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Abstract

We test for the presence of multifractality in the daily returns of the three most important stock market indices from Central
and Eastern Europe, Czech PX, Hungarian BUX and Polish WIG using the Empirical Mode Decomposition based Multifractal
Detrended Fluctuation Analysis. We found that the global Hurst coefficient varies with the q coefficient and that there is
multifractality evidenced through the multifractal spectrum. The exercise is replicated for the sample around the high
volatility period corresponding to the last global financial crisis. Although no direct link has been found between the crisis
and the multifractal spectrum, the crisis was found to influence the overall shape as quantified through the norm of the
multifractal spectrum.
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Introduction

There is a long interest in modeling financial markets that span

well beyond the disciplines of finance and economics attracting

mathematicians, physicists and many others from different fields.

The attractiveness of financial markets comes not only from its

complex dynamics that result from the interactions of a multitude

of agents but also from its presence and influence in our daily life

as the last financial crisis has proved it. One of the questions that

emerged in the last decades was whether financial markets are

characterized by chaos and fractality.

Before going further, we clarify a few key concepts for the

general audience. By efficient financial market we understand,

following [1], a market where prices reflect in a full manner all the

information available and, moreover, they adjust in a quick

manner when new information becomes available. We also use the

concept of daily (index) returns by which in this paper we

understand the logarithmic difference of a stock market index

between its closing price in a certain day and its closing price a day

earlier.

The discipline of economics has not remained indifferent to the

rapid emerging field of fractal and chaos theory. The development

of testing techniques in the fields of mathematics and physics has

started to be felt in economics in the earlỳ 80’s when early tests for

the presence of fractal dimension and chaotic behavior in

economic and financial processes were applied, see [2] and [3]

for a review of early results. Until now, the idea of chaos and

fractal behavior remains debatable in the field of economics and

finance, mostly due to the specific of economic time series

characterized by relatively short samples (the accurate computa-

tions of correlation dimension or the maximum Lyapunov

exponent require large samples) and the presence of noise. [4]

summarized the research taken in the`80’s and`90’s by pointing

that there is no evidence of ‘‘within the structure of the economic

system’’ as current tests cannot determine the source of detected

chaos.

At the same time, as some of the research points out, [3] and

[4], there is a further need to further develop tests and deepen the

topic of chaos and fractality in the field of economics. The need is

even more urgent in the discipline of finance. The still dominant

paradigm of efficient stock markets as outlined by [1] has serious

weaknesses, among which we can enumerate time dependent self

similarity, see [5] and [6] for a larger review. Such weaknesses

called for alternative theories, one of which is worth mentioning in

the context of present paper, namely the fractal market hypothesis

due to [6]. According to [5], the fractal market hypothesis assumes

that asset returns are dependent on both frequency and time

horizon and that there is global dependency manifested through its

fractality. This hypothesis has been reinforced by the discovering

of multifractals in the asset returns, see [7] for early findings, which

develops earlier ideas by [8] as well as [9].

Although there is a growing work on multifractality for either

developed stock markets, see [7], or emerging stock markets, [10]

or [11] , the literature not only on multifractality, but in general in

testing for chaotic and fractals behavior in CEE stock markets is

very limited. Nevertheless, some papers are worth mentioning.

[12], using a Hurst coefficient derived on the basis of the wavelet

decomposition, found evidence for long run dependence on some

of the CEE stock markets. They also found evidence of a time

dependent value for the Hurst coefficient. In a recent paper, [13],

using the Hurst coefficient determined on the basis of the

Detrended Fluctuation Analysis, analyzed the dynamics of daily

returns of share prices of 126 selected companies from the Warsaw

Stock Exchange. He found that the after the drop in the Hurst

exponent, the change in either long-term trend or in the long-term
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rate of return has an increased probability than for points

randomly selected from the whole sample.

This paper proposes itself to answer to several questions, namely

whether the daily returns in the selected CEE stock market indices

are characterized by multifractality, how much using a surrogate

data series, shuffled ones, leads to changes in the results. Not at

last, we also investigate whether the crisis period has lead to

different strenghts of multifractal spectrum, as suggested in an

earlier work on the 1987 financial crisis by [14].

