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Abstract

We extend the effective fragment molecular orbital method (EFMO) into treating fragments connected by covalent bonds.
The accuracy of EFMO is compared to FMO and conventional ab initio electronic structure methods for polypeptides
including proteins. Errors in energy for RHF and MP2 are within 2 kcal/mol for neutral polypeptides and 6 kcal/mol for
charged polypeptides similar to FMO but obtained two to five times faster. For proteins, the errors are also within a few
kcal/mol of the FMO results. We developed both the RHF and MP2 gradient for EFMO. Compared to ab initio, the EFMO
optimized structures had an RMSD of 0.40 and 0.44 Å for RHF and MP2, respectively.
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Introduction

The need to study very large systems in an efficient manner has

led to the development of many computational schemes trying to

cope with the limitation in computational resources. Linear (or

nearly linear) scaling methods have long been of particular interest

because they allow, within their respective framework [1–11],

large systems to be treated by quantum mechanics. In particular,

the use of fragments [12,13] is very attractive for doing

calculations of large systems.

Recently, we developed the effective fragment molecular orbital

(EFMO) method [14], which builds upon the fragment molecular

orbital (FMO) method [15–20], and combines it with effective

fragment potentials (EFP) [21–23]. EFMO is different from EFP,

FMO and FMO/EFP [24,25] in several ways. For instance, the

EFPs are computed on-the-fly from gas phase FMO fragment

calculations and used for classical interactions of separated dimers

and many-body effects. Extending the earlier work [14] limited to

molecular clusters at the RHF level, we now present the

methodology to treat fragments connected by covalent bonds at

the MP2 level.

This article is organized as follows. First, we briefly outline the

theoretical background of EFMO. We proceed to discuss the

change in methodology needed to include fragmentation across

covalent bonds in EFMO, including an overview of how fragment

bonds are treated. The addition of correlation in EFMO is also

presented here. Second, we benchmark the EFMO energy against

ab initio calculations on three different sets of polypeptides and

compare to FMO. We apply our findings to proteins and protein

like structures. The quality of the gradient together with timings

are also presented here. Water clusters are also briefly revisited.

Finally, we summarize our results and discuss future directions.

Methods

Theoretical Background
In FMO, the total two-body (FMO2) non-correlated energy of

a system consisting of N fragments (also called monomers) is given

as

EFMO2~
XN
I

EIz
XN
IJ

EIJ{EI{EJð Þ ð1Þ

Here EI (EIJ ) is the energy of monomer I (dimer IJ) in the

electrostatic potential (ESP) of the other N{1 (N{2) fragments.

The monomers converge in the field of ESP, requiring self-

consistent charge (SCC) iterations. Dimers converge in the field of

ESP of the N{2 monomers.

The total non-correlated EFMO energy of a system of N

fragments is

EEFMO~
XN
I

E0
Iz

XRI ,JƒRresdim

IJ

E0
IJ{E0

I{E0
J{EPOL

IJ

� �

z
XRI ,JwRresdim

IJ

EES
IJ zEPOL

tot

ð2Þ

where E0
I is the gas phase energy of monomer (or fragment) I . E0

IJ

is the gas phase dimer energy of dimer IJ . The second sum in

equation 2 is the pairwise correction to the monomer energy and

only applies for dimers separated by a distance less than Rresdim.
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EPOL
IJ and EPOL

tot are the classical pair polarization energy of dimer

IJ and the classical total polarization energy, respectively. The

final sum over EES
IJ is the classical electrostatic interaction energy

and applies to dimers separated by a distance greater than Rresdim.

The fragment separation distance RI ,J was defined previously

[14]. Since EFMO only involves gas phase energy (and gradient)

evaluations, only one SCC iteration is required.

In EFMO, the classical terms in the energy expression (equation

2) are calculated from expressions in the EFP perturbation

expansion of the interaction energy [21,22]. Based on the

converged fragment calculations, EFP parameters are derived

on-the-fly completely automatically by computing atom centered

monopoles, dipoles, and quadrupoles [26] and dipole polarizabil-

ity tensors for each electron pair. [27].

The analytical gradient derived previously [14] is reformulated

for fragments connected by covalent bonds, and also extended to

MP2.

Covalent Bonds
For fragmentation across covalent bonds, no corrections to the

basic equation of EFMO is needed. However, the inclusion of

fragmentation across bonds requires a change in the methodology.

In this paper, we show how fragmentation is carried out on protein

backbones, this methodology is transferable to other systems just as

FMO was applied to inorganic systems such as zeolites [28] and

nanowires [29].

