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Abstract

Understanding the mechanisms by which plants trigger host defenses in response to viruses has been a challenging
problem owing to the multiplicity of factors and complexity of interactions involved. The advent of genomic techniques,
however, has opened the possibility to grasp a global picture of the interaction. Here, we used Arabidopsis thaliana to
identify and compare genes that are differentially regulated upon infection with seven distinct (+)ssRNA and one ssDNA
plant viruses. In the first approach, we established lists of genes differentially affected by each virus and compared their
involvement in biological functions and metabolic processes. We found that phylogenetically related viruses significantly
alter the expression of similar genes and that viruses naturally infecting Brassicaceae display a greater overlap in the plant
response. In the second approach, virus-regulated genes were contextualized using models of transcriptional and protein-
protein interaction networks of A. thaliana. Our results confirm that host cells undergo significant reprogramming of their
transcriptome during infection, which is possibly a central requirement for the mounting of host defenses. We uncovered a
general mode of action in which perturbations preferentially affect genes that are highly connected, central and organized
in modules.
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Introduction

For decades, plant molecular virology has been overly focused

on the pathogen itself, studying their individual genes and

products, and their local effects on certain regulatory pathways

related to antiviral responses. However, with the arrival of modern

genomic tools allowing for high-throughput screenings, we can

now tackle the problem of the plant host-virus interaction from a

systemic perspective that would allow us reaching a deeper

understanding on how host and virus genotypes, environmental

effects and stochasticity interplay in determining the pathological

outcome of an infection. Viral infections typically alter host

physiology, notably by diverting almost all cellular resources for

the production of virus-specific components, and by actively

suppressing host defenses [1,2]. As a response to infection, hosts

compensate by over- or under-expressing certain cellular path-

ways, and deploying specific antiviral measures. Collectively, these

alterations determine the type and strength of symptoms displayed

and the virulence of the infection. Much effort has gone into

identifying individual cellular traits that may change as a

consequence of viral infection [3] and this has greatly benefited

from the contemporary development of genome-wide investigation

technologies and their successful application to plant diseases

research [4,5]. These technologies have further demonstrated

great potential in providing insights into multidimensional

networks of plant-virus interactions [4,6], notably by allowing

combined analyses at the host transcriptome and proteome levels,

as was recently shown for HIV-1 [7].

Based on the above, it has been anticipated that a systems

biology approach to infections should allow the identification of

universal principles and features of host-virus interactions, as

opposed to scrutinizing many specific aspects of any given viral

infection [8–10]. Such generic principles may indeed prove more

predictive of the outcome of viral diseases and therefore, more

efficient in the prophylaxis, diagnosis, and even treatment of such

diseases. In a network approach, viral pathogenesis can be viewed

as the expression of new constraints imposed by the virus upon the
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cellular interactome: while the host initiates a reprogramming of

its genetic profile to activate the immune system to counteract the

infection effects, replication and suppression of host defenses by

viruses entail the manipulation of molecular connections that

ultimately result in the misregulation and/or silencing of genes

that trigger defense functions, and eventually in the emergence of

new topological properties of the host interactome. Thus,

understanding the bases for such modifications is crucial to

acquire a systemic view of the infection process [1,11,12]. One of

the main goals to this end would be the identification of the host

proteins interacting with the virus (i.e., the targets of the viral

proteins). Instead, herein we focus on the study of the mechanisms

by which the host canalizes these virus targets to trigger the global

defense system. We propose a reverse-engineering approach by

which we analyze the genetic profile of the cell upon viral infection

and contextualize this information onto the host interaction

network.

Analyses of interaction networks have already uncovered global,

dynamic features that relate directly to biological properties [13].

For example, proteins with a large number of interactions within a

network, also referred to as ‘hubs’, have a higher impact on

multiple phenotypic traits (pleiotropy) than loosely connected

proteins. Moreover, proteins essential for survival are highly

clustered [14]. Hub proteins can be further partitioned into those

that function in a specific biological module and those that connect

different modules. The existence of such hub proteins generates

two interesting properties in networks. First, the network is scale-

free in that the number of connections per node (i.e., its

connectivity or degree) probability distribution follows asymptot-

ically a power-law. Second, the network presents the characteristic

of small-worlds, in which the average number of intermediary

nodes connecting any random pair is small [15]. These two

properties confer robustness against random perturbations in the

network, but at the cost of strong sensitivity to attacks directed

against hubs [16]. Although plant viruses usually encode for few

proteins, the genetic profile of the host after viral infection presents

hundreds and even thousands of significant changes. A plausible

explanation for this scenario is that the host proteins interacting

with the virus are highly connected nodes that spread the signal,

and additionally interact in a short downstream pathway with the

immune response genes. Of relevance, very recently it has been

experimentally shown that bacterial effector targets in Arabidopsis

thaliana are hubs and canalize the signal onto the regulators of the

global immune system [17]. Interestingly, these results are in

concordance with those from previous studies with Epstein-Barr

virus [18], Hepatitis C virus [19], Influenza A virus H1N1 [20], and

other viral and bacterial pathogens of mammals [8,21]. These

studies have shown that viral proteins preferentially target hub

proteins in the human interactome. Herein, by assuming that virus

targets are hubs, we investigate whether this information is

propagated following the same scale of the plant interactome.

Microarray-based functional genomics, which provides a global

view of transcriptional changes in host cells, has been the most

commonly used method to study global changes during plant-virus

interactions [4,22–29]. However, the comparison of results

obtained in distinct experiments involving different viruses is both

complex and challenging; it has not been attempted in a systematic

manner. Here, we present the results of a meta-analysis (Figure 1)

of microarray data gathered from infections of the same host plant,

A. thaliana, by seven plant RNA viruses belonging to four

taxonomic families (Tobacco etch potyvirus, Turnip mosaic potyvirus,

Plum pox potyvirus, Tobacco mosaic tobamovirus, Tobacco rattle tobravirus,

Turnip crinkle carmovirus, and a laboratory-evolved strain of Tobacco

etch potyvirus) and one DNA geminivirus (Cabbage leaf curl geminivirus)

(Table 1). Using the same methodology, we first identified lists of

genes that were up- and down-regulated, together with the sets of

biological functions (gene ontology, GO) and metabolic pathways

over-represented among them. These changes were then com-

pared among the different virus infections, uncovering unexpected

correlations within virus-specific phyla. In a second strategy, we

explored these lists from a global network perspective, by mapping

the altered genes onto different network models of the common

host A. thaliana. This global computational approach unraveled a

generic mode of interference by plant viruses, whereby perturba-

tions incurred to the host interactome preferentially affect genes

that are highly connected, central and form modules.

