
Molecular Resistance Fingerprint of Pemetrexed and
Platinum in a Long-Term Survivor of Mesothelioma
Oluf Dimitri Røe1,2*, Adam Szulkin3, Endre Anderssen4, Arnar Flatberg1, Helmut Sandeck5,

Tore Amundsen6,7, Sten Even Erlandsen1, Katalin Dobra3, Stein Harald Sundstrøm2

1Department of Cancer Research and Molecular Medicine (IKM), Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,

2Cancer Clinic, Levanger Hospital, Nord-Trøndelag Health Trust, Levanger, Norway, 3Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and

University Hospital Huddinge, Stockholm, Sweden, 4 Laboratory of Molecular Medical Research, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway,

5Department of Pathology and Medical Genetics, St. Olavs Hospital, Trondheim, Norway, 6Department of Thoracic Medicine, St. Olavs Hospital, Trondheim, Norway,

7Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway

Abstract

Background: Pemetrexed, a multi-folate inhibitor combined with a platinum compound is the first-line treatment of
malignant mesothelioma, but median survival is still one year. Intrinsic and acquired resistance to pemetrexed is common,
but its biological basis is obscure. Here we report for the first time a genome-wide profile of acquired resistance in the
tumour from an exceptional case with advanced pleural mesothelioma and almost six years survival after 39 cycles of
second-line pemetrexed/carboplatin treatment.

Methodology and Principal Findings: Genome-wide analysis with Illumina BeadChip Kit of 25,000 genes was performed on
mRNA from pre-treatment and post-resistance biopsies from this individual as well on case and control samples from our
previously published study (in total 17 samples). Cell specific expression of proteins encoded by selected genes were
analysed by immunohistochemistry. Serial serum levels of CA125, CYFRA21-1 and SMRP levels were examined. TS protein,
the main target of pemetrexed was overexpressed. Proteins and genes related to DNA damage response, elongation and
telomere extension and repair related directly and indirectly to platinum resistance were overexpressed, as the CHK1
protein and the genes CHEK2, LIG3, POLD1, POLA2, FANCD2, PRPF19, RECQ5 respectively, the last two not previously
described in mesothelioma. We observed a down-regulation of leukocyte transendothelial migration and cell adhesion
molecules pathways. Silencing of NT5C in two mesothelioma cell lines did not sensitize the cells to Pemetrexed. Proposed
resistance markers are TS, KRT7/ CK7, TYMP/ thymidine phosphorylase and down-regulated SPARCL1 and CDKN1B.
Moreover, comparison of the primary expression of the sensitive versus a primary resistant case showed multi-fold
overexpressed DNA repair, cell cycle, cytokinesis, and spindle formation in the latter. Serum CA125 and SMRP reflected the
clinical and radiological course and tumour burden.

Conclusions: Genome-wide microarray of mesothelioma pre- and post-resistance biopsies indicated a novel resistance
signature to pemetrexed/carboplatin that deserve validation in a larger cohort.
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Introduction

Malignant mesothelioma, an aggressive tumour of the pleura

and peritoneum, represents a clinical challenge as the incidence

increases worldwide, and will continue to increase due to extensive

asbestos use in several developing countries [1]. The most effective

treatment proven to prolong life of malignant mesothelioma

patients is the combination of multi-folate inhibitors, pemetrexed

or raltitrexed and cisplatin, but still the median survival is only 12

months, and response rates are approximately 40% [2]. Thus,

almost half of the patients are primary resistant and all finally

develop resistance. Thymidylate synthase is considered the main

target of pemetrexed and current studies indicate that low

expression levels of this protein is predictive for good pemetrexed

response, longer time to progression and overall survival [3,4,5,6],

but the mechanisms and pathways involved in pemetrexed

resistance are inadequately elucidated. Several mechanisms of

platinum resistance have been described, involving among others

the DNA repair system [7], but for mesothelioma treatment still no

useful marker has emerged. A resistance profile or signature could

have important clinical implications. We recently reported that the

gene profile of pleural mesothelioma correlates to several known

chemo- and radiation-resistance mechanisms, reflecting the

generally resistant mesothelioma phenotype [8]. One of the

patients included in our genome-wide expression study responded

on pemetrexed and carboplatin for 39 cycles as second-line

treatment. At treatment resistance, after 5 years, a new biopsy was

obtained from the tumour. Genome-wide profiling was performed

as well as immunohistochemistry and serum biomarker expression
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and the pre- and post-resistance profile was assessed in light of the

clinical history. Here we present novel findings and discuss their

relevance for mesothelioma treatment resistance and progression.