In regular FMO, two different schemes of fragmentation is

possible. Common to both is that one specifies pairs of atoms

which defines fragment boundaries (Figure 1). Each detached

bond is made of a bond attached atom (BAA) and a bond detached

atom (BDA). The latter donates an electron to the fragment

containing the BAA. One scheme is the hybrid orbital projection

(HOP) approach [16], which allows full variational treatment of

molecular orbitals (MO) across the bond during the fragment

SCF. The other is the adapted frozen orbital (AFO) method

[28,29] which freezes the occupied orbital that describes the bond

[30]. EFMO uses the latter method, and for completeness we

include a discussion of this particular scheme in this work.

In AFO, a model system around the BAA and BDA is

constructed (Figure 2). RHF calculations are carried out on this

system, followed by an Edminston-Ruedenberg localization [31].

The occupied orbital which has the largest overlap with the BDA

and BAA is identified as the special bond orbital (SBO) shown on

Figure 3. This orbital, along with several virtual orbitals on the

BDA is stored for later use in monomer and dimer SCF

calculations.

For polypeptides, which is the main focus of this study, there is

one SBO per pair of BAA and BDA. This SBO is associated with

the fragment that contains the BAA. After the computation of all

model systems, monomer calculations are done, followed by

a Foster-Boys localization, where the SBO is kept frozen, i.e. not

allowed to mix with the rest of the orbitals. This leads to

a polarizable point in the centroid of the SBO (Figure 3), obtained

from the model system across the bond (Figure 2). We have thus

successfully eliminated the need to manually parametrize the

bonds between pairs of fragments.

In the original formulation of EFMO, the electric field arising

from a static multipole or induced dipole in fragment I is screened

by a Tang-Toennis type expression.

Figure 1. A model of a backbone in a protein. The model has side
chains (R1 and R2) as well as the continuation of the backbone (R3 and
R4). The bond attached atom (BAA) and the bond detached atom (BDA)
face each other across the fragmentation point (marked with the yellow
line). One fragment is shown within the yellow box.
doi:10.1371/journal.pone.0041117.g001

Figure 2. The current model system used in this study for
fragmentation across peptide bonds. The model is constructed
automatically for use with AFO. The central atoms are the bond
attached atom (BAA) and the bond detached atom (BDA). The atoms
which are connected directly to either the BAA or the BDA are included,
capped with hydrogens as necessary.
doi:10.1371/journal.pone.0041117.g002

Figure 3. Special bond orbital for bond 13 in The Trp-cage
protein. The orbital is obtained using RHF/6-31G(d) on a model system
(Figure 2).
doi:10.1371/journal.pone.0041117.g003
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k(~RR, a, b)~1{ exp {
ffiffiffiffiffiffi
ab

p
D~RRD2

� �
1z

ffiffiffiffiffiffi
ab

p
D~RRD2

� �
ð3Þ

Here, a and b are the screening parameters associated with

fragments I and J, respectively. The distance parameter ~RR is the

vector between an induced dipole in fragment I and any of the

electric moments in fragment J. The above expression is also

the default in EFP [21,22] with the parameters a~b~0:6. We

emphasize that the screening parameters are associated with

fragments and not individual polarizable points.

Correlation
The introduction of correlation energy in the EFMO method

follows previous work in FMO [32–34]. The total correlated

energy of a system of N fragments is given as.

E~EEFMOzECOR: ð4Þ

Here ECOR is given as the sum of monomer correlation energies

ECOR
I and pairwise corrections, i.e.

ECOR~
XN
I

ECOR
I z

XRI ,JvRcorsd

IJ

ECOR
IJ {ECOR

I {ECOR
J

� �
, ð5Þ

where ECOR
IJ is the correlation energy of dimer IJ. The distance

parameter Rcorsd determines whether or not correlation is

included for a specific dimer. The value of the parameter is

discussed in the computational methodology section below. Note

that for the correlation energy any size-extensive post-HF scheme

can be used.

Computational Methodology
All ab initio and fragment calculations were carried out in

a locally modified version of GAMESS [35]. EFMO was

parallelized with the generalized distributed data interface [36].

In all calculations, the 6-31G(d) [37–39] basis set was employed

throughout unless specified otherwise. In all the geometry

optimizations, a convergence criterion of 5:0 : 10{4 Hartree/

Bohr was used.