Results and Discussion

Genetic Profile Targeted by Plant Viruses
Using transcriptomic data (steady-state RNA levels) extracted

from 8 distinct virus infections on the model plant A. thaliana, we

identified lists of genes with altered expression levels, referred

herein to as ‘virus-responsive genes’ (or VRGs). These set of genes

involves those genes that are directly or indirectly regulated by the

virus and that are differentially expressed when the virus infects

the cell. Those VRGs were then used to establish both general and

specific genetic profiles associated to the pathogens of interest (File

S1). We found that among the .22,000 genes inspected, a set of

5296 VRGs (2646 over- and 2650 under-expressed, respectively) is

altered by at least one of the eight viruses studied. This VRG set

may thus be used to reflect the global plant response to any viral

infection. We found that the number of VRGs shared by more

than one virus declines exponentially (Figure S1A and Figurer

S1B). Seven VRGs were found up-regulated in common by six

viruses, of which, surprisingly, six play a role in cell migration

(At3g57260, At5g10380, At3g14990, At3g28510, At5g52640, and

At4g24690) and one (At1g75040) encodes a PR-5 thaumatin-like

protein, factors known for their involvement in pathogens

responses. While no single VRG was identified in common

among the eight infections, one VRG was systematically up-

regulated by seven viruses (i.e., all except PPV) and found to

encode an aspartyl protease involved, again, in cell migration in

the diencepahlon (At5g10760). Three VRGs were down-regulated

by six viruses, two of which correspond to different subunits of the

NADPH dehydrogenase complex (At1g18730 and At5g58260).

Not surprisingly, infections by the two different strains of TEV

studied share the largest number of VRGs (197 over- and 282

under-expressed genes, respectively), although this may probably

reflect, to some extent, homogeneity in experimental procedures.

In the overlapping set, over-expressed genes principally have

roles in response to stress (e.g., fungal resistance TIR-NB-LRR

protein At1g56510, transcription factor At1g22070, U-box-do-

main-containing E3 ubiquitin ligase At3g11840 that acts as a

negative regulator of immune responses, or the aforementioned

At1g75040), transport (e.g., the mitochondrial inner membrane

translocase At1g20350, the high-affinity ammonium transporter

At2g38290, or the glycolipid transfer protein At4g39670), tran-

scription (e.g., the Myb-like transcription factor At1g25550, or the

C2H2-type zinc finger At3g46080), and protein metabolism (e.g.,

the chaperone DnaJ-domain At1g56300, or the eukaryotic

aspartyl protease At5g10760). The overlapping set of under-

expressed genes is mostly composed of factors involved in basic

metabolic and cellular processes (e.g., the member of the R2R3

factor At1g18710, the enzyme At1g03630 that is NADPH- and

light-dependent, or the a/b-hydrolase At1g10740).

Interestingly, a set of 27 VRGs was significantly over-expressed

upon infections by the three viruses that naturally infect hosts from
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the Brassicaceae family (TuMV, TCV and CaLCuV) and by the

TEV laboratory strain, which has been experimentally adapted to

A. thaliana (TEV-At17); hereafter, we will refer to this set of four

viruses as Brassica-infecting viruses. A common feature of these

VRGs is that all of them play roles in stress response, including,

among others, the disulfide isomerase At1g21750 implicated in the

regulation of apoptosis during endoplasmic reticulum stress as well

as in osmotic stress. The set also includes the homolog of

mammalian Bax inhibitor 1, At5g47120, which functions as an

attenuator of biotic and abiotic stress-associated cell death, and the

cytosolic heat shock protein At5g52640. The list further comprises

several genes involved in signal transduction, such as the BAK1-

interacting receptor-like kinase At5g48380 that regulates multiple

signaling routes for plant resistance, or the ATP binding kinase

At5g45800 involved in embryonic development. A set of 22 VRGs

was also under-expressed in common, in plants infected by the

Brassica-infecting viruses. This list includes, as in the afore-

mentioned study of the two TEV strains, genes involved in central

metabolic and cellular processes.

Next, we sought to establish an overall comparison of the lists of

VRGs identified from any of the eight viruses included in the

analysis. To do so, we computed similarity scores among all pairs

of lists, and constructed a dendrogram to visualize which viruses

showed more closely related lists (Figure 2A). The eight viruses do

not represent independent draws from a population; rather, some

are phylogenetically related. It was therefore important to test

whether the above overlap in VRGs reflected taxonomic

correlations. In other words, do closely phylogenetically related

viruses tend to share a higher number of VRGs, and does this

overlap reduce as phylogenetic distance between viruses increases?

Figure 1. Overview of the Systems Biology approach we followed to study the viral infection in plants. We considered A. thaliana as
model host. Microarray data from several infection experiments with viruses were collected to analyze the differentially expressed genes, and to
perform functional analyses by harnessing GO annotations. In addition, by taking advantage of large databases of expression profiles derived from
transcriptional perturbations, the global regulatory network of the host could be as a first approach unveiled by applying learning algorithms. The
differential expression was then contextualized within the inferred network.
doi:10.1371/journal.pone.0040526.g001

Table 1. List of viruses included in this study and some of their properties.

Virus Taxonomy Genome Is A. thaliana a natural host?

TEV Family Potyviridae, Genus Potyvirus Single stranded RNA, positive sense No

TEV-At17 Family Potyviridae, Genus Potyvirus Single stranded RNA, positive sense Yes (experimentally adapted to it)

TuMV Family Potyviridae, Genus Potyvirus Single stranded RNA, positive sense Yes

PPV Family Potyviridae, Genus Potyvirus Single stranded RNA, positive sense No

TMV Family VirgaviridaeGenus Tobamovirus Single stranded RNA positive sense No

TRV Family Virgaviridae Genus Tobravirus Single stranded RNA positive sense No

TCV Family Tombusviridae Genus Carmovirus Single stranded RNA positive sense Yes

CaLCuV Family Geminiviridae Genus Begomovirus Single stranded closed circular DNA Yes

doi:10.1371/journal.pone.0040526.t001
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To address this issue, we first used an alignment of the replicase

genes from the eight viruses (the replicase-associated protein in the

case of the geminivirus) to construct a maximum-likelihood

phylogenetic tree (using the WAG + C model of amino acid

susbstitutions and evaluating the significance of tree topology by

1000 bootstrap replicates; Figure 2B). Next we computed a

congruency index [30] measuring the overlap between the tree

topology obtained from the VRG similarity matrix (Figure 2A), on

the one hand, and the topology of the estimated phylogenetic tree

(Figure 2B), on the other. The congruence index (Icong = 1.4720)

was significantly larger than expected by mere chance

(P = 0.0052), suggesting that the two topologies are indeed highly

congruent. This result supports the hypothesis that the overlap

between VRG lists reflects the taxonomic relationships among

viruses: two closely related viruses (e.g., the potyviruses TEV and

TuMV) tend to alter the expression of a similar set of genes,

whereas two non-related viruses (e.g., TEV and TRV) tend to alter

different subsets of genes. The various viruses included in the study

have distinct replication, gene expression, movement, and RNA

silencing-suppression strategies that should somehow impact

transcriptomic profiles differently. It is likely, however, that these

strategies may be more conserved between phylogenetically

related viruses than among viruses with weak or no phylogenetic

relationship and, hence, the above study accounts for the

differences and commonalities observed among virus phyla. This

being said, convergent evolution in phylogenetically unrelated

viruses may contribute to increase the overlap of VRG lists. For

instance, potyviruses and carmoviruses employ overlapping RNA

silencing-suppression strategies affecting the global metabolism of

miRNAs, which may lead to a set of related host responses.