Methods

Ethics statement
The Regional Committee of Research Ethics of Central

Norway approved the study protocol and oral and written

informed consent was obtained.

Patient history
A 42-year old woman was referred to our clinic in May 2003

with dyspnoea for the last 8 months, and CT scan showed a large

tumour in mediastinum and the left pleura, growing into her left

breast (Fig. 1). She had worked nine years as a hairdresser with no

obvious asbestos exposure, but the department of occupational

medicine discovered that the hair-dryer she had used daily,

contained asbestos coils inside. Diagnostic biopsy and fresh frozen

material was obtained from pleural tumour by transdermal

ultrasound guided biopsy. The histological and immunohisto-

chemical picture showed a clear-cut malignant mesothelioma of

the epithelial type (Table 1). Due to her young age, female gender

and low-grade asbestos exposure, additional tumour markers were

analyzed to exclude other primary solide organ tumours (S-100,

Chromogranin, Thyreoglobulin, Calcitonin, TTF-1, Synaptophy-

sin, CK20), but those were all negative. Stage according to the

IMIG classification was T4N3M0. As first line therapy, six cycles

of carboplatin, pegylated doxorubicin and gemcitabine were given

with partial response, but only with slight improvement of clinical

status. This was before pemetrexed and platinum was standard

treatment. Due to progression almost a year after diagnosis,

second line therapy consisting of pemetrexed (500 mg/m2) and

carboplatin (AUC5) was given every three weeks, with B12 and

folate supplement (Fig. 1). Clinical and radiological response was

seen after six months, and the condition was considered stable for

24 courses (Fig. 1). After a five months treatment pause,

progression was seen and another15 courses of pemetrexed/

carboplatin were given, followed by regression, finally stopped due

to renewed progression (Fig. 1). In total, she received 39 cycles

with minimal toxicity and a self-reported good quality of life.

Clinical manifestation of the last progression was dyspnoea and

CT scan showed increasing tumour volume and pleural fluid

(Fig. 1, June 2008). At that point CT-guided biopsies were

obtained for microarray analysis and immunohistochemistry

(IHC). Peroral Vinorelbine 80mg/m2 at day 1 and 8 was then

tried as a third-line treatment with four months of stable disease.

The last two months she deteriorated and died at the district

hospital. No CT-evaluation or serum samples from that last period

were available.

Biopsies and Microarray analysis
Needle biopsies obtained by CT-guidance were snap frozen for

microarray analysis and formalin-fixed for IHC. A high tumour

content (.50%) in the samples was morphologically verified by

a pathologist (HS). RNA extraction and quality control was done

as described previously [9]. In order to maximize reliability of the

comparative analysis, we performed microarray analysis of four

post-resistance samples (two separate biopsies and two technical

duplicates) as well as the mRNA from all mesothelioma and

parietal pleural samples described in [9] (in total n = 17).

Preparations of 75 ng deep frozen total RNA through first strand

cDNA synthesis, second strand synthesis and IVT-reaction to

make biotin labeled cRNA was performed using IlluminaH

TotalPrep(tm)-96 RNA Amplification Kit (Cat#4393543) (Ap-

plied Biosystems/Ambion, Austin, TX). cRNA was quantified

with a NanoDrop Spectrophotometer (NanoDrop Technologies,

Wilmington, DE) and normalized before hybridized to the

HumanHT-12 v3 Expression BeadChip Kit (Cat# BD-103-

0603) (Illumina, Inc., San Diego, CA) of 25,000 genes. All

applications were performed according to the manufacturer’s

instructions.

After scanning the beads chips the hybridization, biotin

labelling, low stringency, housekeeping and negative controls

was assessed to determine the quality of technical performance of

the bead chips. All control performed as expected (Ref # ‘‘Whole -

Genome Gene Expression with IntelliHyb Seal – System Manual’’

– Illumina, 2006). All experiments are registered in ArrayExpress

according to the MIAME.

Microarray statistical analysis
Three separarate analyses were performed; first the tumour

versus normal analysis on the Illumina and Affymetrix datasets

combined, second on the Illumina dataset aiming at detecting the

post-resistance profile, called the acquired resistance analysis, and

finally a comparison of the most sensitive versus the most resistant

case, using the Affymetrix platform called the intrinsic resistance

analysis.