The ab initio MP2 calculations had their integral accuracy

increased to 10{12 (ICUT=12 in $CONTRL), SCF convergence

criterion was raised from 10{5 to 10{7 (CONV=1E-7 in $SCF)

and the MP2 code by K. Ishimura et. al [40] with AO integral

transformation threshold increased from 10{9 to 10{12 (CO-

DE= IMS and CUTOFF=1E-12 in $MP2) to match what is used

in FMO.

For FMO (and EFMO), the AFO scheme was used throughout

with the default settings for bond definitions (LOCAL= -

RUEDNBRG in $CONTROL and RAFO(1) = 1,1,1 in $FMO).

The parameters for the electrostatic treatment of dimers Rresdim

and the threshold for the inclusion of correlation effects Rcorsd

were both set to 2.0 (RESDIM=2.0 RCORSD=2.0 in $FMO)

unless otherwise specified. The distances are relative to the van-

der-Waals radii of atoms (see ref [14] for details). The screening

parameter for all fragments are set to 0.1 for fragments with and

without the SBO (SCREEN(1) = 0.1,0.1 in $FMO), respectively

unless specified otherwise.

The following structures used in this study were taken from

previous work by Fedorov et. al. [32,34,41] This includes a-helices

(a{(ALA)n) and b-sheets (b{(ALA)n) of alanine, Chignolin

(PDB code: 1UAO) and the Trp-cage (PDB code: 1L2Y).

Correlation effects on molecular clusters is carried out by

investigating the structures from our previous study [14]. The

crystal structure of the 42 residue protein Crambine (PDB code:

1CRN) is also included and protonated using the PDB2PQR tool

[42,43].

The three polypeptides used in this study were constructed by

selecting six neutral (at pH =7) amino acids AIVGLT (P1) and

AVSNTL (P2) as well as four neutral and two non-neutral (at pH

=7) residues AVKNTD (P3) and padded with two glycine residues

at each end for a total peptide length of 10 residues. The

polypeptides were protonated (at pH =7) using the PDB2PQR

tool. P1 had neutral termini (arguments –neutralc –neutraln) while

P2 and P3 both had charged termini. For each polypeptide,

a conformational search was carried out to locate twenty different

structures using the ObConformer tool of the Open Babel package

[44,45]. They were finally minimized using PM6 [46] in MOPAC

[47] with a bulk solvent (EPS=80.1).

Only results for two residues per fragment are discussed in detail

below, and the results for one residue per fragment are shown in

the supporting information (Table S1). We note that because of

the large charge transfer in some charged systems the one residue

per fragment division leads to very considerable errors.

When interpreting the accuracy of the results, the following

quantities of errors are defined for energies. The error in energy.

DEM,X~EM{EX , ð6Þ

the average deviation of conformers

DEM,X
avg ~

1

N

XN
I

EM
I {EX

I

� �
ð7Þ

and the mean average deviation (MAD) for conformers

DEM,X
MAD~

1

N

XN
I

DEM
I {EX

I D: ð8Þ

Here, M is FMO2/HOP, FMO2/AFO or EFMO and X is RHF

or MP2. I runs through N conformers of polypeptides. To

evaluate the quality of the EFMO gradient, numerical gradients

(+Enum) were calculated on a-(ALA)10 and compared to its

analytical counterpart (+Eana) by the root mean square (rms)

deviation of the individual elements

+Erms~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D+Eana{+EnumD

3NA

s
ð9Þ

and the maximum deviation

+Emax~max D+iE
ana{+iE

numDð Þ: ð10Þ

NA in equation 9 is the number of atoms in the molecule of

interest, i in equation 10 runs through 3NA atomic coordinates.

To measure the compactness of a protein we use the radius of

gyration R2
g given as

The EFMO Method for Covalent Systems
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R2
g~

1

NA

XNA

k~1

(~rrk{~rrmean)
2: ð11Þ

Results and Discussion

Application to Polypeptides
The performance of EFMO has a critical dependence on the

screening parameter (equation 3, Figures S1, S2 and S3, and

Tables S2 and S3) because of the close position of a) induced

dipoles located at the centroid of the SBO in one fragment and b)

the nearby electrostatic moments and induced dipoles in another

(especially, adjacent) fragment. In the following, the screening

parameter for all fragments is a~0:1 unless otherwise specified.

Figure 4 shows the MAD results obtained for two residues per

fragment for all three polypeptides (P1, P2 and P3) using FMO2/

HOP, FMO2/AFO and EFMO for both RHF and MP2. For P1,

RHF MAD values are 0.82 kcal/mol, 0.94 kcal/mol and

2.02 kcal/mol for FMO2/HOP, FMO2/AFO and EFMO,

respectively. The MP2 results yield 1.01 kcal/mol, 1.45 kcal/

mol and 2.33 kcal/mol for P1 respectively.

