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Abstract

Several drugs and natural compounds are known to be highly neurotoxic, triggering epileptic convulsions or seizures, and
causing headaches, agitations, as well as other neuronal symptoms. The neurotoxic effects of some of these compounds,
including theophyllineand ginkgotoxin, have been traced to theirinhibitory activity againsthuman pyridoxal kinase (hPL kinase),
resulting in deficiency of the active cofactor form of vitamin B, pyridoxal 5’-phosphate (PLP). Pyridoxal (PL), an inactive form of
vitamin B is converted to PLP by PL kinase.PLPis the Bg vitamer required as a cofactor for over 160 enzymatic activities essentialin
primary and secondary metabolism. We have performed structural and kinetic studies on hPL kinase with several potential
inhibitors, including ginkgotoxin and theophylline. The structural studies show ginkgotoxin and theophylline bound at the
substrate site, and are involved in similar protein interactions as the natural substrate, PL. Interestingly, the phosphorylated
product of ginkgotoxinis also observed bound at the active site. This work provides insights into the molecular basis of hPL kinase
inhibition and may provide a working hypothesis to quickly screen or identify neurotoxic drugs as potential hPL kinase inhibitors.
Such adverse effects may be prevented by administration of an appropriate form of vitamin By, or provide clues of how to modify
these drugs to help reduce their hPL kinase inhibitory effects.
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Introduction

Some well known drugs that are directed at different targets have
also been shown to inhibit human pyridoxal kinase (hPL kinase)
activity with a concomitant deficiency in pyridoxal 5'-phosphate
(PLP) causing unwanted neurotoxic side effects, such as peripheral
neuropathy, unconsciousness, convulsions or seizures, sleeplessness,
headache, restlessness, agitation, tremors, and hallucination [1-7].
Vitamin Bg in its active form, namely PLP, is a cofactor for over 160
enzymatic activities (PLP-dependent enzymes) serving vital roles in
neurotransmitter production, as well as in several other essential
pathways [8]. For example, PLP-dependent enzymes are involved in
the biosynthesis of D-serine, D-aspartate, L-glutamate, glycine, y-
aminobutyric acid (GABA), serotonin, epinephrine, norepinephrine,
histamine and dopamine. A decrease in GABA level, induced by
antivitamin Bg agents, is known to be accompanied by epileptic
seizures [9]. Several of these agents, such as progabide, theophylline,
and ginkgotoxin are potent hPL kinase inhibitors [1-5,10-21],
resulting in PLP deficiency with a concomitant reduction in PLP-
dependent enzyme activities, such as that of glutamate decarbox-
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ylase, which catalyzes formation of GABA from L-glutamate. It has
long been recognized that co-administration of pyridoxine, the
primary dietary form of vitamin Bg together with these hPL kinase
inhibitors reduce or prevent their associated neurotoxic side effects
[5,17,22,23].

PL kinase is one of the key enzymes involved in PLP metabolism
[24]. In the presence of MgATP, this enzyme catalyzes the
phosphorylation of the three inactive primary forms of vitamin Bg,
1.e. pyridoxine (PN), pyridoxamine (PM), and pyridoxal (PL) to
their 5'-phosphorylated forms, PNP, PMP and PLP, respectively
(Fig. 1A and B). PNP and PMP are subsequently converted to PLP
(Fig. 1B) by pyridoxine 5’-phosphate oxidase (PNPOx) [24].
During the turnover of PLP-dependent enzymes, PLP is released
and converted back to PL (Fig. 1B) by different phosphatases, and
subsequently re-phosphorylated to PLP (Fig. 1B) by PL kinase
[24-26]. The structure of PL kinase has been determined from
several sources [27-32]. PL kinase is a homodimer with each
active site exclusively formed by a single monomer. The ATP
binds in a shallow cavity at the active site, while the vitamin Bg
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Figure 1. (A) Structures of Bg vitamers. (B) Reactions in vitamin Bg metabolism: scheme of the interconversion of Bg vitamers by PL kinase, pyridoxine

5’'-phosphate oxidase and different phosphatases.
doi:10.1371/journal.pone.0040954.9001

substrate binds in a solvent-inaccessible deeper cavity opposite but
facing the y-phosphate of the ATP.

