed by both glomerular visceral epithelial cells (podocytes)

and endothelial cells [14], the glomerular basement membrane

(GBM) between them breaks down, and vascularization fails [6].

Another striking defect observed in the absence of LMa5 is in the

labyrinth of the placenta. The placental labyrinth is the highly

vascularized part of the placenta where the bidirectional transfer
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of gases, nutrients, wastes, and other molecules between the

maternal and embryonic circulations occurs [15]. In the

hemochorial mouse placenta, the barrier between the maternal

blood and the embryonic vasculature is formed by three layers of

embryo-derived trophoblasts, an endothelial BM, and an embryo-

derived endothelium (Fig. 1) [16]. The labyrinth is grossly

undervascularized in LMa5 null mutants, and the vessels that do

form are larger caliber compared to control. In addition, fetal

placental endothelial cells lose adhesion to the BM, which

normally contains LMa5. Together with the fact that LMa52/

2 embryos are smaller than controls after E14.5, we previously

suggested that the abnormalities in the labyrinth lead to placental

insufficiency [5]. LMa5 is also a component of BMs in human

placenta [17], where it likely plays a similarly important role in

placentation, although no defects in human LMa5 (hLMa5)
function have yet been reported.

Here we investigated the cellular requirement for LMa5
expression in the mouse placental labyrinth using conditional

and constitutive LMa5 mutant alleles, as well as Cre, Cre-activated

reverse tetracycline transactivator (rtTA), and hLMa5 transgenes.

Our results suggest that both trophoblasts and endothelial cells

normally contribute LMa5-containing trimers to the endothelial

BM, and that expression by either cell is sufficient for normal

placentation. In addition, we confirmed previous tissue grafting

studies [18] showing that endothelial LMa5 expression is sufficient

for vascularization of kidney glomeruli.

Results

Expression of Laminin Chains in the Placenta
Although some classes of endothelial cells have been shown to

express LMa5, not all do so [19]. To directly investigate whether

labyrinth-derived endothelial cells and/or trophoblasts normally

express LMa5 and other laminin chains found in the placenta

[20], we used fluorescence activated cell sorting (FACS) to isolate

endothelial (CD31-positive) and non-endothelial (CD31-negative)

cell populations from the normal placental labyrinth (schematized

in Fig. 1) after its dissociation into single cells (Fig. 2A). RNAs were

prepared from these isolated cells and subjected to quantitative

real-time RT-PCR for laminin a5, a1, b1, b2, and GAPDH

expression (Fig. 2B,C). The results showed that both populations

of cells express each of these laminin chains, but that trophoblasts

(CD31-negative cells) express more laminin a1 and b1 than a5
and b2, whereas endothelial (CD31-positive) cells express more

laminin a5 and b1 than a1 and b2. The fact that LMb22/2

embryos have normal placental labyrinths and are indistinguish-

able from control littermates at birth (JHM, unpublished studies

and [21]) suggests that the b1-containing trimers are sufficient for

promoting normal placentation. Although these studies did not

address the origin of laminin a2 and a4 in the labyrinth [20], no

placental defects have been reported in the respective knockout

mice [22–24].

Consequences of Cell Type-Restricted Expression of
LMa5 in the Labyrinth
To determine the cellular requirements for LMa5 expression in

the mouse placental labyrinth, we used Cre/LoxP and doxycy-

cline-inducible systems to generate mosaic placentas in which

either the trophoblasts or the endothelial cells, but not both, were

capable of expressing LMa5. We used two distinct approaches.

First, to generate placentas with normal trophoblasts and LMa5
null endothelial cells, we took advantage of the selective expression

pattern of the Sox2Cre transgene [25]. When this gene is

transmitted by the sire, it is expressed in the epiblast (Fig. 3A),

which gives rise to the embryo proper and to the allantois, from

which originate the extraembryonic endothelial cells of the

labyrinth [26]; however, Sox2Cre is not expressed in the

trophectoderm (Fig. 3B), which gives rise to the trophoblasts.