For the charged polypeptide P2, MAD (Figure 4) increases by

roughly a factor of two. The factor is about 3 for P3 (from

2.02 kcal/mol to 5.94 kcal/mol for the RHF energy). The

inclusion of charged residues results in larger induced dipoles,

which has a negative impact on the accuracy of the energy in

EFMO. The accuracy of charged systems may be ameliorated by

solvent screening. [48–50].

If one considers the average deviation (equation 7 and Figure 5)

instead, it is interesting to note that EFMO compares well with

FMO2, and the agreement for P3 is perhaps fortuitous (the error is

less than 0.5 kcal/mol for EFMO-MP2). The maximum devia-

tions for EFMO, however, are larger in all cases by roughly a factor

of two.

For all three peptide ensembles, there is a good correlation

between the compactness of the peptide conformation (measured

by the radius of gyration, equation 11) and the error in the energy

(see supporting information Figures S4, S5 and S6). More compact

structures place the charged groups closer to the polarizable points

at the fragment boundaries resulting in large induced dipoles and

errors in the total energy.

Application to Proteins
The above benchmark of EFMO serves as an initial probe for

how the energy behaves for polypeptides as the number of residues

per fragment and screening parameters change. Based on those

tests, we now apply EFMO to proteins or protein-like structures.

The alanine polypeptides are particularly good for studying any

systematic error, albeit they are not a representative benchmark

for real proteins.

In Table 1, deviations in EFMO energy of the various protein

structures compared to ab initio RHF (MP2) are presented for two

residues per fragment with cutoffs Rresdim and Rcorsd both equal to

2.0. For Chignolin (1UAO), the deviation in energy for EFMO

(equation 6) in RHF (MP2) energy is 1.79 (1.48) kcal/mol, and for

FMO2/AFO it is 0.37 (1.38) kcal/mol. For the larger Trp-cage

(1L2Y), the EFMO errors are 22.87 (24.21) kcal/mol and for

FMO2/AFO the values are 1.74 (6.35) kcal/mol. The Crambine

protein (1CRN) had errors of 15.66 (26.23) kcal/mol for EFMO,

which is comparable to the FMO2/AFO results of 3.45 (25.59)

kcal/mol. EFMO shows the largest errors of a similar magnitude

to FMO2/AFO. Using a 6-31+G(d) basis set on Chignolin,

EFMO has the errors of 21.70 (221.87) kcal/mol. FMO2 did not

converge using the default settings.

Figure 4. Mean average deviations of FMO2 and EFMO calculations. Results are compared to ab initio for conformers of the three
polypeptides P1, P2 and P3 using two residues per fragment and the 6-31G(d) basis set. The screening parameter was set to a~0:1 for all
calculations. Energies in kcal/mol.
doi:10.1371/journal.pone.0041117.g004

The EFMO Method for Covalent Systems
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The results from the a-helices and b-sheets are somewhat more

detrimental. With the exception of the RHF EFMO results, the

errors are roughly additive for the poly-alanine peptides, so the

errors are discussed on a per residue basis. For a-helices, the error
in energy increase with system size from 22.94 (0.32) kcal/mol for

a{(ALA)10 to 0.18 (218.94) kcal/mol for the large a{(ALA)40
helix, which corresponds to an average error per residue of 0.29

(0.03) kcal/mol for a{(ALA)10 and less than 0.01 (20.47) kcal/

mol for a{(ALA)40. The a-helices tend to illustrate the case of

over-polarization. For a{(ALA)10, the total polarization energy

is small (212.89 kcal/mol) but as the system system size increase,

so does the total polarization energy (273.81 kcal/mol) in a non-

linear fashion. We note that the MP2 energy for a{(ALA)20 and
a{(ALA)40 increases linearly with system size but the RHF

energy does not. The over polarization is also observed for

FMO2/AFO, although the MP2 energies are much better (below

2 kcal/mol) which can only be attributed a better wave function of

the individual fragments and their pairs. The b-sheets have errors
which are lower than in the a-alanines the errors are from 0.60

(0.89) kcal/mol to 4.05 (6.46) kcal/mol for b{(ALA)10 and

b{(ALA)40, respectively. Overall, the average error per residue

becomes 0.06 (20.50) kcal/mol and 0.10 (0.16) kcal/mol for

b{(ALA)10 and b{(ALA)40, respectively. The b-sheets are

planar and not prone to the same over-polarization (the

b{(ALA)40 has a polarization energy of around 50 kcal/mol).