Theophylline (Fig. 2) is a xanthine drug used in therapy for
respiratory diseases, e.g. chronic obstructive pulmonary disease or
asthma. Theophylline has been shown to significantly decrease
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plasma PLP levels in animals, asthmatic patients, and healthy
volunteers, resulting in the above described neurotoxicity
[16,18,23]. A plasma concentration of theophylline higher than
110 uM is known to be associated with these symptoms [16].
Theophylline is also naturally found in trace amount in tea, and as
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much as 3.7 mg/g in certain types of cocoa beans [33]. Several
other xanthines, including theobromine, enprofylline and caffeine
(Fig. 2) also occur naturally in coffee and cocoa and have also been
used as bronchodilators for treating asthma and/or as stimulants
[33-35]. Similar to theophylline, these compounds are known to
exhibit neurotoxic effects [33,35-37], although it is not clear
whether these side effects are related to hPL kinase inhibition or
PLP deficiency in the cell.

Ginkgotoxin (4'-O-methylpyridoxine, an analog of vitamin Bg)
(Fig. 2), found in Ginkgo biloba seeds also leads to significant PLP
deficiency in mammals, resulting in neuronal symptoms similar to
those of theophylline [7,38,39]. Various medications from Ginkgo
biloba are easily available over the counter and are widely used in
the treatment of several conditions ranging from bronchial
asthma, irritable bladder, depression, dizziness, tinnitus and
several others [1,7,22,38]. These medications have a prominent
presence in traditional Chinese and Japanese medicine, and in
recent times also in European medicine. Food poisoning, and in
some cases death(both in humans and cattle) has been reported in
Japan and South Africa due to ginkgotoxin [22,40].

We have determined the crystal structures of hPL kinase in
complex with ginkgotoxin and theophylline to gain molecular
insights into the inhibitory activities of these compounds. We also
report kinetic studies on other compounds or drugs that show
structural similarity to theophylline and/or exhibit neurotoxic
effects, including enprofylline, theobromine, caffeine, and lamo-
trigine (Fig. 2) to determine whether these compounds could
inhibit hPL kinase and potentially lead to depletion of PLP in the
cell. This study could serve as a guide to identify or recognize
neurotoxic drugs as potential hPL kinase inhibitors and thus may
offer a rational for pharmacological intervention.

Results

Human PL Kinase Inhibitors

We tested the inhibitory activities of ginkgotoxin and theoph-
ylline on hPL kinase, as well as that of other xanthines including
enprofylline, theobromine and caffeine, due to their structural
similarities with theophylline. We also tested the inhibitory activity
of the anticonvulsant lamotrigine, another neurotoxic drug. At
100 uM concentration, ginkgotoxin, theophylline, lamotrigine,
enprofylline, theobromine, and caffeine inhibited hPL kinase
activity by 100%, 60%, 45%, 33%, 22% and 21%, respectively.
Detailed kinetic studies with ginkgotoxin, theophylline, lamotri-
gine and enprofylline showed the compounds to inhibit hPL kinase
with a Kj of 3, 50, 56 and 228 uM, repectively. These kinetic
results correlate well with other studies that reported a drop in
serum concentration of PLP of normal or epileptic patients when
treated with theophylline or lamotrigine [16,41].