We mated LMa5+/2;Sox2Cre males with LMa5fl females to

generate LMa5fl/2;Sox2Cre (mutant) embryos and littermate

controls. At E14.5, mutant embryos (at least five from different

litters were examined in detail) showed the typical LMa5 null

embryonic phenotype—partially penetrant exencephaly and

syndactyly (Fig. 3E9; compare to E) associated with a lack of

LMa5 (Fig. 3C9,D9; compare to C,D), although BMs were

generally positive when immuno-stained for nidogen (Fig. 3D9). In

contrast, we detected abundant LMa5 protein in placental

labyrinth BMs, and the overall architecture of the labyrinth was

similar to that of control littermates (Fig. 3F–H, F9–H9); there was

an extensive network of PECAM-positive small caliber vessels, and

most maternal blood spaces, which are lined by cytokeratin 8-

positive trophoblasts, were juxtaposed to embryonic vessels with

BMs that stained for LM-111. These results suggest that laminin

trimers containing a5 that are synthesized and secreted by

trophoblasts are capable of integrating into the BM and promoting

Figure 1. Schematic diagram of the barrier between the
maternal and embryonic vasculatures within the placental
labyrinth. The placental endothelial basement membrane, which
normally contains LMa5, lies between the fetal endothelium and the
trilaminar trophoblast cellular structure. Mononuclear trophoblasts line
the maternal blood spaces, whereas the other two trophoblast layers
are syncytial due to cell-cell fusion. Maternal red blood cells (RBCs) lack
nuclei, whereas fetal RBCs retain nuclei until late gestation.
doi:10.1371/journal.pone.0041348.g001
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normal vascularization of the placenta, but they are not sufficient

to rescue LMa52/2 phenotypes within the embryo.

In the second approach, we utilized a combination of transgenes

and mutations to perform the converse experiment. We used the

endothelial cell-specific Tie2Cre transgene to activate expression

of the reverse tetracycline transactivator (rtTA), which had been

knocked into the Rosa26 locus preceded by a floxed STOP

(genotype RO26TA). In the presence of doxycycline, this rtTA

drives expression of the TetO7-regulated hLMa5 transgene

(Fig. 4A). When these three loci are present in genetically

LMa52/2 embryos exposed to doxycycline, all endothelial cells

should express hLMa5, and there is no other source of a5 (either

mouse or human).

Seven embryos of the appropriate genotypes from four litters,

along with LMa52/2 and normal control embryos, were

identified by PCR and studied. At E14.5, LMa52/2;RO26TA;hL-

Ma5;TIE2Cre embryos showed the typical LMa5 null phenotype

(Fig. 4D; compare to D9) and lacked mouse LMa5 (Fig. 4B,E;

compare to B9,E9). As expected from the approach, hLMa5 was

detected in embryonic endothelial BMs (Fig. 4C; compare to C9).

Human LMa5 was also present in placental labyrinth BMs

(Fig. 4F; compare to F9), and this resulted in apparently normal

placentation, as determined from the pattern of LM-111 staining

(Fig. 4G and Fig. 5C,C9,F,F9), which was similar to the control

(Fig. 5A,A9,D,D9). However, this was in stark contrast to the LM-

111 staining pattern in the LMa5 null placenta that did not express

hLMa5 (Fig. 4G9 and Fig. 5B,B9,E,E9). The apparently normal

placental labyrinth of transgenic LMa52/2 embryos was

associated with a larger but not quite normal embryo size at

E18.5 (Fig. 6); this could be due to rescue of placental insufficiency,

but might also stem from an overall healthier vasculature within

the embryo itself. Nevertheless, with the exceptions noted below,

the typical developmental defects of LMa52/2 embryos were still

present, including syndactyly, partially penetrant exencephaly

(Figs. 4D, 6), and an absent pleural basement membrane in the

lung (not shown). Together, these results suggest that endothelium-

derived LMa5 can support normal placentation. And combined

with the RT-PCR data (Fig. 2), results from the mosaic labyrinth

studies suggest that trophoblasts make LM-111 and LM-511,

whereas endothelial cells make primarily LM-511 and LM-521.

Consequences of Endothelium-Specific Expression of
LMa5 in the Kidney Glomerulus
We have previously shown that vascularization of the kidney

glomerulus is defective in LMa5 null embryos due to breakdown of

the GBM, disorganization of podocytes, and failure of endothelial

and mesangial cells to establish glomerular capillaries [6].