For the tumour versus normal analysis, our previously published

dataset on mesothelioma versus normal parietal pleura (n = 16) [8]

data with Affymetrix Human Genome U133 Plus 2.0 GeneChip

(Accession number EMTAB-47, www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-47) and the dataset with the current

Illumina data on the identical samples (Accession number E-

MTAB-1109, www.ebi.ac.uk/arrayexpress/experiments/E-

MTAB-1109) were the Affymetrix raw probe set intensities were

normalised by robust multi array average (RMA) and the Illumina

intensities were log2 and quantile transformed. The control of false

positives was done according to Benjamini and Hochberg [10,11]

and genes with corrected P-values smaller than 0.05 were taken as

significant. The two datasets were separately analysed with the

limma package in Bioconductor (www.bioconductor.org). Robust

rankings were produced by aggregating results of jackknifed

Limma models using the GeneSelector package (www.

bioconductor.org). A list of the 1500 top ranked genes from both

platforms was chosen (this is an ordered list where a p-value is not

available). Moreover, a ranked list of GO terms based on the top

1500 gene-list was produced using Fischers exact test (TopGO

software, www.bioconductor.org).

For the aquired resistance analysis, normalization was done as

previously described. The data from the primary biopsy was

correlated to the averaged data from the biopsies at the time of

treatment failure versus the data of the normal parietal pleura

samples as described in [8]. The annotation from illuminaHu-

manv3. db_1.10.0, hgu133plus2. db_2.5.0, org. Hs.eg.db_2.5.0

(www.bioconductor.org) were used. The lists of significant genes

were tested for overrepresentation in KEGG PATHWAYS (Kyoto

Encyclopedia of Genes and Genomes) [12], and GO (gene

ontology) terms [13] using Fishers exact test (significant p,0.05).

For the intrinsic resistance, the pre-resistance gene expressions

was compared with the gene expression list of another case in our

previously published material with very aggressive disease and

innate resistance to radiotherapy and doxorubicin, gemcitabine

and carboplatin with only six months survival, using the

Affymetrix data [9].

Molecular Resistance Profile in Mesothelioma
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Immunohistochemistry
Cell specific protein expression encoded by ten mesothelioma-

related genes as well as four standard diagnostic antibodies

(respective gene symbols in brackets) was assessed by IHC.

Calretinin, EMA, CEA and Ber-Ep4 as described in [14] as well as

the following, experimental antibodies were tested on formalin

fixed paraffin embedded tissues adjacent to samples subjected to

microarray: thymidylate synthase (TYMS) (Millipore, Billerica,

MA, USA), dilution 1:50; VG5Q (AGGF1) (Abcam, Cambridge,

UK), dilution 1:500; Chk1 (CHEK1) (Epitomics, CA, USA),

dilution 1:10, overnight incubation at 24uC; NQO1 (NQO1)

(Zymed Laboratories, Carlsbad, CA, USA), dilution 1:50; RAD21

(RAD21) (Abcam, Cambridge, UK), dilution 1:500; mesothelin

(MSLN) (Novocastra Laboratories, Newcastle, UK), dilution 1:10,

overnight incubation at 24uC; thymidine phosphorylase (TYMP/

ECGF1) (Sigma-Aldrich, St. Louis, MO, USA), dilution 1:50;

cytokeratin 7 (CK7) (DAKO, Glostrup, DK), dilution 1:500;

syndecan-1 (CD138) (DAKO, Glostrup, DK), dilution 1:50; hevin

(SPARCL1) (R&D Systems, Abingdon, UK), dilution 1:50.

Selected positive and negative controls were included for all

antibodies. Slides were reviewed by HS and immunoreactivity was

registered as the percentage of stained tumour cells and staining

intensity was scored from 1–4 (Table 1).

Serum biomarker analysis
Blood samples for biomarker analysis were obtained at several

consecutive visits in our hospital, and they were immediately

centrifuged and stored in 220uC for 1–2 days and subsequently in

280uC. Serum samples were analysed ‘‘in batch’’ for CA125,

CYFRA 21–1 and SMRP as described in [15].

NT5C silencing
Silencing of NT5C was performed with two MM cell lines, the

sarcomatoid ZL-34 (kindly provided by Julius Klominek) [16] and

the epithelioid M-14-K (kindly provided by K. Linnainmaa) [17].