As noted above, the a-helices and b-sheets illustrate two very

different polypeptides. The inaccuracy of EFMO for them is

somewhat alleviated by the fact that the errors in energy for

Chignolin and the Trp-cage proteins are smaller than the a-helices
and b-sheets. The Trp-cage has 20 residues and its error in energy

of 22.87 (24.21) kcal/mol lie around the corresponding a-helices
and b-sheets of the same size 22.75 (29.66) kcal/mol to 1.74

(2.78) kcal/mol, respectively. The same is true for Chignolin.

Gradients and Geometry Optimizations
A key strength of EFMO over other similar methods [7–11] is

the availability of the gradient. The gradient of FMO2/AFO has

been investigated previously for zeolites [29] where errors in

gradient were found to be +Erms: 0:2 : 10{3 Hartree/Bohr and

+Emax: 1:4 : 10{3 Hartree/Bohr when compared to numerical

derivatives (equations 9 and 10) although with a smaller basis set

than in this study. It was found, that even though these deviations

Figure 5. Average deviations of energy of FMO2 and EFMO calculations compared to RHF and MP2. All the three polypeptides P1, P2
and P3 using two residues per fragment are shown. Labels on the figure represent the maximum observed deviation. The screening parameter was
set to a~0:1 for all calculations. Energies are in kcal/mol.
doi:10.1371/journal.pone.0041117.g005

Table 1. Energy Error compared to ab initio calculations on
proteins and protein-like structures using two residues per
fragment.

EFMO FMO2/AFO

Rresdim = 2.0 Rresdim = 2.0

RHF MP2 RHF MP2

a-(ALA)10 22.94 0.32 20.77 20.08

b-(ALA)10 0.60 0.89 0.08 0.25

a-(ALA)20 22.75 29.66 22.30 20.53

b-(ALA)20 1.74 2.78 0.22 0.71

a-(ALA)40 0.18 218.94 25.47 21.62

b-(ALA)40 4.05 6.46 0.51 1.62

Chignolin 1.79 1.48 0.37 1.38

Trp-cage 22.87 24.27 1.74 6.35

Crambinea 15.66 26.23 3.45 25.59

abased on an FMO3-MP2/6-31G(d) calculation.
We used the 6-31G(d) basis set and Rresdim~Rcorsd~2:0. In all calculations, the
screening parameter a was kept fixed at a value of a~0:1. All units in kcal/mol.
doi:10.1371/journal.pone.0041117.t001

The EFMO Method for Covalent Systems
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were present, geometry optimizations did result in satisfactory

structures.

In this study, we present an investigation of the EFMO gradient

comparing numerical and analytical values for proteins (Table 2).

It has roughly the same accuracy-related issues found for zeolites,

specifically around the bond regions where rms and maximum

errors for FMO2-RHF/AFO with and without the electrostatic

potential is 0:51 : 10{3 Hartree/Bohr, 3:43 : 10{3 Hartree/Bohr

and 0:76 : 10{3 Hartree/Bohr and 4:71 : 10{3 Hartree/Bohr,

respectively which is on par with what was found for zeolites. The

latter result is particularly interesting as it is the FMO2/AFO

result on top of which we add the EFP terms to obtain EFMO

(equation 2).

Several different approaches to tackle the gradient were

attempted. The first is the original approach taken for molecular

clusters which is to transfer the gradient terms of the induced

dipoles ~mmind to the nearest atom only, in this study named

EFMOorg. This is a clear improvement over the FMO2/AFO

(without the ESP) result (+Erms: 0:73 : 10{3 Hartree/Bohr,

+Emax: 3:50 : 10{3 Hartree/Bohr), but some deviations in

gradient get worse using EFMO and will be discussed further

below. Removing all torque contributions (EFMOnt) reveals

further improvements (+Erms: 0:68 : 10{3 Hartree/Bohr,

+Emax: 3:30 : 10{3 Hartree/Bohr). Another approach, specifi-

cally for the induced dipole (EFMOntzpct) is to do a percentage

based distribution of the induced dipoles based on the distance

between two atoms (supporting information Text S1 and Figure

S7). This only applies if the induced dipole is between two atoms

and the gradient is distributed based on a percentage of the entire

bond length. This further improves the results, but the improve-

ment (+Erms: 0:66 : 10{3 Hartree/Bohr, +Emax: 3:27 : 10{3

Hartree/Bohr) reveals that the main source of the error is not due

to EFMO (Figure 6), but pertains to approximations in the

FMO2/AFO gradient. To make sure that the induced dipoles do

not cause major problems, an approach was tried to not evaluate

the electric field from the static multipole moments and the

induced dipoles, both in the energy and the gradient, of adjacent

fragments, that is fragment I covalently bound to fragment J does

not induce dipoles in I and vice versa. Results with

(EFMOntzpctzadj) and without (EFMOntzadj) percentage based

distribution of induced dipoles are (+Erms: 0:66 : 10{3 Hartree/

Bohr, +Emax: 3:73 : 10{3 Hartree/Bohr) and (+Erms:

0:66 : 10{3 Hartree/Bohr, +Emax 3:74 : 10{3 Hartree/Bohr)

offer no clear advantage over EFMOntzpct on the RHF level of

theory, and consequently MP2 data are not presented.

From Figure 6, it is clear that EFMO fixes some of the issues

that FMO2/AFO has, but evidently creates a few new ones at

atom indices 111 (backbone nitrogen), 155 (backbone carbonyl),

231 (backbone nitrogen) and 236 (backbone Ca). Common to all is

that it is around the bonding region. Evidently, small perturbations

in the geometry, specifically around the bonding region, has large

implications for the generated EFP parameters. For FMO2-MP2/

AFO and EFMO-MP2 (Figure 7 and Table 2), the errors in the

gradient decrease for the EFMOntzpct methodology (+Erms:

0:61 : 10{3 Hartree/Bohr, +Emax: 2:89 : 10{3 Hartree/Bohr)

while FMO2-MP2/AFO errors are very similar to the corre-

sponding RHF values.

Finally, geometry optimizations were carried out for a-(ALA)10
using the 6-31G(d) basis set and the EFMOntzpct procedure.

Figure 8 shows the improvement in energy as a function of the

number of steps taken in a geometry optimization. The obtained

optimized structures have the lowest energies when comparing to

all the taken steps, even for one residue per fragment. Compared

to RHF (MP2) optimized structures, the rms between the

optimized structures are 0.40 (0.44) angstrom (EFMO with one

residue per fragment did slightly worse). This can be compared to

the 0.3 angstrom that was obtained for FMO2-RHF with HOP

previously [41].

EFMO offers a gradient whose quality is similar to FMO2/

AFO calculations but at a reduced cost. The quality of the

FMO2/AFO gradient could be improved if fully analytic

derivatives available such as what was done by Nagata et. al. for

HOP [51–53]. Another improvement can be obtained with an

addition of the derivatives of the EFP monopoles (and higher order

multipoles) as outlined by Xie et al. [5] We recommend

EFMOntzpct for geometry optimizations of polypeptides.

Molecular Clusters
Inclusion of correlation in EFMO (equation 4) warrants a new

benchmark of the water clusters that was used in the original

EFMO paper. In Table 3, results for MP2 energies are shown for

Rresdim~Rcorsd~2:0 for various basis sets. Since there are no

covalent bonds, the screening parameter was given its original

value of a~0:6. In the original EFMO paper, the errors in energy

for water clusters were discussed per hydrogen bond (HB) due to

EFMO only describing higher order many-body effects for

polarization (see ref [14] for full details), thus, the error is a lack

of many-body terms per HB. For EFMO-MP2, only monomer

and ab initio dimers are considered correlated and the lack of

treatment separated dimers gives rise to new errors but we expect

Table 2. Errors in gradient of EFMO and FMO2/AFO for the a{(ALA)10 polypeptide using RHF and MP2.

FMO2 aFMO2 EFMOorg EFMOnt EFMOnt+pct EFMOnt+adj EFMOnat+pct+adj

RHF

=Erms 0.51 0.76 0.73 0.68 0.66 0.66 0.66

=Emax 3.43 4.71 3.50 3.30 3.27 3.73 3.74

MP2

=Erms 0.70 0.75 0.69 1.20 0.61

=Emax 3.57 4.53 2.84 2.91 2.89

aNo ESP.
Both RHF/6-31G(d) and MP2/6-31G(d) levels of theory are evaluated. All units in 10{3 Hartree/Bohr. The subscripts are: nt for not including torque contributions, pct is
a percentage based distribution of the gradient arising from gradient contributins not located on atoms and adj ignores induced dipoles due to neighboring fragments.
See text for details.
doi:10.1371/journal.pone.0041117.t002
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these to be small. EFP does include dispersion terms [54], but

these are not included in this work.

The EFMO-MP2/6-31G(d) results deviate by a maximum of

0.78 kcal/mol per HB, which is worse than FMO2-MP2/6-

31G(d) which deviates by a maximum of 20.43 kcal/mol per HB.