Previous kinetic studies by Lainé-Cessac et al. [10] found
theophylline to inhibit hPL kinase with K; of 3 pM, which is
significantly lower than our experimental value of 50 uM. The
investigators used unpurified protein (erythrocyte preparation) and
their assay was based on HPLC separation and fluorometric
detection of PL and PLP, as opposed to the direct continuous
spectrophotometric assay used in our studies. The investigators
reported a significantly lower K,, of 1 UM for PL compared to the
~60 UM reported in the literature, and also observed in our
current studies (K, of 58 uM) with purified protein. Our study
showed ginkgotoxin to inhibit hPL kinase with a K; of 3 uM which
is different from the previously reported value of 0.414 uM. The
K., values for PL reported by these investigators and by us are
similar [1]. The same investigators reported that hPL kinase was
able to phosphorylate ginkgotoxin [1].
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Structure of the Binary hPL Kinase-theophylline Complex

Human PL kinase was co-crystallized with theophylline and
refined to 2.1 A resolution, using the isomorphous hPL kinase
D235A mutant structure (PDB code 3FHX). The electron
densities for all main-chain residues are clearly interpretable with
the exception of the first three residues from the N-terminus,
residues 208-213 and 280-281 from the A and B-subunits,
respectively. The overall dimeric structure is very similar to the
previously published unliganded hPL kinase wild-type structure
(PDB code 2YXU). Theophylline is bound at the PL binding site
i both subunits, with an occupancy of 60% (Fig. 3A-C).
Occupying the same position as the theophylline is a 2-methyl-
2,4-pentanediol (MPD) molecule at 40% occupancy (Fig. 3A-C).
Our previously reported unliganded wild-type human PL kinase
structure also showed MPD fully bound at the active site [32].
Figure 3D shows a structural comparison between the bound
theophylline in hPL kinase and bound pyridoxamine (PM) in
a previously published sheep PL kinase structure [28]. The two
ligands superimpose closely, with several conserved protein
interactions. Possible contacts between the active site residues
and theophylline (Fig. 3C and E) involve a hydrogen-bond
interaction between the hydroxyl group of Ser12 and the N9 of the
theophylline imidazole nitrogen, which is also present between
Serl2 and the pyridine nitrogen atom of PM in the sheep PL
kinase structure. In the sheep structure, there are two hydrogen-
bond interactions formed between the hydroxyl and amide
nitrogen of Thr47 with the hydroxyl group of PM. In the
theophylline complex, the C6 oxygen of the piperazine ring and
the N7 of the imidazole ring are adjacent to Thr47, but any
possible hydrogen-bond interactions are considerably lengthened
beyond 3.6 A. In our previous studies we have shown that Asp235
in PL kinase acts as the active site base to deprotonate the C5'-OH
group of Bg vitamers prior to phosphorylation [42]. In the sheep
structure, Asp235 makes a strong hydrogen-bond interaction with
the C5'-OH group of PM. This interaction is conserved with the
(2 oxygen of theophylline. In addition the C2 oxygen atom is
involved in water-mediated interactions with the side-chains of
Asp235, GInll or main-chain nitrogen of Tyr84. Both PM and
theophylline make hydrophobic interactions with the protein
residues Val231, Vall9, Tyr84 and Phe43. We should point out
that, it’s quite possible that theophylline binds in different alternate
conformations; however, such conformers would abolish several of
the hydrogen-bond interactions described above for the modeled
conformer. As previously described in the wild-type unliganded
hPL kinase structure, the bound MPD at the active site makes
a hydrogen bond interaction with the main-chain nitrogen atom of
Thr47, as well as several hydrophobic interactions with the active
site  residues. Also, like the previously published wild-type
unliganded hPL kinase structure, we observed several MPD
molecules located on the surface of the protein at various crevices,
as well as at the interfaces of crystal contacts. MPD was used as an
additive during crystallization.

A bound Na* in the hPL kinase-theophylline structure is located
at the ATP binding site, and is coordinated by five well-defined
water molecules. In the previous unliganded hPL kinase structure
we also showed a similarly bound Na®. The intricate water-
mediated interaction between the Na* and the protein is believed
to stabilize the active site conformation [32]. It was shown that
binding of MgATP displaces the Na™ to another position, where it
makes mediated interactions between the ATP y-phosphate and
the protein residues, contributing to the stabilization of the
nucleotide [32].
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site water molecules of the hPL kinase structure, calculated before the MPD, theophylline and water molecules were added to the refined model. (B)
A 2Fo-Fc map (contoured at 0.9 o level) of MPD, theophylline and water molecules of the hPL kinase structure. Both maps are superimposed with the
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molecules are red sphere. (D) Superimposed binding of theophylline (from hPL kinase) and pyridoxamine (from sheep PL kinase). Protein residues are
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showing interactions between the active site residues, water molecules and theophylline. Dotted and heavy lines are hydrogen-bond and
hydrophobic interactions, respectively. Only potential hydrogen-bond interactions less than 3.6 A are shown with dotted lines. For brevity,
theophylline is denoted as theop in the figure.