In our recent experiments the M-14-K cells were sensitive and the

ZL-34 cells were resistant to Pemetrexed treatment (unpublished

data), making them a suitable pair of cell lines for this study. The

cells were cultivated in 90% Gibco RPMI 1640 medium

(Invitrogen, Carlsbad, CA, USA) with 25 mM HEPES buffer

Figure 1. Thoracic computer tomography (CT) throughout the disease course. A large mediastinal tumour as well as thoracic wall
infiltration was seen on the left side (CT at the same level). For details see Methods.
doi:10.1371/journal.pone.0040521.g001

Molecular Resistance Profile in Mesothelioma

PLoS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e40521



and 1% L-glutamine (Invitrogen), together with 10% Bovine

Serum (Invitrogen). All cells were cultured under 37uC and 5%

CO2 conditions and grown to confluency in 75 cm2 flasks

(Sarstedt, Nümbrecht, Germany). Flasks with confluent cells were

then trypsinized, spun down and approximately 250 000 cells were

seeded in every well of a 6 well plate over night (Nunc, Rochester,

New York, USA). The NT5C expression was then silenced

according to manufacturer’s protocol. Briefly, LipofectamineTM

2000 (Invitrogen) was mixed in medium with siRNA specific for

NT5C (Sigma-Aldrich) (Table S1) or negative control siRNA

(MISSIONH siRNA Universal Negative Control, Sigma-Aldrich)

in siRNA concentration of 40 nM and incubated for 20 min. The

seeded cells were then treated with one of the siRNA-

lipofectamine complexes for 4–6 hours. Following this, fresh

medium and serum was added to the cells and they were grown

for additional 18–20 hours before treatment or harvesting the cells

for RNA isolation.

RNA isolation and Quantitative Real Time Polymerase
Chain Reaction (qRT-PCR)

The silencing of NT5C was validated by qRT-PCR. Cells were

trypsinized, washed in cold PBS and spun down. The RNA was

then extracted using the High Pure RNA Isolation Kit (Roche,

Mannheim, Germany), according to the manufacturer’s protocol.

The purity and the yield of the RNA isolations were measured

using the NanoDrop Spectrophotometer (Nanodrop Technologies

Inc). cDNA were constructed from RNA templates according to

the manufacturer’s protocol using the First-Strand cDNA Synthe-

sis Kit (GE Healthcare, Little Chalfont, Buckinghamshire,

England). In brief RNA was mixed with RNaseOUTTM

Recombinant Ribonuclease Inhibitor (Invitrogen), heated and

then put on ice. Bulk First-Strand cDNA Reaction Mix, DTT

Solution, pd(N)6 Primer and the RNA was then mixed and

incubate for 1 hour. The purity and concentrations of the cDNA

were then measured using the NanoDrop Spectrophotometer.

qRT-PCR was performed using the PlatinumH SYBRH Green

qPCR SuperMix-UDG kit (Invitrogen) according to manufac-

turer’s protocol. The cDNA samples were used in quintuplicate

and sense/antisense primers for either NT5C (Cybergene AB,

Stockholm, Sweden) or GAPDH [18]. We designed the primers

for NT5C using gene sequences from GeneBank (NCBI)

(Table S1). The experiments were run in an iCycler machine

(Bio-Rad, Hercules, CA, USA), analyzed in Bio-Rad CFX

managerTM Software 2.0 and the quantity of NT5C were

normalized to the GAPDH reference gene and presented as mean

values of at least four independent experiments.

Cell cycle analysis
After silencing, the cells were given fresh medium and serum

and treated with either 90 mM Pemetrexed (Lilly, Indianapolis,

IN, USA) or with PBS for the control cells. After 48 hours of

treatment the cells were trypsinized and spun down. Cells were

then fixated by slowly adding cold ethanol while continuously

resuspending the cell pellet. The samples were then stored at 4uC
over night. Following this, cells were washed with PBS and mixed

with staining solution, containing 50 mg/ml Propidium iodide

Table 1. Change of immunohistochemical expression in tumour before and after resistance.

Markers Biopsy 2003 Biopsy 2008

Diagnostic Markers
% positive
MM-cells

Intensity
(0–4)

% positive
MM-cells

Intensity
(0–4)