The paper is organized as follows. The methodology used

throughout the paper is explained in the second section. The third

section presents the empirical results and discusses the results. The

last section draws the conclusions and outlines some possible

extensions of this paper.

Methods

The methodology is based on the Empirical Mode Decomposi-

tion, EMD hereafter, based Multifractal Detrended Fluctuation

Analysis, (EMD based MFDFA hereafter). There are a number of

techniques to derive the multifractal spectrum of a time series, some

based on wavelets, other based on detrended fluctuation analysis.

Basically, EMD based MFDFA is a development of the now well

established technique of Multifractal Detrended Fluctuation Anal-

ysis, MFDFA hereafter, due to [15]. We discuss first the EMD

approach in decomposing time series, and present then in a

comparative way the standard MFDFA as well as the EMD

variation.

The Empirical Mode Decomposition
The Empirical Mode Decomposition, is a new technique in

signal theory due to [16]. Several papers have outlined its

advantages with respect to other filtering techniques, see) [17] or

[18]. As [16] showed, essentially, the EMD consists in decompos-

ing a certain time series into a finite number of so-called intrinsic

mode functions. These functions have to fulfill two essential

conditions. The first one says that the numbers of local extreme

and the numbers of zero crossings, for the entire sample of data,

must be equal or differ by 1 at most. The second condition states

that at any point in time, the mean value of the ‘‘upper envelope’’,

as given by the local maxima, and the ‘‘lower envelope’’, given by

the local minima, must be zero.

When one compares it the wavelet approach or the Fourier

approach, one notices that it enjoys several advantages. Compared

with the Fourier approach, it gives a representation in both time

and frequency and it also allows working with nonstationary data

while compared with wavelets it also can work with nonlinear time

series. We detail the algorithm below:

(1) For a given time series y(t), one identifies all extrema;

(2) Using an interpolation procedure, the local maxima result in

an upper envelope U(y);

(3) In a similar manner, from the minima, a lower envelope

results, L(y);

(4) One derives the mean envelope as:

m tð Þ~ U(y){L(y)½ �
2

(5) This mean is extracted from the signal, so that a new series

results:

Figure 1. Standard MF-DFA Analysis of Czech Stock Market Index PX. a) Daily returns for Czech Stock Market Index PX; b) Log Scaling
Function; c) q-generalized Hurst Exponent; d) Multifractal spectral scaling exponent t(q) versus q; e) Multifractal spectrum.
doi:10.1371/journal.pone.0040693.g001

Multifractality Stock Markets
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g tð Þ~y tð Þ{m tð Þ

(6) Finally, one verifies whether the new series g(t) satisfies the two

above mentioned conditions.

If the conditions are met, the algorithm is stopped, if they are

not, the algorithm continues. In the end, the trend is given by:

Figure 2. Standard MF-DFA Analysis of Hungarian Stock Market Index BUX. a) Daily returns for Hungarian Stock Market Index BUX; b) Log
Scaling Function; c) q-generalized Hurst Exponent; d) Multifractal spectral scaling exponent t(q) versus q; e) Multifractal spectrum.
doi:10.1371/journal.pone.0040693.g002

Figure 3. Standard MF-DFA Analysis of Polish Stock Market Index WIG. a) Daily returns for Polish Stock Market Index WIG; b) Log Scaling
Function; c) q-generalized Hurst Exponent; d) Multifractal spectral scaling exponent t(q) versus q; e) Multifractal spectrum.
doi:10.1371/journal.pone.0040693.g003
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rn tð Þ~y(t){
Xn

i~1

gi tð Þ

Where rn tð Þ represents the trend of the series.

The MFDFA Based on Empirical Mode Decomposition
The introduction of EMD based MFDFA can be traced back to

[19]. The development assumes that the first two steps of MFDFA

remain the same. In the third step, instead of a polynomial

detrending, specific to detrended fluctuation analysis, the EMD is

used to decompose the series. The method used in this paper is

described below, following [15] and [19].