A potential weakness of the above meta-analyses of gene lists is

that the different experiments not only differed in the methodo-

logical details and plant ecotypes, as described in the Materials and

Methods section, but also in that different experiments took

samples at different time points during the infection process and,

in some cases, different tissues were also sampled. Ecotype-specific,

time-dependent and tissue-specific responses to viral infection may

turn on/off different subsets of genes [25,31] and thus may not

receive a high enough score to be classified as VRG according to

the stringent statistical criteria used in the study. To minimize as

much as possible these potential problems, only data from leaves

were included in the present analyses, although the possible effect

of ecotype and sampling time may still exist. We performed several

statistical analyses to assess sources of errors in the data (see

Materials and Methods), and we concluded that differences in

ecotype or in sampling time would neither have a significant effect

on the conclusions drawn from our meta-analyses.

Integrative Functional Analysis
Subsequently, we performed a functional analysis to map

changes in gene expression onto regulations effecting global

biological functions, thus establishing lists of ‘virus-responsive

functions’ or VRFs (File S2). Figure S1C and Figure S1D illustrate

the number of over- and under-expressed VRFs found in common

in several viral infections. Two over-expressed VRFs are common

to all eight viruses and encompass stress responses to temperature

and to pathogens. By contrast, under-expressed VRFs, were

mostly found to encompass different metabolic and photosynthetic

processes (Figure 3 and Figure S2). In order to set aside changes in

VRFs reflecting direct consequences of viral infection from those

of indirect effects resulting, for instance, from cross-talks between

biotic and abiotic stress, we partitioned data sets into (i) the

unspecific response (i.e., VRFs significantly over-represented in at

least five of the eight viral infections), (ii) the specific response to

Brassica-infecting viruses (i.e., VRFs significantly over-represented

in at least three of the four infections by Brassica-infecting viruses,

eliminating those terms included in the unspecific response), and

(iii) the specific response to Potyvirus (i.e., VRFs significantly over-

represented in at least three of the four infections by potyviruses,

eliminating those terms included in the unspecific response). This

partitioned analysis notably confirmed that activation of systemic

acquired resistance (SAR), an innate and salycilate-based immune

Figure 2. Phylogenetic relationships among viruses explain the similarities in gene expression. (A) Neighbor-joining dendrogram
constructed using the similarity matrix computed from the lists of differentially expressed genes. Bootstrap support values are reported next to each
node. (B) Maximum-likelihood phylogenetic tree constructed from the replicase genes of the seven RNA viruses included in the study. For CaLCuV,
the Rep (replicase-associated protein) was used instead. The statistical quality of the different clusters was evaluated by bootstrap. Significance levels
are shown next to each node.
doi:10.1371/journal.pone.0040526.g002
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response to pathogens, is indeed a general mechanism triggered by

the exposure of plants to viruses (Figure 3). By contrast, down-

regulation of polysaccharide metabolism, such as starch, appears

as a specific response to Brassica-infecting viruses (Figure 3). This

possibly explains why A. thaliana mutants compromised in starch

biosynthesis display less severe virus-induced symptoms compared

to wild type plants [32]. As it can be further observed in Figure 3,

the specific response to Brassica-infecting viruses is larger than the

unspecific one, suggesting that viruses impose additional con-

straints to their host through co-evolution to optimize their entire

infectious cycle, by impelling the plant to introduce further gene-

reprogramming sentences, notably within the immune response.

Figure S3 displays the neighbor-joining dendogram obtained

from the similarity matrix computed from overlapping lists of

significant VRFs obtained for the eight viruses. At the more

stringent (i.e., 95%) bootstrap level, PPV, TMV and TRV form a

distinctive cluster sharing several VRFs, which itself belongs to a

significantly larger cluster that also includes the other three

potyviruses (e.g., most of (+)ssRNA viruses) but excludes TCV. For

those six viruses, over-expressed VRFs include responses to several

abiotic stresses (e.g., temperature, osmotic, oxidative stresses) and

defenses against pathogens, including SAR. Under-expressed

VRFs in this large cluster include fatty acid metabolism and

photosynthesis (Figure 3). CaLCuV is associated to a list of VRFs

that differs significantly from that of the RNA viruses, as might be

expected from the drastically distinct replication strategy of ssDNA

viruses, which entails the reactivation of the host DNA replication

machinery. Interestingly, TCV occupies an intermediate position

in the dendrogram, close to the base of the cluster formed by the

other (+)ssRNA viruses.

As in the previous section, we tested if the dendrogram

topology shown in Figure S3 was congruent with the phyloge-

netic history of the viruses (Figure 2B). In this case, the

congruence index (Icong = 1.2267) did not significantly differ from

what was expected by chance (P = 0.1005), thus suggesting that

both topologies are not highly congruent; in other words, that

Figure 3. Functional analysis. (A) Over- and (B) under-expressed VRFs representing biological processes. In pallid red, VRFs present in at least five
of the total eight viral infections (unspecific viral response); in pallid blue, VRFs in at least three of the four potyviral infections; in pallid green, VRFs in
at least three of the four Brassica-infecting viral infections; in pallid yellow, common VRFs for Potyvirus and Brassica-infecting viruses.
doi:10.1371/journal.pone.0040526.g003
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the set of VRFs altered by two related viruses is similar to the

one altered by two non-related viruses. At first, this result may be

seen as contradicting the previous one, obtained by comparing

lists of VRGs. Broad GO terms, however, encompass a multitude

of genes and it may well be that different viruses affect the same

VRF by modifying the expression of different target genes.

Consistent with this idea, TEV and TRV infections were both

associated with a significant over-representation of the GO term

‘stress response’. In both cases, the number of VRGs connected

to this specific GO is similar (108 for TEV and 93 for TRV); yet

only four genes are affected in common between the two viruses.

Therefore, this analysis reveals that comparable trends in the

global reprogramming of cellular functions might be achieved via

highly dissimilar gene expression changes induced by distinct

viruses.