Gene/Protein
change*

EMA, cytoplasm ,1 1–2 ,1 1 2/2

EMA, cell membrane 40 3 70 3 2/+

Calretinin, nucleus .95 3–4 .95 4 2/2

mCEA 0 0 0 0 2/2

Ber-Ep4 0 0 0 0 2/2

Experimental Markers

RAD21 .90 3–4 .95 4 2/2

CD138, cell membrane 15 3–4 10 3–4 2/2

CHK1, cytoplasm ,5 1–2 50 1–2 2/+

CHK1, nucleus ,1 1–2 1–2 1–3 2/2

CK7, cytoplasm 20 2–4 95 2–4 +/+

CK7, cell membrane

Mesothelin 100 3–4 .99 4 2/2

NQO1, cytoplasm 90 1–3 99 1–3 2/+

NQO1, nucleus 20 1–3 70 1–3

SPARCL, cytoplasm 100 4 100 3–4 --/2

TYMP, cytoplasm 50–60 2–4 85 3–4 +/+

TYMS, cytoplasm ,1 1–2 25 1 +/+

TYMS, nucleus ,1 1–2 ,1 1 +/2

VG5Q, cytoplasm 95 2–3 .99 2–3 2/2

VG5Q, nucleus 1–2 1–3 0 0

*(2) indicates no change, (+) indicate increase and (--) indicate reduction.
Experimental markers are antibodies to proteins encoded by differentially expressed genes in mesothelioma or genes related to mesothelioma biology.
doi:10.1371/journal.pone.0040521.t001
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solution (Sigma-Aldrich) and 100 mg/ml Ribonuclease A (Sigma-

Aldrich) and incubated for 30 min at 37uC. The samples were then

analyzed using FACSCalibur cytometer (Becton Dickinson,

Franklin Lakes, NJ, USA) and CELLQuest pro Software. Cell

cycle distribution was evaluated with the Dean-Jett-Fox model

using FlowJo 7 (Tree Star Inc., Ashland, OR, USA) for Windows.

Statistical Analysis
All the results for the ZL-34 and the M-14-K cells are mean

values of at least four independent experiments. The error bars

represent the 95% confidence intervals and the difference between

the mean values of treated and untreated cells or silenced and

negative control siRNA cells, were analyzed using student’s t-test

with one-tailed p-values. Statistical significance was considered at

p,0.05.

Results

Tumour versus normal analysis
The tumour versus normal analysis as described above showed

an almost identical picture of the Affymetrix and Illumina

platform as seen in the loading and score-plots and differentially

expressed genes were very similar (Figure S1) and there was a 65%

overlap of the differentially expressed genes (Figure S2). The top

1500 ranked list and GO entities of differentially expressed genes

showed an overexpression of genes involved in mitosis, cell cycle

checkpoint and DNA repair and down-regulated multicellular

organismal development, inflammatory response and vasculogen-

esis among others (Table S2 Sheet 1–3).

Acquired resistance analysis
High quality RNA was successfully extracted from the post-

resistance tumour samples and analysed with the Illumina

platform as described. The acquired resistance analysis revealed

241 overexpressed and 289 down-regulated genes in the post-

resistance samples (Table S2 Sheet 4 and 5). There were 23

significantly overexpressed and 65 down-regulated GO-terms

(Table S2 Sheet 6 and 7, p,0.05).

The largest entity of overexpressed genes in numbers was the

metabolic process with 89 genes, whereof 46 genes involved in

nucleobase, nucleoside, nucleotide and nucleic acid metabolic

process. Other overexpressed entities were tRNA aminoacylation,

protein amino acid glycosylation and response to DNA damage

stimulus. Similarly in the KEGG (Kyoto Encyclopedia of Genes

and Genomes [12]), 15 genes were overexpressed in the metabolic

pathways, six and four genes in the pyrimidine (Fig. 2) and purine

metabolism respectively and four genes of the aminoacyl t-RNA

biosynthesis pathway. Several other important pathways as

endocytosis, calcium signalling and ubiquitin mediated proteolysis

were also deregulated (Table 2).

The largest entity of down-regulated genes in number of genes

was the cellular process with 162 genes. Cell communication and

multi-cellular organismal development as well as negative regula-

tion of biological process, transcription and nucleobase, nucleo-

side, nucleotide and nucleic acid metabolic process were down-

regulated. Similarly in KEGG, down-regulation of metabolic

pathways, cell adhesion molecules, leukocyte transendothelial

migration as well as MAPK-signalling pathway and cytokine-

cytokine receptor interaction were the most highly represented

pathways.

Among the differentially expressed acquired resistance genes, 12

overexpressed and 26 down-regulated genes changed more than 2-

fold (Fig. 3).

For examining the relation of acquired resistance genes versus

the general mesothelioma gene signature published in [8], the

1500 top ranked genes were analysed for similarities and we found

150 tumour-specific genes were in common (Table S2 Sheet 8).

Protein expression- IHC
Due to very limited material for immunohistochemistry (needle

biopsy), a careful selection of antibodies was chosen. The

histological picture and routine IHC remained virtually un-

changed before and after resistance, except for cell membrane

EMA staining where immunoreactivity (IR) increased from 40%

to 70% of cancer cells (Table 1). Then, experimental markers

important of aggressiveness as well as resistance in several cancers

as well as mesothelioma, were tested [8]. Damage response protein

CHK1 changed from almost no detectable staining in the primary

biopsy to 50%, nuclear staining of NQO1 increased from 20 to

70% and TYMS staining increased from below 1% to 25% of

tumour cells (Table 1, Fig. 4). RAD21 and mesothelin IHC was

analysed for the same reason but showed no change of gene or

protein staining.