Increasing the basis set shows that the EFMO errors are 0.02 and

20.05 kcal/mol per HB for 6-31+G(d) and 6-31++G(d), re-

spectively. For FMO2, the respective errors are 20.76 and

20.48 kcal/mol. The errors we observe for the larger clusters

Figure 6. Deviations of analytic gradient from the numeric gradient for RHF on a-(ALA)10. Shown in units of 10{3 Hartree/Bohr for FMO2-
RHF/AFO and EFMO-RHF versus atomic coordinate for the 6-31G(d) basis set.
doi:10.1371/journal.pone.0041117.g006

Figure 7. Deviations of analytic gradient from the numeric gradient for MP2 on a-(ALA)10. Shown in units of 10{3 Hartree/Bohr for FMO2-
MP2/AFO and EFMO-MP2 versus atomic coordinate for the 6-31G(d) basis set.
doi:10.1371/journal.pone.0041117.g007
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containing 30, 40 and 50 water molecules are consistent with the

smaller 20 water molecule cluster.

Timings
In our previous study [14], EFMO-RHF for molecular clusters

were two (five) times faster than the corresponding FMO2 energy

(gradient) calculation. In Table 4, results for Chignolin and the

Trp-cage are presented for 5 nodes using 2 cores per node. All

timings were carried out on Intel Xeon X5550 CPUs. Here, using

EFMO-MP2 instead of EFMO-RHF increases the computation

time by roughly a factor of two (from 14.0 minutes to 29.5 minutes

for Chignolin using Rresdim~2:0). For FMO2, the same calcula-

tion takes 38.5 minutes and 58.6 minutes, respectively. An EFMO-

RHF gradient evaluation for Chignolin takes only three minutes

longer than the energy, but becomes a five-fold increase when

running EFMO-MP2 gradients. The same trends are observed for

the Trp-cage. We note a significant speedup when lowering the

cutoff distances Rresdim and Rcorsd, especially for the larger Trp-

cage. When the cut-off distances go down, the number of ab initio

dimers decrease. Especially MP2 gradients require much CPU

time due to the number of integrals that needs to be transformed

[40].

We note that lowering of the cutoff distances Rresdim and Rcorsd

can have significant impact on the accuracy [18,32] like we

observed for molecular clusters [14], however for a modest

lowering of the thresholds to Rresdim~Rcorsd~1:5, the energy

deviations from ab initio are not affected greatly (Table S3).

Figure 8. Convergence of energy as a function of number of geometry steps taken. Results are from an optimization of a-(ALA)10 EFMO-
RHF and EFMO-MP2 with both one and two residues per fragment calculated using the 6-31G(d) basis set. In all cases, the optimized geometries were
optimized to a gradient threshold of 5:0 : 10{4 Hartree/Bohr and all final structures had the lowest energies of all steps taken.
doi:10.1371/journal.pone.0041117.g008

Table 3. Water cluster energy error for EFMO and FMO2
relative to ab initio MP2 (in kcal/mol per hydrogen bond).

NH2O
NHB

EFMO FMO2

6-31G(d)

31 0.63 20.43

20 32 0.66 20.37

29 0.78 20.38

6-31+G(d)

31 0.02 20.69

20 32 0.01 20.67

29 0.02 20.76

6-31++G(d)

31 20.05 20.44

20 32 20.04 20.43

29 20.05 20.48

6-31G(d)

30 51 0.59 20.43

40 63 0.79 20.41

50 86 0.74 20.45

Energies are calculated using the 6-31G(d), 6-31+G(d) and 6-31++G(d) basis sets.
In all calculations Rresdim~Rcorsd~2:0 and a~0:6.
doi:10.1371/journal.pone.0041117.t003

Table 4. Timings for FMO2 and EFMO energy and gradient
calculations on the Trp-cage protein.