We start from a given time seriesx tð Þt~1,:::,N. In the first step

we derive a profile of the series which is nothing more than a

cumulative sum:

u tð Þ~
Xt

i~1

xi, t~1,:::,N ð1Þ

Next, in the following step, we partition the profile ,u tð Þ, in

segments each one of equal size s, with the property of being

disjoint, whereNs~int N=s½ �. Here Nsis determined as the ratio

between N and the scale factor s.

Each of the segments uv has the following property:

uv ið Þ~u lzið Þ for 1ƒiƒs ð2Þ

Here l is determined from: l~ v{1ð Þs.

The step three of the algorithm in the baseline MFDFA implies

the detrending of the segments using a polynomial fitting. In the

version based on the empirical mode decomposition, one

computes an EMD local trend for each segment uv as

~uuv ið Þ~rn ið Þ, where ~uuv ið Þis the local trend and rn ið Þ is local trend

based on the EMD approach, see the previous section.

One constructs then the series of residuals using the trend

function as follows:

ev ið Þ~uv ið Þ{rn ið Þ, 1ƒiƒs ð3Þ

Using the residuals determined in equation (3), the detrended

fluctuation function F v,sð Þ for a segment uv is given by:

F v,sð Þ½ �2~ 1

s

Xs

i~1

ev ið Þ½ �2 ð4Þ

Based on this we derive the q-th order overall detrended

fluctuation function as:

Table 1. Multifractal strength for standard MFDFA.

Series Multifractal strength

Initial series Shuffled Series

Czech PX 0.69 0.44

Hungarian BUX 0.54 0.34

Polish WIG 0.44 0.50

Source: Own computations.
doi:10.1371/journal.pone.0040693.t001

Figure 4. EMD based MF-DFA Analysis of Czech Stock Market Index PX. a) Daily returns for Czech Stock Market Index PX; b) Log Scaling
Function; c) q-generalized Hurst Exponent; d) Multifractal spectral scaling exponent t(q) versus q; e) Multifractal spectrum.
doi:10.1371/journal.pone.0040693.g004
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Fq sð Þ~ 1

Ns

XNs

v~1

F v,sð Þ½ �q
( )1

q

ð5Þ

Where q can take any real value except q = 0. In case q = 0, the

formula becomes:

Figure 5. EMD based MF-DFA Analysis of Hungarian Stock Market Index BUX. a) Daily returns for Hungarian Stock Market Index BUX; b)
Log Scaling Function; c) q-generalized Hurst Exponent; d) Multifractal spectral scaling exponent t(q) versus q; e) Multifractal spectrum.
doi:10.1371/journal.pone.0040693.g005

Figure 6. EMD based MF-DFA Analysis of Polish Stock Market Index WIG. a) Daily returns for Polish Stock Market Index WIG; b) Log Scaling
Function; c) q-generalized Hurst Exponent; d) Multifractal spectral scaling exponent t(q) versus q; e) Multifractal spectrum.
doi:10.1371/journal.pone.0040693.g006
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F0 sð Þ~ exp
1

Ns

XNs

v~1

ln F v,sð Þ½ �
( )

ð6Þ

Finally, based on different timescales s, a power-law relationship

can be established between Fq sð Þ and the time scale s:

Fq sð Þ~ssh qð Þ ð7Þ

Here h qð Þ stands for the generalized Hurst index.

Further, for a each q a corresponding function t qð Þ can be

determined by:

t qð Þ~qh qð Þ{Df ð8Þ

With Df representing the multifractal spectrum.

Results

Data Used
The data consist in daily returns of main stock market indices in

Czech Republic, Hungary and Poland. All the data were taken

from DataStream. The data were transformed, as usual in the

literature, in US dollar denominated values. Before applying the

statistical techniques, the price indices were transformed in log-

returns.

The data for Czech Republic consists in daily observations for

PX index from April 1994 to December 2010. Overall, 4369

observations are used. For Hungary, we used daily data on BUX

index, dating from June 1993 to December 2010, with a total

number of observations of 4577. The last index, the one for

Poland, consists in daily observation for the WIG index, dated

between June 1993 and December 2010, overall 4575 observa-

tions being used.