Metabolic Pathways Targeted by Viruses
Next, a metabolic pathway analysis was conducted to uncover

the biochemical networks that were over- and under-expressed by

viral infections. To that aim, we represented the global metabolic

map of A. thaliana infected with a given virus by overlaying the

expression of the corresponding enzymes. To contextualize the

information of all viruses in a single picture, we constructed, on the

one hand, a list of genes that characterize the unspecific virus-plant

interaction (VRGs in at least five of the eight viral infections

studied), and, on the other hand, a list of genes that depict the

interaction between Brassica-infecting viruses and A. thaliana (VRGs

in at least three of the four infections by Brassica-infecting viruses,

eliminating those genes included in the unspecific response). The

results presented in the Figure S4 show that the metabolic

pathways over-represented as part of the unspecific response to

viruses notably included cellulose biosynthesis -required for cell

wall integrity- and nitrogen fixation. In addition, Brassica-infecting

viruses were found to distinctively induce the biosynthesis of

cytokines, a family of hormones central to plant development and

growth, also involved in detoxification [33]. Brassica-infecting

viruses also specifically induced the Rubisco shunt, which is a

more efficient converter of carbohydrates into acetyl-CoA than

glycolysis [34]. The unspecific gene down-regulation response as a

part of the viral reprogramming of central metabolism was found

to affect the Calvin cycle and glycolysis. This observation is

consistent with the previously proposed idea [35] that viruses

impel the plant to redirect resources towards immune systems and,

in particular, biotic stress responses, to the detriment of

developmental processes. As a result, increased tolerance to viral

infections might be achieved. Biosynthesis of starch -the major

energy reservoir in the cell- photorespiration, and fatty acid

biosynthesis are some of the biochemical routes that were found to

be specifically down-regulated by Brassica-infecting viruses. In

addition, Brassica-infecting viruses induce symptoms such as

chlorosis and spotting, leaf curling and overall dwarfism, whereas,

apart from a minor delay in growth, the other viruses progress

asymptomatically. All together suggests that viruses more adapted

to their hosts impose a more stringent rerouting of the plant

metabolism, which may result in more severe symptoms and/or

increased viral virulence.

Viruses Preferentially Alter Highly Connected Central
Genes

Next we focused on the impact of viruses on two different

predicted global networks of A. thaliana: a transcriptional

regulatory network (TRN) [36] and a protein-protein interaction

network (PPIN) [37]. A second TRN (TRN2; see Material and

Methods) and the graphical Gaussian model of interaction

network (GGIN) [38] (File S3) were also added to consolidate

this study. Very recently, a new collection of about 11,300

experimentally predicted PPIs has been released [39], although

this interactome is too small to perform our analyses in a

meaningful manner. The PPIN here considered accounts for

almost the 30% of such PPIs, and for future studies the two

interactomes will be combined. Both TRN and PPIN have the

properties of scale-free and small-worlds, the two major charac-

teristic properties of real biological networks [13,15,16]. A network

is named scale-free if a node selected randomly has a number of

links (connectivity) that follows a specific mathematical function

refereed to as the power law, implying that the network has no

characteristic scale and is self-similar [13,40]. A network has the

property of a small-world if any two nodes are connected by a

small number of edges; mathematically, this number should grow

as a power of the number of nodes in the network [15,41].

First, we analyzed the connectivity distribution for the VRGs as

compared to the global set of genes. Roughly, if those genes were

located in the periphery of the network, their connectivity would

be expected to be smaller than if they were central, since the

network is scale-free (Figure S5). As the TRN is a directed

network, we focused on the outgoing connectivity, that is, the

number of regulations of a given transcription factor with its

targets in the network. In Figure 4 we show the connectivity

distributions for all viral infections. Table 2 summarizes the value

of the power-law exponent that better fits this particular

distribution as well as the average connectivity. Of course, the

degree distributions are not perfect power-laws and could be better

explained by truncated power-laws or Weibull distributions

[42,43] or even by a mixture of several Poisson distributions

[44]. However, here we are not concerned to propose a precise

model for the distributions. For our purpose, the computation of

the slope fitting to a power-law or the computation of other

parameters derived from more complex distributions would not

change the conclusions. To statistically assess differences between

the VRGs and the global set of genes, we used t-tests for

differences in slopes and Mann-Whitney tests for differences in the

location of the high-degree genes within the distributions. We also

performed for all cases a Kolmogorov-Smirnov test to assess the

difference of the distributions, and then we combined the resulting

P-values in an overall test of goodness of fit (Fisher’s method,

x2 = 61.5 for the TRN and x2 = 101 for the PPIN; in both cases,

16 d.f., P,0.0001). No significant differences were found between

the incoming connectivity distributions of VRGs and the one

characterizing the whole network (Figure S6). Figure 5 shows the

corresponding connectivity distributions using the PPIN. We

found that, in all cases, i.e. whether considering the TRN or the

PPIN, the slope of the fitted power-law distributions of VRGs was

significantly smaller than the slope calculated for the fitted

distribution of the whole interactome. These results were also

confirmed by analyzing the TRN2 (Figure S7) but not upon

analysis of the GGIN (Figure S8). In this vein, the Mann-Whitney

tests showed, for almost all viruses in both TRN and PPIN, that

the mean of the high-degree VRGs is significantly greater than the

mean of the total high-degree genes (Table 2), which is in tune

with the observation of a smaller slope in the degree distribution of

VRGs. Apart of that Brassica-infecting viruses affect on average

more genes, these viruses also manipulate more interactions,

irrespective to the network model (one-tailed t-test, P,0.05).

However, we did not find any significant difference among viruses

in terms of the average connectivities and power-law distribution

exponents. We conclude that a smaller slope of the power-law

distribution is a general trend characterizing the VRGs, indicating

that viral infection preferentially alters the expression of highly
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Figure 4. Outgoing connectivity distributions. Distributions are contextualized in the TRN, for the VRGs (red) and the whole interactome (blue).
doi:10.1371/journal.pone.0040526.g004
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connected genes (hubs) rather than random genes within the whole

network. This could reflect a cellular response to gain robustness

against the manipulation of the host by viruses.

A more global scale analysis involved calculation of the

betweenness centrality distribution, understood as the relative

number of shortest paths traversing a given gene. Table 2

summarizes the values of the average betweenness for these sets of

VRGs. The betweenness values were relative in all cases to the

global network. In addition, for each subnetwork generated with

the VRGs, we computed the total number of shortest paths

present in it, the distribution of path lengths, and their

characteristic length (Figure S9, Figure S10 and Figure S11,

respectively). Since PPIN represents the case of an undirected

graph, we restricted the analysis to this interactome to evaluate the

betweenness of the VRGs. For each gene we have a value of

betweenness, so we can compute the average value for the VRGs

and then compare it with the one obtained for the total set of

genes. We found that, as occurred with the connectivity at the

local level, the VRGs were significantly central for seven out of

eight viruses, with average betweenness centrality values signifi-

cantly greater than observed for the average of the whole

interactome (Figure S12A; Mann-Whitney test P,0.05). TMV

was the exception. We also found that betweenness and

connectivity are significantly positively correlated (Figure S12b;

Spearman r = 0.8885, 10,286 d.f., P,0.0001, releasing the

isolated nodes), despite the high variability of betweenness at low

connectivity values, a characteristic of hierarchical networks.