doi:10.1371/journal.pone.0040954.g003
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Structure of the Ternary hPL Kinase-ginkgotoxin-MgATP
Complex

We also co-crystallized hPL kinase with ginkgotoxin (4'-O-
methylpyridoxine) and MgATP, and the ternary complex struc-
ture was refined to 2.15 A resolution. The first three N-terminus
residues had weak density and were not included in the final
refined model. Also, the overall structure is indistinguishable from
the wild-type unliganded structure. We observed bound MgATP
and ginkgotoxin (Fig. 4A—C) at both subunit active sites. The
binding mode of MgATP is conserved as previously described for
the wild-type hPL kinase-MgATP complex [32]. The ATP
adenine moiety makes both hydrogen-bond and hydrophobic
contacts with the protein. The three ATP phosphate groups are
involved in extensive hydrogen-bond interactions with the protein,
including a P-loop consisting of an anion hole formed by the
highly conserved sequence motif GTGA (residues 232-235) and
the N-terminus of a o7-helix formed by residues 234-248. The
ATP B- and y-phosphates are further stabilized by bound Mg**
and Na*, the former ion being associated with both phosphate
groups, while the Na* is only associated with the y-phosphate.
These metals help to neutralize the negative phosphate and the
active site acidic residue charges and stabilize the transition state
during the y-phosphate transfer from ATP to the substrate [32].

The two molecules of ginkgotoxin are bound to the PL binding
sites of the two enzyme monomers (Fig. 4A—C). We also observed
what appears to be the phosphorylated product of ginkgotoxin
bound at the PL sites, overlapping the bound unphosphorylated
ginkgotoxin, although the electron density map showed a break in
the ring structure and the phosphate moiety (Fig. 4A and B). The
ginkgotoxin phosphate position has previously been observed to
bind sulfate and/or phosphate in PL kinase, making similar
interactions with the anion hole of the kinase [43]. Ginkgotoxin
and its phosphorylated analog were refined with occupancies of
60% and 40%, respectively. We have previously reported in the
hPL kinase D235A mutant structure, a similar co-existence of PL
and PLP at the active site [42]. The interactions between
ginkgotoxin and the protein (Fig. 5A-C) are identical to those
previously described for PM in the sheep PL kinase structure.
These include hydrogen-bond interactions from NI to the
hydroxyl group of Serl2; C5'-OH group to the carboxylate of
Asp235; C3 oxygen to both the amide nitrogen and hydroxyl
group of Thr47. There are also hydrophobic interactions between
ginkgotoxin and Thr47, Phe43, Val231, Vall9, His46 and Tyr84
that are conserved in the sheep structure. In particular, the methyl
ether group makes hydrophobic interactions with Thr47 and
Val231 that could contribute to the binding of ginkgotoxin to PL
kinase. There appears to be a network of water-mediated
hydrogen-bond interactions involving two water molecules and
the C5’-OH group of ginkgotoxin, and the main-chain nitrogen of
Serl2, the side chains of GIlnll and Asp235. Only one water
molecule appears at the sheep active site, and the water-mediated
interactions are either missing or significantly lengthened in the
sheep PL kinase structure complexed with PM. These additional
water-mediated interactions could also be contributing to the
potent inhibitory activity of ginkgotoxin.