Standard MF-DFA
The results for the standard MFDFA for the three stock market

indices are presented in Figures 1, 2 and 3. The procedures used

an upper bound for q of 5, a lower bound of 25 and considered 31

elements in the vector q. For each case, results for the case of the

shuffled time series are also presented. Shuffled time series are

Table 2. Multifractal strength for EMD based MFDFA.

Series Multifractal strength

Initial series Shuffled Series

Czech PX 0.67 0.47

Hungarian BUX 0.49 0.65

Polish WIG 0.58 0.86

Source: Own computations.
doi:10.1371/journal.pone.0040693.t002

Figure 7. The Impact of the Crisis Analyzed Using Standard MF-DFA. Multifractal spectrum for the whole sample compared with 2008–2009
sample that includes the high volatility period using standard MFDFA: a) Czech case: PX for the whole sample and PX crisis for 2008–2009 period; b)
Hungarian case:BUX for the whole sample and BUX crisis for 2008–2009 period; c) WIG for the whole sample and WIG crisis for a 2008–2009
subsample.
doi:10.1371/journal.pone.0040693.g007

Multifractality Stock Markets

PLoS ONE | www.plosone.org 6 July 2012 | Volume 7 | Issue 7 | e40693



obtained from the original series after eliminating the serial

correlation.

The Hurst coefficient for each series, as shown in the literature, is

given by H(q) for q equal to 2. I obtained a Hurst coefficient for

Czech PX of 0.57, for Hungarian BUX of 0.55, while for the last

case of Polish WIG, Hurst coefficient was estimated at 0.54. These

estimations indicate persistence of the time series and are usually

interpreted as an indicator of an emerging financial market, see [10]

and they are consistent with the results from other studies, see [13].

First of all, there is evidence of multifractality from the

dependence of the H(q) from the q moment, as presented in

Figures 1c, 2c and 3c. Moreover, there is a decreasing trend for

H(q) which is a clear sign of multifractality as indicated by the

literature. In order to characterize the multifractality, the multi-

fractal spectra are presented in Figures 1e, 2e and 3e.

There are some variations with respect to the amplitude of the

fractal spectrum, given by the formulamax (h(q)){ min (h(q)), see

Table 1. We would like to know whether the shuffled series have a

different multifractal strength. We apply the x2-test for association

with which we can test whether there is any influence of shuffling

the series on the multifractal strength. When running the test we

get there is no influence of shuffling the series (p-value is of 0.47).

EMD Based MF-DFA
We follow the same procedure in applying the EMD version of

the MFDFA, using values for q between 25 and 5 and 31 elements

for q. We also apply the procedure for the shuffled series. The

results are presented in Figures 4, 5 and 6.

We look again at the results for the Hurst coefficient which are

given by H(q) for q equal to 2. We obtained similar results, namely

a Hurst coefficient for Czech PX of 0.57, for Hungarian BUX of

0.53, while for the last case of Polish WIG, Hurst coefficient was

estimated at 0.53.

We also present the multifractal strength for each case including

the shuffled series, Table 2. We test again if shuffling the series led

Figure 8. The Impact of the Crisis Analyzed Using EMD based MF-DFA. Multifractal spectrum for the whole sample compared with 2008–
2009 sample that includes the high volatility period using EMD based MFDFA: a) Czech case: PX for the whole sample and PX crisis for 2008–2009
period; b) Hungarian case:BUX for the whole sample and BUX crisis for 2008–2009 period; c) WIG for the whole sample and WIG crisis for a 2008–2009
subsample.
doi:10.1371/journal.pone.0040693.g008

Table 3. Multifractal strength in crisis compared to full
sample using standard MFDFA.

Series Multifractal strength

Full sample Crisis sample

Czech PX 0.69 0.76

Hungarian BUX 0.54 0.97

Polish WIG 0.44 0.65

Source: Own computations.
doi:10.1371/journal.pone.0040693.t003

Table 4. Multifractal strength in crisis compared to full
sample using EMD based MFDFA.