We previously identified VG5Q as a novel angiogenic over-

expressed in mesothelioma [8], but no change was seen. SDC gene

was overexpressed, but its protein Syndecan-1 (CD138) an

important protein related to the mesothelioma phenotype did

not change either (Table 1). KRT7/CK7 and TYMP both gene

and protein was significantly overexpressed at resistance (Table 1,

Fig. 4). The protein encoded by the down-regulated gene

SPARCL1 was only slightly down-regulated after resistance.

Intrinsic resistance analysis
A simple quantification of gene expression in the long-term

survivor at diagnosis and the primary resistant and most aggressive

case with only six months survival (raw data from [8]) was

arranged by fold change (Fig. 5). Of 828 differentially over-

expressed genes, 188 (22.7%) were more than 2-fold overexpressed

in the resistant case and only 22 (2.6%) in the sensitive case.

Among those, the DNA repair genes and the genes with the

highest fold value are discussed. The findings are presented in the

respective section.

NT5C silencing in cell lines
The NT5C expression was silenced to 3467% of the original

expression level in the M-14-K cells and to 23614% in the ZL-34

cells, respectively. When comparing the mean values of controls

cells (for both M-14-K and ZL-34) with siRNA specific for NT5C

or negative control siRNA, no significant differences were found

when looking on the total amount of cells and on the cell cycle

distribution. No significant differences were seen when comparing

the pemetrexed treated cells, with silenced NT5C or with negative

control siRNA (Figure S3). However, we could see some minor

differences between the two groups of Pemetrexed treated ZL-34

cells. After treatment, there was 5 percentage points more live cells

in the ZL-34 that had been silenced than in the control cells. The

cell cycle distribution was also slightly changed in the silenced cells

having 6 percentage points more cells in G1 phase, 9 percentage

points less cells in S phase and 5 percentage points more cells in

the G2 phase.

Serum Biomarkers
Serum Mesothelin Related Protein (SMRP) was measured at

several time-points, as well as CA125 and CYFRA 21-1. CYFRA

21-1 was below the cut-off at diagnosis, and the value increased 2-

fold above cut-off only at resistance (not shown). SMRP was

Molecular Resistance Profile in Mesothelioma
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31.33 nM initially, 12-fold the normal value (2.5 nM), decreased

to 16.7 nM and was relatively stable until progression after

treatment pause, and subsequently increased after resistance to

treatment (Fig. 6). CA125 followed a similar course, initially 108

kIE/L, 3-fold normal value of 35 kIE/L, stabilized on 35 kIE/L

and increased after treatment pause and thereafter at resistance.

Discussion

To our knowledge this is the first published case of malignant

mesothelioma with a comparison of genome-wide expression at

the time of diagnosis and after pemetrexed-platinum therapy

failure. The shortcoming of this study is obviously the one case,

along with the caveats of microarray analysis of heterogeneous

tumour samples that shows the expression of a tumour/stroma

system rather than tumour cells only. Furthermore, the biological

material was scarce and thus only selected IHC was used for

validation. However, all steps were optimized, from the way the

biopsies were obtained (needle biopsy) and handled (rapid freeze

and storage), as well as optimal RNA extraction and verification of

a high tumour content in all the samples in adjacent biopsy. To

improve validity the gene expression of profile after resistance was

tested against six mesothelioma and seven normal samples as well

as showing overlapping results in two different microarray

platforms. Here several important genes and pathways that may

reflect tumour response and subsequent resistance were detected.

In the following sections results that may have relevance in

pemetrexed- and platinum-resistance will be discussed and the

main findings are summarized in Fig. 7.

Metabolic process- DNA and RNA metabolism
The metabolic process entity included several overexpressed

genes involved in DNA and RNA metabolism. In pyrimidine

metabolism six genes (CAD, NT5C, POLA2, POLD1, RRM2B,

TYMP) and four in purine metabolism (NT5C, POLA2, POLD1,

RRM2B) were also overexpressed in the KEGG pathways.