With our study, we do not explicitly prove a physical interaction

between hubs and viral proteins, but we demonstrate that the hubs

of the plant interactome are over/under-expressed after viral

infection. These hubs mediate the immune response to produce

large changes in the genetic profile, but they are redundant in this

process. Furthermore, Uetz et al. [45] found that, whereas the

PPINs of Herpesviruses lack scale-free and small-world properties,

the topology of such viral networks completely change from a

highly coupled module to a more typical scale-free network of

interacting submodules when integrating the interactions with

human proteins. Available data from yeast two-hybrid experi-

ments [46–50] allowed us to further infer a PPIN for Potyviruses

(Figure S13). This inferred PPIN shows that all 11 potyviral-

encoded proteins are highly connected and that, similar to the

herpesviruses case, the underlying network is not scale-free.

Modular Organization of Virus-altered Genes
We further analyzed the subnetworks generated from the VRGs

according to the different global networks by focusing on two

important topological properties: clustering and modularity.

Noteworthy, the relatively smaller lists of genes available for

TMV and TRV infections (owing to the type of microarray used)

are to be treated with caution, as the corresponding analyses for

the two viruses may reflect non-significant results. In Figure 6A

and Figure 6B, we show the clustering coefficient for all

subnetworks. According to the TRN, almost all subnetworks are

tightly clustered (also validated for the TRN2 and GGIN, Figure

S14). However, only the subnetworks for two viruses (TuMV and

CaLCuV) are clustered according to the PPIN, suggesting that a

disruption of the transcriptional organization could be more

advantageous for the two viruses. To further support this

clustering analysis, we computed the assortativity coefficients that

characterize those subnetworks, in this case only focusing on

transcription factors (Table S1). Assortativity refers to a preference

for a network’s node to attach to others that are similar

(assortative) or different (dissortative) in some way. We found that

TRN-based subnetworks are essentially assortative, whereas PPIN-

based ones are mostly dissortative (a likely consequence of the

scale-free topology). Thus, regulations between transcription

factor-related VRGs behave like in metabolic or social networks,

in which hubs tend to be connected among them [40,51]. We

further studied the modularity properties of those subnetworks,

understood as a decomposition metric based on the number of

connected components present in the subnetwork (Figure S15),

which is a less stringent clustering parameter. Remarkably, we

found that in both TRN and PPIN, VRGs display a modular

arrangement (Figure 6C and Figure 6D) for all infections except

with TRV and TMV (a possible reflection of the much more

modest number of genes analyzed) and the same result was

obtained using the TRN2 and GGIN (Figure S16). We conclude

that, in general, the virus tends to induce the differential

expression of genes that are clustered (linked among them on

the resulting subnetwork) and belong to local modules, rather than

Table 2. Summary of topological properties of the differentially expressed VRGs from several viral infections contextualized in the
A. thaliana TRN and PPIN.

VRGs VRFs TRN PPIN

Over Under Over Under Edges c(Pa) Ækæ (Pb) Edges c (Pa) Ækæ (Pb) Æbæ61024 (Pb)

TEV 356 322 35 41 1275 0.07 (,1024) 162 (0.02) 64 0.59 (,1024) 18 (0.18) 9.56 (1024)

TEV-At17 950 1441 32 90 2850 0.57 (,1024) 115 (0.23) 881 0.92 (,1024) 22 (0.03) 5.72 (,1024)

TuMV 754 390 29 30 1034 0.23 (,1024) 172 (2?1024) 1665 0.74 (,1024) 34 (,1024) 8.63 (,1024)

PPV 747 740 98 8 945 0.37 (,1024) 153 (5?1023) 535 0.82 (,1024) 24 (0.02) 6.46 (,1024)

TMV 498 225 62 0 67 0.11 (,1024) 76 (1) 214 0.74 (,1024) 22 (0.15) 3.35 (0.40)

TRV 215 284 14 26 82 0.05 (,1024) 111 (0.45) 154 0.56 (,1024) 26 (5?1024) 8.20 (,1024)

TCV 708 846 91 70 4328 0.38 (,1024) 188 (,1024) 364 0.81 (,1024) 19 (0.04) 5.50 (3?1024)

CaLCuV 454 732 66 107 2117 0.21 (,1024) 255 (,1024) 664 0.77 (,1024) 24 (,1024) 6.14 (,1024)

Interactome – – – – 139,440 1.33 (2) 114 (2) 72,266 1.54 (2) 20 (–) 3.43 (2)

We show the number of VRGs and VRFs (over- and under-expressed), the number of interactions (edges) manipulated by the virus, the power-law distribution exponent
(for connectivity c), the average connectivity ((k)), and the average betweenness ((b)). We also show the P-value for the tests comparing the shape and location of the
VRGs distributions with respect to the corresponding whole interactome (aStudent t-test, bMann-Whitney U-test).
doi:10.1371/journal.pone.0040526.t002
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Figure 5. Connectivity distributions. Distributions are contextualized in the PPIN, for the VRGs (red) and the whole interactome (blue).
doi:10.1371/journal.pone.0040526.g005
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randomly interacting with genes sparsely distributed in the

network.

Conclusions

The results of our meta-analyses combining transcriptomic data

gathered for eight different viruses all infecting a common host, A.

thaliana, confirm that host cells undergo significant reprogramming

of their transcriptome during infection, which is likely a central

requirement for turning on host defenses. Rather than focusing on

the details of each virus infection, however, our study was designed

to uncover generic features defining either the host response to, or

the targets manipulated by, the various viruses tested. We found

that the overlap in the lists of genes whose expression is altered

upon infection (VRGs) decreases as the phylogenetic distance

between the viruses increases, thus suggesting that related viruses

may interact with similar host components, whereas non-related

viruses may manipulate different targets. This association at the

VRG level does not hold, however, at the level of altered, global

biological functions (VRF), thus suggesting that a common set of

overall functional responses to infection may result from the

manipulation of sometimes drastically different target genes.