Series Multifractal strength

Full sample Crisis sample

Czech PX 0.67 0.58

Hungarian BUX 0.49 0.65

Polish WIG 0.58 0.62

Source: Own computations.
doi:10.1371/journal.pone.0040693.t004

Multifractality Stock Markets
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to changes in the strength of the multifractal series. The x2-test for

association is used and the results indicate as in the standard case

that shuffling the series did not modify the multifractal strength (p-

value is of 0.39).

The Impact of the Crisis
Another question that I answer to in this paper is whether the

global financial crisis has led to increased multifractality in the

selected stock markets. As showed by [14], the financial crisis from

1987 led to changes in the diameter of the multifractal spectra,

signaling an increased complexity in financial data. We discuss in

this section whether a similar phenomenon occurred in the

emerging financial markets from Europe. Again we apply both

approaches in deriving the multifractal spectra of the time series in

cause.

Figure 7 and 8 shows the multifractal spectra computed for the

whole period as well as for a subsample corresponding to the

financial crisis period. We computed the multifractal spectrum for

a subsample of two years, January 2008 to December 2009,

roughly corresponding to the crisis period, also Figures 1a, 2a and

3a. Two entire years were selected as the precise date when the

crisis spilled to a particular financial market is hard to determine.

Is the Multifractal Strength Different during the Crisis?
The multifractal strengths are presented in Tables 3 and 4.

When testing for any influence of the crisis on the multifractality

using the x2-test for association we cannot find any statistical

influence of the crisis on the multifractality of the series as

synthesized in the multifractal strength (the p-values are of 0.35 for

the standard MFDFA and of 0.40 for the EMD version).

Has the Multifractality Changed during the Crisis?
We discuss here further evidence regarding the shape and

distribution of the multifractal spectrum for the selected emerging

European stock markets. While in the previous section we focused

on the multifractal strengths, here we take a look at the

multifractal spectra taken as a whole. While the approach in the

previous section was justified on the grounds that most of the

research on the multifractality of the financial time series has been

interested first of all in the multifractal strength of the series.

However, given the fact that the multifractal strength of a time

series has not only a maximum but also width and a parabolic

distribution, we quantify each of the multifractal strengths through

a Euclidean norm.

We use the p-norm, the 2-norm to be more precise, to

characterize the multifractal spectrum of the series given the fact

that the multifractal spectrum is a line in a two dimensional space.

The 2-norm is also known as Hilbert – Schmidt norm and it is

given as:

Ak k2
HS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i~1

Xn

j~1

Daij D2
vuut

We compare the norms of the multifractal spectra for each

series for the whole sample as well as for the crisis period.

The results are presented in Table 5 and 6. We apply again the

x2-test for association to see if there is any influence from the crisis

on the multifractal spectra. In this case the values of the computed

x2-test (0.000245 for the baseline MFDFA approach as well as

0.000244 for the EMD based MFDFA) indicate that the crisis has

clearly influenced the overall shape of the multifractal spectrum.

Discussion

The accumulation of evidence in the favor of chaotic patterns,

fractality and multifractality in economic and financial time series

is an important contribution in the understanding of the

complexity of economic and financial processes. In this paper,

we add to the existing evidence on multifractality in financial time

series by using daily returns from three of the key stock market

indices in Central and Eastern Europe.

We showed that the global Hurst coefficient varies with the

moment q, and that the series are characterized by a multifractal

spectrum. We compared the results from the initial time series with

those obtained on the basis of shuffling the time series which we

found that did not influence the results. We also studied the impact

of the financial crisis the multifractal spectrum for the overall

periods for each stock market index with those for a subsample of

two years, 2008 to 2009, the years of the last big financial crisis.

The overall evidences found here, although not a clear argument

in the favor of an increased multifractal strength, point to a more

complex change in the shape of the multifractal spectrum.

Further studies could deepen the topic by analyzing the factors

that drive the strength of the multifractal spectrum, its relationship

to the degree of financial development or its behavior during the

periods of financial crisis.
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Table 5. Norms of the multifractal spectra in crisis compared
to full sample based on MFDFA.