The pyridine ring of the phosphorylated ginkgotoxin is
displaced about 2 A from that of the unphosphorylated analog
in the direction of the bound ATP, resulting in extinction or
significant lengthening of the hydrogen-bond interaction from N1
to Ser12 and C3 oxygen to Thr47 (Figs. 4C, 5D and 5E). The N1
atom makes a water-mediated hydrogen-bond interaction with the
side-chain atoms of Glnll, Asp235 or main-chain nitrogen atom
of Tyr84. The displacement of the ginkgotoxin phosphorylated
analog toward ATP has placed its phosphate group about § A
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from the ATP y-phosphate group, as compared to the ~6 A
closest distance between the ginkgotoxin C5’-OH and the ATP -
phosphate. Like the hPL kinase D235A structure [42], we also
observed a second bound Mg?" at each active site that lies close to
the ginkgotoxin phosphate and mediates an interaction with the
ATP ry-phosphate, helping to dissipate the negative charges. This
second Mg?* does not occur in structures lacking a bound
phosphorylated compound. The a- and B-phosphate groups are
also stabilized by extensive interactions with the P-loop residues as
described above. Finally, the ATP y-phosphate is further stabilized
by the conserved Na® and Mg®".

Discussion

Several medicinal compounds are known to exhibit neurotoxic
effects, which have been traced to their inhibitory activity against
human PL kinase with concomitant PLP deficiency [1-7]. Two
such potent reported hPL kinase inhibitors are theophylline and
ginkgotoxin [1-5,10-21]. To gain insight into how these
compounds affect vitamin Bg metabolism and the concomitant
PLP deficiency, we performed structural studies of hPL kinase co-
crystallized with these compounds. Both compounds bind at the
PL binding site, which might explain their inhibitory properties
against PL kinase. Kaster e al. showed that ginkgotoxin competes
with PL and that, in the presence of ginkgotoxin; phosphorylation
of PL is severely hindered [1]. Nevertheless, they also observed
that when PL concentration is increased the inhibitory effect of
ginkgotoxin or theophylline is alleviated; consistent with several
studies showing that poisoning from ginkgotoxin and theophylline
can be reversed by vitamin Bg [5,17,22,23]. It is a common
practice to co-administer vitamin Bg with drugs that are suspected
to lead to PLP deficiency.

We have also identified several other potential hPL kinase
inhibitors, including enprofylline, theobromine, caffeine and
lamotrigine using kinetic studies. These compounds, like ginkgo-
toxin and theophylline, also exhibit neurotoxic effects. Moreover,
a previous study on epileptic patients treated with lamotrigine,
showed, as for theophylline, a drop in the serum concentration of
PLP [41].

It is interesting to note that not only do the tested compounds fit
in the PL binding site, but they also have similarly placed
heteroatoms that can potentially make conserved interactions with
the active site residue. We note that unlike theophylline, the N7
imidazole nitrogen of caffeine and theobromine (Fig. 2) are
methylated and may not be available to make hydrogen-bond
interactions with the Serl2 hydroxyl group as observed in
theophylline. This may explain the lower PL kinase inhibitory
activities exerted by these two compounds. Although not obvious,
it seems that the reduced kinase inhibitory activity by enprofylline
compared to theophylline could be due to steric crowding by the
enprofylline propyl moiety (Fig. 2). Roscovitine, an inhibitor of
cyclin-dependent kinases with strikingly similar core structural
features as theophylline (Fig. 2) has also been shown to have
moderate inhibitory activity against hPL kinase [44,45]. Structural
studies show this compound to bind to hPL kinase at the PL site
making conserved protein interactions in a similar fashion as
theophylline [45]. It thus seems that the active site of hPL kinase is
a sink for compounds with uniquely placed moieties that are
capable of making interactions with the active site. If compounds
with such structural characteristics are known to be neurotoxic,
they should be carefully investigated to find whether they affect Bg
metabolism by inhibiting hPL kinase. A co-administration of
vitamin Bg can be recommended with their therapeutic use.
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Figure 4. Binding of ginkgotoxin and its phosphorylated analog at the active site of hPL kinase. (A) A Fo-Fc map (contoured at 2.5 ¢
level) of ginkgotoxin and its phosphorylated analog, ATP, Mg®" and Na* of the hPL kinase structure, calculated before these molecules were added to
the refined model. (B) A 2Fo-Fc map (contoured at 0.9 o level) of ginkgotoxin and its phosphorylated analog, ATP, Mg2+ and Na* of the hPL kinase
structure. Both maps are superimposed with the final refined models. (C) Binding of ginkgotoxin (yellow stick), phosphorylated ginkgotoxin (cyan
stick), ATP (green and brown sticks), Mg2+ (white sphere) and Na* (blue sphere). Protein residues are in magenta stick or ribbon. For brevity,
ginkgotoxin and its phosphorylated analog are denoted as Gl and GIP in the figure.