However, when embryonic LMa52/2 kidneys are grafted into

newborn WT kidneys, invading WT endothelial cells can supply

LMa5-containing trimers and rescue glomerular vascularization

[18]. Here we studied glomerulogenesis at E14.5 (not shown) and

E18.5 in several LMa5 null embryos with endothelial cell-specific

expression of hLMa5 (Fig. 7A9–C9) as compared to controls with

hLMa5 expression (Fig. 7A–C) and LMa52/2 embryos without

transgene expression (Fig. 7A0–C0). Similar to the grafted LMa5
null kidneys infiltrated by wild-type endothelial cells [18], it

appears that glomerular endothelial cell expression of hLMa5
(Fig. 7A9) was sufficient to rescue glomerulogenesis, based upon

the proper localization of PECAM-positive endothelial cells

adjacent to WT1-positive podocytes in the control and ‘‘rescued’’

glomeruli (Fig. 7C,C9); this clearly contrasts with the LMa52/2

kidney’s avascular ‘‘glomeruli’’ (Fig. 7C0). Rescue of glomerulo-

genesis was associated with deposition (albeit weak) of hLMa5 in

the GBM (Fig. 7A,A9). Finally, transmission electron microscopic

analysis of the glomerular capillary wall revealed that endothelial

cell-derived hLMa5 promoted maintenance of GBM architecture,

successful glomerular vascularization, and even podocyte foot

process formation, all of which were comparable to the control

Figure 2. LMa5 is expressed in both endothelial cells and
trophoblasts in the normal placenta. (A) Fluorescence-activated
cell sorting was performed on dissociated E18.5 wild-type labyrinth cells
after staining with a phycoerythrin (PE)-conjugated CD31/PECAM
antibody. CD31+ (endothelial cell) and CD312 (trophoblast; indicated
as baseline) populations were collected. (B) RT-PCR using RNA prepared
from the two cell types showed that LMa5 was expressed in both: Lane
1, DNA marker; 2 and 3, LMa5 in CD31(2) and (+) cells, respectively; 4,
negative control; 5 and 6, GAPDH in CD31(2) and (+) cells, respectively.
(C) RNA was subjected to real time RT-PCR to quantitate the levels of
laminin a1 (lama1), a5 (lama5), b1 (lamb1), and b2 (lamb2) mRNAs. Error
bars represent standard deviations.
doi:10.1371/journal.pone.0041348.g002

Laminin a5 and Endothelial Cells
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(Fig. 7D,E). These results lend support to our previous conclusions

regarding the ability of endothelial-cell derived LMa5 to promote

glomerulogenesis when podocytes are unable to express it [18],

although the glomerular filter eventually becomes leaky to plasma

albumin in the absence of podocyte LMa5 expression [27].

Discussion

The murine placental labyrinth is a highly vascularized organ

tailored for the transfer and transport of nutrients, wastes, and

gases between mother and embryo [15]. In humans, placental

insufficiency and the resulting intrauterine growth restriction are

important health problems that can develop due to defects in the

structure or function of the placental vasculature [28]. Although

the placentas of mice and humans exhibit many differences [29],

one similarity is that both the mouse labyrinth and the human

chorionic villi, the major sites of materno-fetal exchange, are

enriched in BMs, due in part to the density of fetal blood vessels.

We previously showed that mice lacking LMa5 exhibit

dramatically impaired vascularization of the placental labyrinth

[5]; there are many maternal blood spaces but fewer fetal blood

vessels juxtaposed to them than in controls (ref. [20] and Figs. 3

and 5). Thus, there is no apparent defect in the ability of LMa52/

2 trophoblasts to invade the deciduum and form maternal blood

spaces through branching morphogenesis. However, we cannot

rule out a contribution of maternal/decidual LMa5 to promoting

this invasion.

The placental vasculature is attenuated in the absence of LMa5,
despite the fact that the laminin a1, a2, and a4 chains are all

present in the BM [20]. In contrast, global mutation of LMa2 and

LMa4 has not been reported to cause placental defects [22,23],

suggesting that LMa5 has a non-redundant role in placentation.