One caveat of the meta-analysis studies such as the one reported

here, however, is that they are conservative in design. They

identify responses that are strong enough to be detected against the

intrinsically high noise level as a consequence of the diversity of

viral systems and microarray platforms used in the original studies

that served as the basis for the present one. While reductionism

through single-cell transcriptome analyses has been successfully

employed in virus-infected mammalian cell cultures [9] and in

plant protoplasts [29], studying in vivo virus-host interactions

obviously adds many layers of complexity and variability, which

are clearly reflected here. Nonetheless, our study shows that such

complexity does not, a priori, constitute an insurmountable

obstruction to the discovery of generic patterns associated to

plant viral infections. In addition, our methodology was based on

standard techniques to capture differential gene expression. The

use of experimental protocols accounting for many replicates (both

biological and technical) helps minimizing errors in the identifi-

cation of VRGs. Once these genes are identified, the GO analysis

could provide a functional picture, although it is true that small

sets of genes tend to produce non-significant results. Moreover, the

construction of the host network models also has the associated

error to statistical inference. Since networks are inferred from

experimental data, or even in combination with alignments of

sequences and further computational techniques, a tradeoff

between coverage and precision must be achieved. The selection

of optimal networks then introduces a given number of false

positives that may divert the topological properties of VRGs

(connectivity, betweenness, clustering, assortativity, and modular-

ity). Efforts for constructing large databases of reliable interactions

would enhance the predictability of such computational studies.

Because the uncertainty introduced in the network is multiplicative

to the errors that come from the identification of VRGs, the results

derived from this computational pipeline are not entirely free of

false positives. Nevertheless, we expect our conclusions to be

robust to these accumulated errors due to the delicate treatment of

the raw data prior to any further analyses, the large number of

statistical tests performed to ensure homogeneity in data across

experiments, and the consistency of the results to changes in

assumptions (e.g., using different models of networks).

Our study points out that VRGs are, in general, more highly

connected, central and modular than expected by chance. This

result agrees with the fact that viral proteins preferentially interact

with hub regulator genes [17–21,45], although VRGs not

necessarily entail virus targets. Probably as a plant strategy,

through hub genes the signal can be disseminated at large to

change the whole genetic profile. Then, even a small number of

viral proteins can affect a considerable number of host genes. In

the case of Potyviruses, 11 mature proteins provoke significant

changes in expression in about a thousand of host genes. That

more hub genes (both from TRN and PPIN) than expected by

chance were differentially expressed indeed reflects an effect of the

virus over them, and also indicates that the information flow from

virus targets to immune response proteins is strengthened ab initio

(lower slope in the power-law degree distribution). We therefore

hypothesize that this over-triggering of hubs is a mechanism that

confers robustness to the plant to express the immune system.

Whether a virus deactivated a recognition pathway, redundant

hubs would emerge to counteract this viral action. We have

Figure 6. Measures of subnetwork organization. (A, B) Clustering
(C) and (C, D) modularity (M) coefficients for the subnetworks generated
by the VRGs, contextualized in the TRN and PPIN. Rand indicates the
average value for random subnetworks (100 replicates). NS denotes
non-significant value following a one-tailed z-test. Horizontal dashed
lines represent the cutoff value for statistical significance.
doi:10.1371/journal.pone.0040526.g006
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confirmed this observation for all the plant viruses included in our

meta-analysis, thus uncovering a possible universal pattern in

virus-host interactions. A second general pattern emerging from

animal virus studies is that the topological properties of viral

infections differ when considering only viral proteins (e.g., using

yeast-two hybrids experiments) than when they are considered in

the context of PPIN from the host cell [45]. Here, we have not

been able to test this property owing to the lack of adequate

information. A future challenge in plant virology research will be

to combine data sets from yeast two-hybrids or BiFC studies,

transcriptomic experiments and carefully curated literature

surveys, in order to reveal the specific interactions between plant

and virus proteins and the effect of such interactions on viral PPIN

topology. In vitro-reconstructed interactomes [17,39] by themselves

do not capture all the biological features of the viral infection, so

in vivo data, while adding more complexity, are essential for further

studies.

Materials and Methods

Plant Viruses
In this work, we studied the mode of action of seven positive-

sense single-stranded RNA viruses (Baltimore’s group IV) and of

one virus whose genome is composed by a single-stranded circular

ambisense DNA molecule (Baltimore’s group II) on a common

plant host, A. thaliana (Table 1). The set of RNA viruses is formed

by Tobacco etch virus (TEV), Turnip mosaic potyvirus (TuMV), Plum pox

potyvirus (PPV), Tobacco mosaic tobamovirus (TMV), one Tobacco rattle

tobravirus (TRV), and Turnip crinkle carmovirus (TCV). In addition, we

considered a laboratory-evolved strain of TEV (TEV-At17), which

was obtained after 17 serial passages in A. thaliana [27]. TEV-At17

shows higher fitness and produces more severe symptoms in A.

thaliana than the ancestral TEV strain. The ssDNA virus included

in the study was Cabbage leaf curl begomovirus (CaLCuV).

Transcriptomic Data
TEV and TEV-At17 expression data (two-color raw data, five

replicates for each, NCBI GEO accession GSE11088) were

obtained from ecotype Ler-0 plants 14 days post-inoculation (dpi)

[26,27]. TuMV data (Affymetrix raw data, three replicates,

ArrayExpress accession e-mexp-509) were obtained 5 dpi from

ecotype Col-0 plants [25]. These three data sets were normalized

using the RMA method [52] for background correction and

quantiles for array scaling, and the list of differentially expressed

genes was obtained by performing a Limma test [53] with a

correction for multiple testing using the false discovery rate (FDR)

procedure [54] (adjusted P,0.05). PPV data (Affymetrix prepro-

cessed data, three replicates, NCBI GEO accession GSE11217)

were obtained 17 dpi from Col-0 plants [29]. In this case, data

normalization was done using the Affymetrix MAS 5.0 software

package, and the differential expression using a one-way ANOVA

test with a correction for multiple testing using the FDR procedure

(adjusted P,0.05), followed by a fold-change criterion of 1.5 in z-

score over all genes (averaging replicates). TMV data (two-color

raw data, five replicates, deposited in www.bio.puc.cl/labs/arce/

index.html) were obtained from ecotype Uk-4 plants 10 dpi [24],

and normalized using the RMA method for background

correction and quantiles for array scaling. The list of differentially

expressed genes was obtained by performing a fold-change

criterion of 1.96 in z-score over all genes (averaging replicates).