doi:10.1371/journal.pone.0040954.g004
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lines are hydrogen-bond and hydrophobic interactions, respectively. (D) Interactions between active site residues (green stick), ginkgotoxin
phosphate (cyan stick), ATP (green and brown sticks), Mg ions (brown sphere), Na ions (blue sphere) and water molecules (red sphere). (E) Schematic
diagram showing interactions between ginkgotoxin phosphate, ATP, water molecules, Mg ions and the protein residues. Dotted and heavy lines are
hydrogen-bond and hydrophobic interactions, respectively. Only potential hydrogen-bond interactions less than 3.6 A are shown with dotted lines.
For brevity, ginkgotoxin and its phosphorylated analog are denoted as Gl and GIP in the figure.

doi:10.1371/journal.pone.0040954.g005

Materials and Methods

Materials

Ginkgotoxin was synthesized by 4'-O-methylation of pyridoxine
according to published method [39]. Theophylline, enprofylline,
theobromine, caffeine, and lamotrigine were purchased form
Sigma-Aldrich (St. Louis, MO) and used without further
purification. Wild-type hPL kinase used for the kinetic and
crystallization experiments was expressed and purified as pre-
viously published by our group [32].

Determination of Kinetic Constants

Wild-type hPL kinase used in the kinetic experiments was
dialyzed overnight against 20 mM sodium BES buffer, pH 7.2. All
assays were performed at 37°C in a 1-cm thermostated cuvette.
Initial velocity studies for the conversion of PL to PLP were
followed at 388 nm in an Agilent 8454 UV/Vis diode array
spectrophotometer in 20 mM sodium BES buffer, pH 7.2 [32]. As
a first step, percentage inhibition of hPL kinase with each tested
drug (100 uM) was measured at a saturating MgATP concentra-
tion of 1 mM and fixed PL concentration of 200 uM (approxi-
mately three times the K, value). Detailed kinetic studies for the
determination of K; for theophylline, enprofylline, lamotrigine and
ginkgotoxin were carried out at several different drug concentra-
tions (e.g. 10, 25, 50, 75, 100 and 150 uM) under two
experimental conditions: at a MgATP concentrations of 800 uM
and varied PL concentrations between 2 and 340 uM, and
reciprocally at a PL concentrations of 100 pM and varied MgATP
concentrations between 50 UM and 2 mM. The reciprocal rate
data were plotted against reciprocal of PL concentrations to obtain
Lineweaver-Burk plots.

Crystallization, Data Collection and Processing

Human PL kinasewas dialyzed overnight against 20 mM
sodium BES buffer, pH 7.2 containing 150 mM NaCl and
5 mM 2-mercaptoethanol, and then concentrated to 25-35 mg/
ml. Crystallization attempts were focused on previously published
human PL kinase crystallization condition [32]. X-ray quality
crystals with the hanging-drop method using PL kinase (700 uM)
with theophylline (2.5 mM) or PL kinase with ginkgotoxin (2 mM)
and MgATP (1 mM) and the precipitant 48-50% MPD at room
temperature were obtained for the binary PL kinase-theophylline
complex and the ternary PL kinase-ginkgotoxin-MgATP complex.