Pemetrexed is a multifolate antagonist that inhibits replication

through folate-dependent enzymes, thymidylate synthase (TS),

GARFT and DHFR where the affinity for the TS is many orders

of magnitude higher than the latter two, and is recognised as the

main target of pemetrexed in cell line experiments [19]. TS

encoded by TYMS, is a key protein that catalyzes the methylation

of deoxyuridylate (dUMP) to deoxythymidylate (dTMP) that

maintains the dTMP pool critical for DNA replication and repair.

Figure 2. Pyrimidine metabolism in tumour versus normal and at acquired resistance. Genes involved in pathways of DNA metabolism
and production in tumour versus normal (red corresponds to overexpressed and dark green correspond to down-regulated) and in acquired resistant
tumour (in ovals, all were overexpressed). Abbreviations: 2.1.3.2 = aspartate transcarbamylase 3.5.2.3 = dihydroorotase 6.3.5.5 = CAD; carbamoyl-
phosphate synthetase 2 3.1.3.5 = NT5C; 59-nucleotidase 2.7.7.7 = POLA2; DNA polymerase alpha subunit B 2.7.7.7 = POLD1; DNA polymerase delta
subunit 1 1.17.4.1 = RRM2B; ribonucleoside-diphosphate reductase subunit M2 2.4.2.4 = TYMP; thymidine phosphorylase.
doi:10.1371/journal.pone.0040521.g002
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Low TS expression increases the pemetrexed response in vitro

[20,21]. In our previous study, we noted that this good responder

had a very low TYMS mRNA and TS protein expression seen by

IHC in contrast to all the other cases with a mean survival of only

12 months [8]. After resistance, TS staining increased from below

1% to 25% of the cells (Table 1, Fig 4) while TYMS mRNA did

not change. Interestingly, studies have also shown that the

thymidylate synthase protein, and not the gene, is the only marker

to predict pemetrexed resistance in mesothelioma, in line with our

findings [3,4,5].

Acquired pemetrexed resistance of cancer cells in vitro and in

a murine model in vivo has been shown with addition of thymidine

that blocks pemetrexed effect on TS, hypoxanthine that blocks

GARFT and the combination of thymidine and hypoxanthine that

blocks DHFR [20,21]. In a one-patient study thymidine was

successfully used to reverse kidney failure due to pemetrexed,

indicating that at least the toxic effects of pemetrexed can be

blocked in humans by thymidine [22]. We found overexpression of

NT5C, encoding pyrimidine 5-prime nucleotidase also called

uridine 5-prime monophosphate hydrolase (UMPH), essential for

the catalyzing the dephosphorylation of thymidylate (TMP) to

thymidine and inositol monophosphate (IMP) to inositol, the

precursor of hypoxanthine. Knockdown of NT5C in colorectal

cancer cell lines sensitized cells to 5-FU, a drug also targeting TS

[23]. Thus, as elevated levels of thymidine and hypoxanthine have

been shown to reverse the pemetrexed effect, an elevated NT5C

could thus also be a potential pemetrexed resistance mechanism in

vivo (Fig. 7). Because of this, we silenced NT5C in two

mesothelioma cell lines, one sarcomatous and one of epithelial

type, that were treated with pemetrexed. There was no

sensitization of the silenced cells to pemetrexed, only a slight

change in cell cycle distribution was seen with in the G1 and G2

phase (Figure S3). Thus, a key role of this gene in pemetrexed

resistance could not be determined in vitro for these cell lines.

Contributing factors could be that the halftime and activity of

NT5C is not known and the actual amount of the protein in the

silenced cells is also unknown and this might affect the outcome of

these experiments.

Thymidylate phosphorylase mRNA (TYMP) as well as its

encoded protein (ECGF1 antibody) was overexpressed at re-

sistance (Fig. 4). TYMP is expressed at higher levels in a wide

variety of solid tumours than in adjacent non-neoplastic tissue and

been related to tumour progression and aggressiveness. Tumour

microenvironment (hypoxia, acidosis) regulates the expression of

TYMP, and its expression in tumour tissue shows significant

correlation with microvessel density and poor prognosis [24].

TYMP facilitates the conversion of thymidine to thymine and 2-

Deoxy-D-ribose, that has been shown as a key control of

Table 2. Top 10 overexpressed and down-regulated pathways in post- versus pre-resistance tumour in KEGG pathways map.