Moreover, structure-function analysis of the LMa5 COOH-

terminal LG domain, which has five segments, revealed that the

LG1–2 segment is required for promoting normal placental

vascularization, and that the analogous LG1–2 segments of LMa1
could not compensate [20]. Interestingly, one of the first mono-

Figure 3. Mosaic placental labyrinths containing wild-type trophoblasts and LMa52/2 endothelial cells show LMa5 deposition and
normal vascularization. (A, B) Schematic diagrams of the strategy for conditional mouse LMa5mutation. Using the Cre/loxP system, we generated
LMa5flox/ko; Sox2Cre embryos. Sox2cre, when inherited from a male, is active in epiblast, but not in trophectoderm. Thus, epiblast-derived cells (A),
which include the embryo proper as well as extraembryonic endothelial cells, are not able to synthesize LMa5, but trophoblasts, which derive from
trophectoderm (B), can. (C–H; C9–H9) Analysis of LMa5 expression and tissue architecture in control (top rows) and LMa5flox/ko; Sox2cre mutant
(bottom rows) embryos. LMa5 was not expressed in the kidney of LMa5flox/ko; Sox2cre embryos (C9; counterstained with anti-nidogen in D9; compare
with control, C and D), which show developmental abnormalities typical of LMa52/2 embryos (E9; arrows indicate exencephaly and syndactyly) not
seen in control (E). In contrast, LMa5 was present in the placental labyrinth of LMa5flox/ko; Sox2cre embryos (F9) and of control (F), and placental LM-
111 and PECAM expression and localization were similar to those observed in control LMa5+/2 placenta (G–H, G9–H9). Cytokeratin 8 (CK8) was used
to identify trophoblasts (G, G9).
doi:10.1371/journal.pone.0041348.g003

Laminin a5 and Endothelial Cells
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clonal antibodies known to be made to hLMa5, clone 4C7, was

generated by immunizing mice with laminins purified from human

placenta [30]. Directed efforts aimed at defining the laminin

composition of human placental villous BMs revealed that as in

mouse, laminin a1, a2, and a5 are present; LMa4 was not

investigated [31]. The possibility therefore exists that, as in mouse,

LMa5 plays a critical role in vascularization of the human

placenta.

Here we focused on investigating the cellular requirements for

LMa5 expression in the mouse labyrinth using mutant LMa5

Figure 4. Mosaic placental labyrinths containing LMa52/2 trophoblasts and hLMa5-expressing endothelial cells show hLMa5
deposition and normal vascularization. (A) Schematic diagram of the strategy for forcing expression of hLMa5 in endothelial cells on the
LMa52/2 background. Cre recombinase driven by the Tie2 promoter removes a floxed STOP located between the Rosa26 promoter and the reverse
tetracycline transactivator (rtTA). rtTA binds and activates the tetracycline-inducible TetO7 promoter in the presence of doxycycline, thereby driving
transcription of the hLMa5 cDNA in endothelial cells. (B–G) LMa52/2;ROSA26TA;hLMa5;Tie2cre embryos (top panels) were compared with LMa52/2
embryos (bottom panels). Mouse LMa5 was undetectable in kidney (B, B9) or placenta (E, E9). Human LMa5 was detected in both kidney and placental
vasculatures of LMa52/2;ROSA26TA;hLMa5;Tie2cre embryos (C, F) but not of LMa52/2 embryos (C9,F9), both of which show the typical LMa5 null
phenotype (D, D9). Expression of hLMa5 in endothelial cells was associated with a normalized placental labyrinth architecture, demonstrated by the
LM-111 antibody staining pattern (compare G and G9).
doi:10.1371/journal.pone.0041348.g004

Figure 5. Analysis of placental labyrinth vasculature at E14.5. Frozen sections of placenta were stained with antibodies to LM-111 to label all
basement membranes, to cytokeratin 8 (CK8) to label trophoblasts (green in A–C, A9–C9), and to PECAM to label endothelial cells (green in D–F, D9–
F9). The reduced vascular complexity in the LMa52/2 labyrinth (B, E) was rescued and made similar to normal (A, D) by hLMa5 secretion from
LMa52/2;ROSA26TA;hLMa5;Tie2cre endothelial cells (C, F) exposed to doxycycline.
doi:10.1371/journal.pone.0041348.g005

Laminin a5 and Endothelial Cells
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alleles and various transgenes to generate mosaic placentas.