TRV data (two-color raw data, three replicates (dye-swap), NCBI

GEO accession GSE15557) were measured 8 dpi from Col-0

leaves. TCV data (two-color raw data, three replicates, NCBI

GEO accession GSE29387) were quantified 10 dpi in Col-0

plants. These two data sets were normalized using the CATMA

BGS procedure [55], and the list of differentially expressed genes

was obtained by performing a Limma test with FDR correction

(adjusted P,0.05). In addition, for TCV data, a fold-change

criterion of 1.96 in z-score over all genes (averaging replicates) was

applied. Finally, CaLCuV data (Affymetrix raw data, three

replicates, ArrayExpress accession E-ATMX-34) were collected

from Col-0 plants 12 dpi [28]. These data were normalized using

subtraction for background correction and LOWESS [56] for

array scaling, and the list of differentially expressed genes was

obtained by performing a mixed ANOVA test with a correction

for multiple testing using the FDR procedure (adjusted P,0.05).

To perform the data normalization and to obtain the differentially

expressed genes, we used the GEPAS tool [57], which is

implemented within the BABELOMICS webserver [58]. We

would like to notice at this point that the variability in the

normalization methods comes from the lack of source data files

that prevents incorporating them into a common platform,

although we have intended to provide a homogeneous compen-

dium as much as possible.

Validity of Meta-analysis
The heterogeneity in the host ecotype used in different

experiments (Ler-0 for TEV and TEV-At17, Uk-4 for TMV and

Col-0 for the rest) and in the time at which samples were obtained

(ranging from 5 to 17 dpi) may weaken the conclusions from a

meta-analysis. Therefore, to evaluate the robustness of our results,

we first tested for the effect of these two variables. First, for each

gene that showed a significant alteration in its expression level in at

least one of the eight viral infections (a total of 6546 genes), we

sought whether the observed differences grouped according to the

plant ecotype used in the experiments. For this, we classified

experiments into two categories: those performed in Col-0 versus

those not performed in Col-0. Only seven genes (At1g14970,

At1g50250, At1g78170, At2g16700, At2g20780, At3g45860, and

At4g12520) had expression levels that were significantly affected by

the host ecotype (Mann-Whitney test). However, if a correction for

multiple testing (FDR procedure; adjusted P,0.05) was used, none

of these seven genes remained significant. Second, for each of the

6546 altered genes, we sought whether expression levels classified

according to sampling time. Sampling times were ranked into

three categories (early, between 5–8 dpi; intermediate, between

10–12 dpi; and late, in the range 14–17 dpi). In this case, 54 genes

showed a significant effect of the sampling time (Kruskal-Wallis

test), although none of them remained significant after applying

the more stringent FDR procedure. In addition to this test, we also

sought for significant correlations between expression levels and

sampling time (Pearson correlation coefficient). In this case, 96

genes showed a significant correlation (either positive or negative),

although none of them remained so after the FDR correction.

Therefore, we conclude that differences in ecotype or in sampling

time would neither have a significant effect on the conclusions

drawn from our meta-analyses. Nonetheless, the conclusions from

our meta-analyses should be taken conservatively.

Functional Analysis
For each list of ‘‘virus-responsive genes’’, or simply VRGs,

(over- or under-expressed), we looked for the significant over-

represented biological processes (GO terms between levels 3 and 9,

referred in the text as VRFs – or virus-responsive functions–)

within that list. The statistical significance was evaluated by means

of a Fisher’s exact test for 262 contingency tables with a correction

for multiple testing using the FDR procedure (adjusted P,0.05).

To perform the functional analysis of the VRGs, we used the
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FatiGO tool [59], implemented in the BABELOMICS webserver.

At the metabolic level, we overlaid the expression data for each

viral infection into the global metabolic map of A. thaliana. To

visualize the map we used the TAIR AraCyc tool [60].

To quantitatively evaluate the similarity in the lists of VRGs and

of the corresponding biological functions, we performed a

hierarchical clustering analysis by constructing neighbor-joining

dendrograms using the program NEIGHBOR from the PHYLIP

v3.6 package (http://evolution.genetics.washington.edu/phylip.

html). The similarity matrix S was defined by using the metric

Sij = 2Nij/(Ni + Nj), where Ni and Nj are the total number of genes

(or GO terms) whose expression is altered upon infection with

virus i and j, and Nij the number of genes (or GO terms) altered by

both viruses i and j. Statistical significance of the different clusters

was evaluated by bootstrapping the gene (or GO) lists (based on

1000 pseudoreplicates).

Genomic Interaction Networks
The transcriptional regulatory network (TRN) was previously

published by Carrera et al. [36]. In short, the model was inferred

using a reverse-engineering procedure, based on mutual informa-

tion with a local significance (z-score computation) as estimator of

the likelihood, for capturing coexpression patterns between

transcription factors (TFs) and genes, and has optimal levels of

confidence and coverage. This network contains 139,440 TF-gene

interactions and involves 19,108 genes. For the protein-protein

interaction network (PPIN), we used the release 2.0 of the A.

thaliana predicted interactome available for downloading at TAIR

(www.arabidopsis.org). This network consists of a set of 72,266

predicted interactions involving 7177 proteins, of which about

3000 interactions are experimentally confirmed (merging datasets

from TAIR, IntAct-EBI, and BIND/BOND). In short, the

prediction algorithm [37] began with the identification of

orthologs of A. thaliana proteins in seven other species (Escherichia

coli, Saccharomyces pombe, Saccharomyces cerevisiae, Caenorhabditis elegans,

Drosophila melanogaster, Mus musculus, and Homo sapiens) for which

partial interactions existed. Next, an interaction was predicted to

exist in A. thaliana if it was described for any of the seven species.

Notice that TRN is directed, whereas PPIN is undirected. In

addition, we considered a smaller transcriptional network (TRN2),

with high confidence and low coverage, that contains 18,446 TF-

gene interactions and links 7108 genes [36], and the graphical

Gaussian interaction network (GGIN) model previously published

by Ma et al. [38] that contains 21,101 effective gene-to-gene

interactions involving 6722 genes, where coexpression patterns

between gene pairs were evaluated according to a conditional

correlation.

Topological Analysis
To analyze the impact of a viral infection in terms of genetic

interactions, we studied the principal topological properties on the

inferred networks: connectivity, clustering, connected components,

shortest paths and modularity. For each VRG (up and down), we

collected its connectivity and betweenness centrality, according to

the global interactome. Differences in connectivity (k) and

betweenness (b) among the VRGs and the total set of plant genes

were analyzed by means of one-tailed Mann-Whitney U-tests

(P,0.05) considering the superior tails of the distributions (i.e., the

genes satisfying k . Ækæ or b . Æbæ) [19,61]. Furthermore, we

performed linear regressions in the log-log space to obtain the

critical exponents, c, of the power-law degree distribution P(k) ,
k2c and assessed the statistical significance of the inferred values

using Student t-tests (P,0.0001). In addition, for each virus we

generated the corresponding subnetwork by selecting those VRGs,

releasing those isolated nodes. Random subnetworks were also

constructed to perform statistical significance tests. The clustering

coefficient (C), the assortativity coefficient (A), the number of

connected components (CC), and the shortest path (SP) distribution

were computed to characterize the subnetworks. Here, A was

defined as the slope of the linear regression between the

connectivity of a node and the average connectivity of its

neighbors, being a network assortative when A .0. Moreover,

we defined a modularity coefficient (M), less stringent than the

clustering one, given by , (sensu Shannon entropy in information

theory) where Nc is the number of genes in the connected

component c, and N the total number of genes in the subnetwork

[62]. Accordingly, M = 1 in case of just one CC, whereas M tends

to 0 as the number of CC increases. To assess the statistical

significance of the results, we performed a one-tailed z-test with a

confidence level of 95% (z .1.64) over 100 random subnetworks.