Crystals of the theophylline complex were cryo-protected in
solution containing mother-liquor solution, 2.5 mM theophylline
and 50% MPD; while crystals of the ginkgotoxin complex were
cryo-protected  in  mother-liquor  solution  containing
I mM MgATP, 2 mM ginkgotoxin and 50% MPD prior to data
collection. X-ray data were collected at 100°K using a Rigaku X-
Stream Cryogenic Crystal Cooler System and an R-Axis IV++
image plate detector, a Rigaku MicroMax—007 X-ray source
equipped with Rigaku Varimax confocal optics operating at 40 kV
and 20 mA. The data were processed with the Rigaku d*trek
software and the CCP4 suite of programs [46]. The X-ray data are
summarized in Table 1.
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Table 1. Refinement parameters for the human PL kinase
structure with bound inhibitors.

Theophylline Ginkgotoxin
Data Collection
Statistics
Space Group 1222 1222

Cell Dimensions (A)  92.30, 115.85, 171.90

37.68-2.10 (2.18-2.10)

92.74, 115.22, 169.55

Resolution (A) 28.82-2.15 (2.23-2.15)

No. of measurements 157598 212374
Unique reflections 52989 (5317) 49008 (4907)
<l/sigma I> 18.5 (4.1) 11.9 (4.1)
Completeness (%) 98.1 (98.0) 98.6 (100)
Rmerge (%) 3.2 (24.1) 6.5 (33.5)

Structure Refinement
29.19-2.10 (2.18-2.10)
52986 (5205)

28.81-2.15 (2.23-2.15)
45953 (4283)

Resolution limit (A)

No. of reflections

Rfactor (%) 20.5 (33.7) 21.9 (42.5)
Rfree (%)° 254 (37.2) 26.2 (42.5)
Rmsd standard

geometry

Bond-lengths (A) 0.006 0.010
Bond-angles (°) 1.30 1.60
Dihedral angles

Most favored regions 90.3 89.9
Additional allowed 9.5 2.9
regions

Bfactors

All atoms 48.1 425
Protein alone 46.8 41.9
Theophylline/ 64.4 60.2
Ginkgotoxin

Metal ions 84.1 333
Sulfate 64.4 58.1
Water 56.2 433
MPD 716 67.3

ATP = 34.8

“Numbers in parenthesis refer to the outermost resolution bin.

PRmerge = il = i)/ EnrZ4 -

5% of the reflection were excluded from the refinement and used for the
calculation of Rfree.

doi:10.1371/journal.pone.0040954.t001

Structure Refinement of the Binary PL Kinase-
theophylline Complex

The isomorphous hPL kinase D235A mutant (PDB code 3FHX)
structure stripped of all small molecule ligands, water and metals
was used as the starting model for the refinement of the
theophylline bound structure. All refinements were performed
with the CNS program [47]. After rigid body refinement, and
subsequent conjugate gradient minimization, simulated annealing
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and B-factor refinements, theophylline density was identified at the
two PL binding sites of both subunits. Densities were also
identified for the Asp235 side chains, as well as Na* in both
subunit active sites. These molecules were added, and the ensuing
model subsequently refined with alternate cycles of conjugate
gradient minimization, simulated annealing and B-factor refine-
ments with intermittent model rebuilding and structure validation
with COOT [48]. Addition of 337 water, 12 MPD and 7 sulfate
molecules led to the final crystallographic Rfree and Rfactors of
20.5/25.4% at 2.1 A resolution.

Structure Refinement of the Ternary PL Kinase-
ginkgotoxin-MgATP Complex

The above refined hPL kinase-theophylline complex structure
was used as the starting model for structure refinement, following
similar procedures as described above. We observed a bound
ginkgotoxin and what appears to be the phosphorylated product of
ginkgotoxin at both active sites. One ATP molecule, one Na ion,
and two Mg ions were also identified in each of the two active sites.
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The final refined model at Rfree/Rfactors of 21.9/26.2% at
2.15 A resolution contained 2 ginkgotoxin, 2 ATP, 273 water, 5
sulfate and 6 MPD molecules.

The structure solution/refinement statistics for the two com-
plexes are shown in Table 1. All figures were drawn using PyMOL
(Delano Scientific, 2006; http://www.pymol.org) and labels were
added using Adobe® Photoshop.
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