Moreover, the strategy we used also facilitated studies of mosaic

kidney glomeruli. In placenta we found that expression of LMa5

either in trophoblast or in endothelium was sufficient for

apparently normal vascularization, despite the fact that a5 is

normally expressed in both cell types. Similar studies in kidney

Figure 6. Phenotype of various LMa5 mutant and control embryos at E18.5. Genotypes are indicated. The mother was fed doxycycline
beginning at E0.5. Endothelial expression of hLMa5 in LMa52/2;RO26Ta;hLMa5;Tie2cre embryos resulted in a larger (though still not quite normal)
embryo size compared to the nontransgenic LMa52/2 embryo.
doi:10.1371/journal.pone.0041348.g006

Figure 7. Expression of hLMa5 in glomerular endothelial cells rescues glomerular vascularization in LMa52/2 kidney. (A,B) Analysis of
human (A) and mouse (B) LMa5 expression (green) relative to WT1 (red), which stains podocyte nuclei at E18.5. Human LMa5 is visible primarily in the
glomeruli (open arrows) and in arterioles in embryos carrying the transgenes (A,A9) but is absent from the mutant lacking the transgenes (A0; open
arrowheads indicate glomeruli). (C) Status of glomerular vascularization was revealed by PECAM (green) and WT1 (red) double staining. PECAM-
positive endothelial cells were properly localized inside glomeruli when either mouse or hLMa5 or both were present in the GBM (C, C9), but
glomerulogenesis failed in the absence of LMa5 (C0). (D,E) Transmission electron microscopic analysis of glomeruli in control (D) and rescued mutant
(E) kidney reveals that both have an intact GBM (arrows), capillaries containing red blood cells (RBCs), and podocytes with foot processes
(arrowheads). Bars in D and E are 500 nm.
doi:10.1371/journal.pone.0041348.g007

Laminin a5 and Endothelial Cells
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glomeruli showed that expression of LMa5 solely in endothelial

cells was sufficient to rescue glomerulogenesis in LMa52/2

embryos, as predicted from our previous grafting studies [18].

Thus, endothelial LMa5 expression is sufficient for function of two

different vascular BMs that are normally co-synthesized by

a flanking cell of a different type—trophoblasts in the labyrinth

(Figs. 2 and 3) and podocytes in the glomerulus [14,27]. In

contrast, other defects that we have previously studied in detail in

Lama52/2 embryos, including defects in neural tube closure, digit

septation, and lung lobe septation, were not ameliorated by forced

endothelial cell-specific expression of LMa5. This was expected, as
the presumed mechanisms leading to these defects do not involve

endothelial basement membranes [5,7].

What is the function of LMa5 in the placental labyrinth?

Histopathology suggests there is a defect both in branching

morphogenesis/angiogenesis of fetal vessels and in adhesion of

fetal endothelial cells to the BM when LMa5 is absent [5]. These

defects may be mechanistically related; the impaired adhesion

suggests that endothelial cell migration should be inhibited due to

reduced affinity for the BM, which endothelial cells likely use as

a pathway for migration during angiogenesis. Endothelial cells

originating from the allantois may bear a receptor with high

affinity for LMa5, or LMa5 may bind and concentrate within the

BM an adhesive or trophic factor required for promoting efficient

angiogenesis. In any event, inefficient angiogenesis during the

critical period of placentation leads to the observed defects and

likely results in placental insufficiency. Further investigation into

the mechanisms involved could lead to a better understanding of

human placentation and of the regulation of angiogenesis in

diverse tissues.

One important outcome of these studies with implications

beyond the placenta and kidney is that the rescue of a deficiency in

a BM need not always target all the cells that normally contribute

to its synthesis. Given the accessibility of endothelial cells to

potential nucleic acid, viral, or cell-based therapies via the

bloodstream, they may be especially amenable to treatments that

can influence the composition of vascular BMs throughout the

body, whether in normal, diseased, or in cancerous tissue. And

finally, our results represent another example of the cross-species

compatibility of BM protein orthologs, suggesting that non-human

BM proteins would likely be functional in the context of human

tissues. This notion is also supported by a recent study of mice

expressing human LMa5 from a BAC transgene [32].

Materials and Methods

Ethics Statement
All animal studies were approved by the Washington University

Animal Studies Committee and performed in accordance with the

NIH Guide for the Care and Use of Laboratory Animals.

Genetically altered mice and administration of
doxycycline
Mice carrying LMa52 and LMa5fl alleles and the tetO7-

regulated hLMa5 cDNA have been previously described

[5,12,27]. Purchased from The Jackson Laboratory were mice

carrying the Sox2Cre transgene (stock #008454), expressed in

epiblast when transmitted by sperm [25]; mice carrying the

Tie2Cre transgene (stock #004128), expressed in endothelial cells

[33]; and mice carrying the reverse tetracycline transactivator

following a loxP-flanked neo/transcription termination signal

inserted into the widely active Rosa26 locus (stock #005572)

[34]. When required to induce hLMa5 expression in endothelial

cells, pregnant females were fed doxycycline-containing chow

(0.15%; El Mel, Inc., St. Charles, MO) beginning on the day that

a vaginal plug was observed (embryonic day 0.5) and continuing

until the time of sacrifice.