Rresdim,Rcorsd T(RHF) T(=RHF) T(MP2) T(=MP2)

Chignolin

EFMO 1.0 9.6 11.1 22.8 102.8

1.5 13.2 13.1 28.7 106.4

2.0 14.0 17.0 29.5 119.0

FMO2 2.0 38.5 59.7 58.6 149.9c

Trp-cage

EFMO 1.0 24.2b 23.5 42.7 161.0

1.5 33.7 38.3 70.7 261.6

2.0 37.6 43.0 78.9 314.0

FMO2 2.0 100.4 187.0 142.5 408.6d

atested for both RHF/6-31G(d) and MP2/6-31G(d). All units in minutes.
CPU utilization was b96%, c85% and d91%. All other were 99%.
All timings were carried out on 5 nodes containing Intel Xeon X5550 CPUs
(10 CPU cores total).
doi:10.1371/journal.pone.0041117.t004
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Summary
The effective fragment molecular orbital (EFMO) method is

a merger of the effective fragment potential (EFP) method and the

fragment molecular orbital (FMO) method and combines the

general applicability of the FMO method (for example, to flexible

biomolecules) with the speed of the EFP method. In this work, we

have introduced new methodology needed to make EFMO work

for systems with covalent bonds such as proteins. This, together

with the analytical gradient provides an agile tool to treat proteins

at a reasonable level of theory. We also showed how to incorporate

electron correlation via Mø ller-Plesset perturbation theory.

We made an extensive study on small polypeptides to assess the

need for screening when dealing with covalent bonds and found

that an additional screening is needed compared to regular EFP.

We showed that the deviations in energy on proteins are on par

with FMO2 to within a few kcal/mol when using two residues per

fragment. For example, Chignolin is reproduced to within

0.1 kcal/mol compared to FMO2. Timings were consistent with

our previous work. We obtained two to five times speedup when

using EFMO over FMO2 for RHF. The speedup was somewhat

lower when employing MP2 gradients, resulting in speedups

between 1.6 and 2.3.

There are many ways in which the EFMO method can be

improved and extended, for example, interfacing EFMO with the

polarized continuum model (PCM) or the classical dispersion

interaction in EFP [54] which would enable us to lower Rcorsd

compared to Rresdim, thus speeding up the evaluation of the

gradient greatly. Another direction is to follow the multilayer

FMO method [55] and the recent frozen domain FMO (FMO/

FD) method [56].

FMO has been applied [57–59] to a number of chemical

problems, [60] and we expect that EFMO can be a useful method

on its own, for example, in the structure optimization of protein-

ligand complexes and other studies related to drug design.

Supporting Information

Figure S1 Deviations in energy from RHF and MP2
calculations of FMO2/HOP, FMO2/AFO and EFMO for
the peptide P1 using two residues per fragment for
different values of the screening parameter a.
(EPS)

Figure S2 Deviations in energy from RHF and MP2
calculations of FMO2/HOP, FMO2/AFO and EFMO for
the peptide P2 using two residues per fragment for
different values of the screening parameter a. Large

positive values (ww 200 kcal/mol) indicates that EFMO did not

converge. See main text for full details.

(EPS)

Figure S3 Deviations in energy from RHF and MP2
calculations of FMO2/HOP, FMO2/AFO and EFMO for
the peptide P3 using two residues per fragment for
different values of the screening parameter a. Large

positive values (ww 200 kcal/mol) indicates that EFMO did not

converge. See main text for full details.

(EPS)

Figure S4 Correlation between the deviation in energy
of peptide P1 using two residues per fragment and the

radius of gyration. Lower values of the radius of gyration is

a more compact protein.

(EPS)

Figure S5 Correlation between the deviation in energy
of peptide P2 using two residues per fragment and the
radius of gyration. Lower values of the radius of gyration is

a more compact protein.

(EPS)

Figure S6 Correlation between the deviation in energy
of peptide P3 using two residues per fragment and the
radius of gyration. Lower values of the radius of gyration is

a more compact protein.

(EPS)

Figure S7 Two Carbon atoms (C1 and C2) and an the

location of an induced dipole mind above the bond
midpoint (Drawn cartoonishly to emphasize the meth-
odology).

(EPS)

Table S1 Energy Error of EFMO and FMO2/AFO
compared to ab initio calculations on proteins and
protein-like structures for different values of
Rresdim~Rcor using one residue per fragment. In all

calculations, the screening parameter a was kept fixed at a value

of a~0:1.
(TEX)

Table S2 Calculated mean average deviation DEMAD

and average deviation DEavg for conformers of the

peptides P1, P2 and P3 using two residues per fragment,
the 6-31G(d) basis set and different values of the
screening parameter a. For reference, FMO2/HOP and

FMO2/AFO was included. All units in kcal/mol.

(TEX)

Table S3 Energy Error of EFMO compared to ab initio
calculations on proteins and protein-like structures for
different values of Rresdim~Rcor using two residue per
fragment. In all calculations, the screening parameter a was kept

fixed at a value of a~0:1.
(TEX)

Text S1 Detailed description of the percentage based
distribution of the gradient between two nearby atoms.

(TEX)
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