Series Norm of the multifractal spectrum
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Czech PX 5.36 5.71

Hungarian BUX 5.57 5.29

Polish WIG 5.82 5.51
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Table 6. Norms of the multifractal spectra in crisis compared
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Full sample Crisis sample
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Hungarian BUX 5.53 5.44

Polish WIG 5.48 5.55

Source: Own computations.
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Multifractality Stock Markets

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e40693



References

1. Fama EF (1970) Efficient capital markets: A review of theory and empirical

work. J. Finance 25: 383–417.
2. Day RH (1994) Complex Economic Dynamics : An Introduction to Dynamical

Systems and Market Mechanisms, Vol. I. Cambridge (MA): MIT Press, 333 p.
3. Barnett WA, Gallant AR, Hinch MJ, Jungeilges JA, Kaplan DT, et al. (1995)

Robustness of nonlinearity and chaos test to measurement error, inference

method, and sample size. J. Econ. Behav. Organ. 27: 301–320.
4. Barnett WA, Serletis A (2000) Martingales, nonlinearity, and chaos J. Econ.

Dyn. Control. 24: 703–724.
5. Los CA (2003) Financial Market Risk: Measurement & Analysis, Taylor &

Francis Books, 460 p.

6. Peters EE (1994) Fractal market analysis: applying chaos theory to investment
and economics. New York: J. Wiley & Sons, 336 p.

7. Mandelbrot B, Fisher A, Calvet L (1997) A multifractal model of asset returns.
Cowles Found. Discuss. Pap. 1164.

8. Mandelbrot B, van Ness JW (1968) Fractional Brownian Motion, Fractional
Noises and Application. SIAM Rev. 10: 422–437.

9. Mandelbrot B, Taylor HW (1967) On the Distribution of Stock Price

Differences. Oper. Res. 15: 1057–1062.
10. Kumar S, Deo N (2009) Multifractal properties of the Indian financial market.

Physica A 388: 1593–1602.
11. Oh G, Kim S, Eom C (2010) Multifractal Analysis of the Korean Stock Market.

J. Korean Physical Soc. 56: 982–985.

12. Jagric T, Podobnik B, Kolanovic M (2005) Does the Efficient Market Hypothesis
Hold? Evidence from Six Transition Economies. East. Eur. Econ. 43 (4): 85–

110.

13. Domino K (2011) The use of the Hurst exponent to predict changes in trends on

the Warsaw Stock Exchange. Physica A 390: 98–109.

14. Los CA, Yalamova R (2006) Multifractal Spectral Analysis of the 1987 Stock

Market Crash. Int. Res. J. Finance Econ. 1(4): 106–133.

15. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, et al.

(2002) Multifractal detrended fluctuation analysis of nonstationary time series.

Physica A 316: 87–114.

16. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, et al. (1998) The empirical

mode decomposition and the Hilbert spectrum for nonlinear and non- stationary

time series analysis. Proceedings of the Royal Society of London, Series A –

Mathematical, Physical and Engineering Sciences 454: 903–995.

17. Flandrin P, Rilling G, Goncalves P (2004) Empirical Mode Decomposition as a

Filter Bank. IEEE Sig. Proc. Lett. 11 112–114.

18. Wu Z, Huang NE (2004) A study of the characteristics of white noise using the

empirical mode decomposition method. Proceedings Royal Society of London A

460: 1597–1611.

19. Qian XY, Gu GF, Zhou WX (2011) Modified detrended fluctuation analysis

based on empirical mode decomposition for the characterization of anti-

persistent processes. Physica A 390: 4388–4395.

20. Wu Z-H, Huang N-E, Long SR, Peng CK (2007) On the trend, detrending, and

variability of nonlinear and nonstationary time series, Proc. Natl. Acad. Sci.

USA 104: 14889–14894.

21. Ihlen EAF, Vereijken B (2010) Interaction-dominant dynamics in human

cognition: beyond 1/fa fluctuation. J. Exp. Psychol. Gen. 139: 426–463.

Multifractality Stock Markets

PLoS ONE | www.plosone.org 9 July 2012 | Volume 7 | Issue 7 | e40693