Supporting Information

Figure S1 Altered gene expressions and GO terms.
Distribution of genes up/down-expressed (A and B) and GO

terms over/under represented (C and D) in A. thaliana after

infection with the number of viruses indicated in the ordinates

axis. The distributions are the result of comparing the differential

patterns a posteriori between several viruses.

(TIFF)

Figure S2 Altered VRFs. Summary of (red) over- and (blue)

under-expressed VRFs representing biological processes. In black,

consensus of VRFs for any viral infection (unspecific viral

response). In white, consensus of VRFs specifically altered by

Brassica-infecting viruses.

(TIF)

Figure S3 Neighbor-joining dendrogram constructed
using the similarity matrix computed using the lists of
over-represented GO terms.

(TIF)

Figure S4 Metabolic map of A. thaliana. Highlighted the

reactions altered by the unspecific viral response (VRGs in at least

five of the total eight viral infections) and the specific Brassica-

infecting virus response (VRGs in at least three of the four

infections by Brassica-infecting viruses). Red (unspecific) and yellow

(specific to Brassica-infecting viruses) reactions are over-expressed,

whereas blue (unspecific) and green (Brassica-infecting) reactions

are under-expressed. BS means biosynthesis, and TR, transfor-

mations.

(TIFF)

Figure S5 Predicted connectivity distribution for the
whole plant interactome (red line) and the subnetwork
generated by the total differentially (up/down) ex-
pressed VRGs (blue line). The set of VRGs can be in the

periphery of the interactome if they have low connectivity (a) or in

the core in they are highly connected (b).

(TIFF)

Figure S6 Incoming connectivity distribution. The distri-

bution is contextualized in the TRN interactome, for the VRGs

(red), and the whole interactome (blue).

(TIFF)

Figure S7 Outgoing connectivity distribution. The distri-

bution is contextualized in the TRN2 interactome, for the VRGs

(red), and the whole interactome (blue).

(TIFF)
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Figure S8 Connectivity distribution. The distribution is

contextualized in the GGIN interactome, for the VRGs (red), and

the whole interactome (blue).

(TIFF)

Figure S9 Statistics for the shortest paths. Shortest path

average (A, C, E, and G) and total number of shortest paths (B, D,

F, and H) for the subnetworks generated by the differentially

expressed genes from several viral infections contextualized in

different interactomes. Rand indicates the average value of

randomly selected gene lists. Inter stands for interactome. For

the TRN and TRN2 interactomes, we considered undirected

edges; otherwise, the number of shortest paths is very low.

(TIFF)

Figure S10 Shortest path distribution. Contextualized in

the TRN interactome, for the subnetwork generated by the

differentially expressed genes after viral infection (A, B, C, D, E, F,

and G), and by lists of randomly selected genes (H). For this

interactome, we considered undirected edges; otherwise, the

number of shortest paths is very low.

(TIFF)

Figure S11 Shortest path distribution. Contextualized in

the PPIN interactome, for the subnetwork generated by the

differentially expressed genes after viral infection (A, B, C, D, E, F,

and G), and by lists of randomly selected genes (H).

(TIFF)

Figure S12 Betweeness of PPIN interactome. (A) Average

betweenness, contextualized in the PPIN interactome, for the

differentially expressed genes after viral infection and the whole

interactome. NS denotes non-significant value according to a

Mann-Whitney U-test. (B) Scatter plot of betweenness centrality

and connectivity for the whole PPIN interactome. Inter corre-

sponds to the betweenness computed to the PPIN interactome.

(TIFF)

Figure S13 Protein-protein interaction network of Poty-
viruses inferred from empirical data gathered by
different authors using the yeast two-hybrid system.
The parameters describing the network are: clustering coefficient

0.8713, network diameter 2, shortest path 110, characteristic path

length 1.345, average number of neighbors 6.545, number of

edges 45, network density 0.655, and number of self-loops 9. The

11 potyviral proteins are: P1 (trypsine-like serine proteinase), HC-

Pro (helper-component during aphid transmission, RNA-silencing

suppressor, and papain-like cystein proteinase), P3 (pathogenicity

determinant), P3N-PIPO (movement protein), 6K1 (unknown

function), CI (ATPase/RNA helicase and cell-to-cell movement),

6K2 (anchoring replication complexes to membranes), NIa-VPg

(59-linked protein involved in genome replication), NIa-Pro

(trypsin-like serine proteinase), NIb (replicase), and CP (coat

protein).

(TIFF)

Figure S14 Clustering coefficient (C) for the subnet-
works generated by the differentially expressed genes
from several viral infections, contextualized in different
A. thaliana interactomes. Rand indicates the average value of

randomly selected gene lists (100 replicates). NS denotes non-

significant value following a one-tailed z-test. Horizontal dashed

lines represent the cutoff value for statistical significance.

(TIFF)

Figure S15 Number of connected components (CC) for the
subnetworks generated by the differentially expressed
genes from several viral infections. Contextualized in A. thaliana

(A) TRN, (B) TRN2, (C) PPIN, and (D) GGIN interactome. Rand indi-

cates the average value of randomly selected gene lists (100 replicates).

(TIFF)

Figure S16 Modularity coefficient (M) for the subnet-
works generated by the differentially expressed genes
from several viral infections. Contextualized in different A.

thaliana interactomes. Rand indicates the average value of randomly

selected gene lists (100 replicates). NS denotes non-significant value

following a one-tailed z-test. Horizontal dashed lines represent the

cutoff value for statistical significance.

(TIFF)

Table S1 Assortativity coefficients (A) for the virus-associated

subnetworks and the interactomes TRNTF (only considering

transcription factors) and PPIN.

(DOCX)

File S1 Differentially expressed genes (up/down) for all
viral infections and those genes shared by pairs of
viruses. In addition, we provide the similarity matrix.
(XLS)

File S2 Over-represented GO terms (up/down) for all
viral infections and those GO terms shared by pairs of
viruses. In addition, we provide the similarity matrix.
(XLS)

File S3 List of genetic interactions for the different
interactomes we considered in this work (TRN, TRN2,
PPIN, and GGIN).
(XLS)
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