Antibodies
The antibodies or reagents that were used were as follows:

rabbit anti-mouse LMa5 [35], mouse anti-hLMa5, clone 4C7

[30], rat anti-PECAM/CD31 (MEC 13.3; BD Pharmingen), rat

anti-cytokeratin 8 (TROMA-1, Developmental Studies Hybrid-

oma Bank, Iowa City, IA), rat anti-nidogen (clone ELM1;

Millipore), rabbit anti-mouse laminin a1b1c1 (LM-111) and

Hoechst 33342 (Sigma, St. Louis, MO), rabbit anti-Wilms

Tumor-1 (H-290; Santa Cruz Biotechnology, Santa Cruz, CA),

and FITC- and Cy3-conjugated secondary antibodies (Molecular

Probes, Eugene, OR).

Immunofluorescence and electron microscopy
Frozen sections (8 mm) were fixed in 4% paraformaldehyde in

PBS for 10 min and washed three times with PBS. After blocking

with 5% normal goat serum in 1% BSA-PBS for 1 hr, the sections

were incubated with the primary antibody overnight at 4uC,
washed three times for 10 min with PBS, and incubated with

secondary antibody for 30 min. Images were viewed with a Nikon

Eclipse E800 microscope (Nikon Instruments Corp., Melville, NY

USA) and captured with an Olympus DP2 digital camera using

Olympus DP2-BSW software. Transmission electron microscopy

was performed as described [36].

Isolation of placental endothelial cells
Placentas from normal embryos were cleaned in Hank’s

balanced salt solution (HBSS, Sigma), cut into 1–3 mm pieces,

and placed in 1 mg/ml collagenase at 37uC for 60 min with gentle

pipetting every 15 min. Cell suspensions were filtered through

a 70 mm cell strainer (BD Bioscience) and washed. After lysing red

blood cells, isolated cells were incubated with phycoerythrin-

conjugated PECAM/CD31 antibody (BD Pharmingen) for

30 min on ice. Prior to sorting, cells were washed, filtered through

a 70 mm cell strainer, and resuspended with 1 mM EDTA/

0.5%BSA/PBS. CD31-positive cells from placenta were sorted

using a BD Aria II High Speed Cell Sorter, gated for high-level

CD31 expression.

RNA extraction and quantitative real-time PCR
Total RNA was isolated using RNeasy Mini or Micro Kit

(Qiagen, Chatsworth, CA USA). Reverse transcription with oligo

(dT) priming was performed using Superscript III (Invitrogen,

Carlsbad, CA USA). The relative expression of each transcript was

determined by quantitative real-time PCR in the fast mode

(annealing and extending at 60uC) with a 7900 HT Fast Real-

Time PCR System (Applied Biosystems, Forrest City, CA USA).

Each well of the 96-well reaction plate contained a total volume of

20 mL with Fast Power SYBR Green PCR Master Mix (Applied

Biosystems). The abundance of mRNA transcript was measured

and normalized to glyceraldehyde 3-phosphate dehydrogenase

(Gapdh). The primer sequences were: for LMa1, forward: 59-

CCAGTGACAAGGAGACAAAGC-39, reverse: 59-CACTCCG-

TAGGAATTTCTCAGC-39; for LMa5, forward; 59-

TTGGTGCGTGTGGAGCGGGC-39, reverse: 59-ACTAG-

GAAGTGCCAGGGGCAG-39; for LMb1, forward: 59-

CGTGACCATCCAACTGGACCTGG-39, reverse: 59-

CACGCCCCAAGCCTTCCCAA-39; for LMb2, forward: 59-

GACCTGTGCCATTGTGACCC-39, reverse: 59-

GAGCTCTTGGCACTCAGAAC-39; and for Gapdh, forward:
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59-AGGTCGGTGTGAACGGATTTG-39, reverse: 59-TGTA-

GACCATGTAGTTGAGGTCA-39.

Statistical analysis
Two-tailed, unpaired Student’s t-tests were used to determine

statistical difference. Differences were considered significant when

the P value was ,0.05.
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