Overexpressed genes in KEGG pathways after resistance

Pathway code and name Number of genes

hsa01100 Metabolic pathways 18

hsa00240 Pyrimidine metabolism 6

hsa04144 Endocytosis 5

hsa00970 Aminoacyl -tRNA biosynthesis 4

hsa00230 Purine metabolism 4

hsa04020 Calcium signaling pathway 4

hsa04120 Ubiquitin mediated proteolysis 3

hsa05010 Alzheimer’s disease 3

hsa04141 Protein processing in endoplasmic reticulum 3

hsa05100 Bacterial invasion of epithelial cells 3

Down-regulated genes in KEGG pathways after resistance

Pathway code and name Number of genes

hsa01100 Metabolic pathways 11

hsa04514 Cell adhesion molecules (CAMs) 9

hsa04670 Leukocyte transendothelial migration 9

hsa04530 Tight junction 8

hsa04510 Focal adhesion 6

hsa05200 Pathways in cancer 6

hsa04010 MAPK signaling pathway 6

hsa04060 Cytokine-cytokine receptor interaction 5

hsa00230 Purine metabolism 5

hsa04520 Adherens junction 5

Several interesting and important systems were deregulated after resistance. Note that overexpressed genes in GO metabolic process was 89 and in KEGG only 18. The
reason is that KEGG includes new genes in a pathway only when several publications have confirmed it, and thus is more conservative but with a high level of evidence.
Most pronounced were the metabolism and modification of DNA and RNA through pyrimidine and purine metabolism and aminoacyl-t-RNA biosynthesis. Interestingly,
down-regulation of cell adhesion molecules and leukocyte transendothelial migration as well as cytokine-cytokine receptor interaction was pronounced, also an
expression characteristic of mesothelioma versus normal pleura.
doi:10.1371/journal.pone.0040521.t002
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angiogenesis and tumour progression (Fig. 2) [25]. TYMP is also

involved in fluorouracil metabolism and indispensable for the

action of capecitabine. Here, we found a low gene and protein

expression in the primary setting and highly expressed gene and

protein in the post-resistance sample, indicating a role in

progression, possibly also in resistance. RRM2B is a ribonucleotide

reductase that contributes to DNA repair by supplying deoxynu-

cleotide triphosphate pools in response to DNA damage, and has

been associated to treatment sensitivity and tumour invasiveness.

Silencing of this gene in prostate cancer sensitizes the tumour cells

to both irradiation and doxorubicin [26] as well as reversal of

acquired resistance to gemcitabine, which also showed cross-

resistance to pemetrexed in cell lines with acquired resistance

[27,28]. RRM2B role in mesothelioma is unknown, but a role in

pemetrexed resistance is highly plausible regarding its role

upstream of TS and a central role in DNA metabolism (Fig. 2).

CAD, encoding a multifunctional protein that initiates and

regulates mammalian de novo pyrimidine biosynthesis and is

required for mammalian cells to proliferate, was found highly

overexpressed. In k-FGF transfected cancer cells that developed

resistance to methotrexate, CAD and DHFR were the main genes

responsible for the resistance [29]. Furthermore, four genes

Figure 3. Genes changed more than 2-fold after resistance. Expression of genes that changed more then 2-fold in the post-resistance tumour,
compared to initial tumour. Down-regulated genes are shown to the left (30 in total, two not shown) and the overexpressed to the right (15, three
not shown). Green bars represent the relative gene expression before and red bars after acquired resistance.
doi:10.1371/journal.pone.0040521.g003

Figure 4. Tumour before resistance and at acquired resistance. Immunohistochemical images (x40) seen before treatment (top row) and five
years later after acquired resistance (bottom row). Three of the experimental markers that were hypothesised to be important for mesothelioma
aggressiveness as well as resistance, showed increased protein staining after acquired resistance. Chk1 staining increased from below 5% to 50% of
the cells, TYMS staining from below 1% to 25% of the cells while nuclear staining of NQO1 increased from 20 to 70% of the cells. Two novel putative
resistance markers, KRT7/CK7 and TYMP both gene and protein was significantly increased at resistance. SPARCL1 showed a significant decrease in
gene expression, but its encoded protein, hevin, showed only a slight decrease in protein staining intensity.
doi:10.1371/journal.pone.0040521.g004
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encoding proteins that load amino acids on t-RNA, MARS,

FARS2, WARS, AARS were in the top GO overexpressed group

fold-wise, as well as in KEGG pathways. Interestingly, as we have

proposed previously, t-RNA aminoacylation could be involved in

treatment resistance to ranpirnase [8,30].

TIMELESS, a circadian rhythm gene involved in DNA damage

response and replication was overexpressed in both our studies.

Elevated mRNA levels in breast cancer of this positive circadian

regulator has been significantly associated with shorter relapse-free

survival and recently been regarded as a promising marker of

tamoxifen resistance in women with estrogen receptor alpha-

positive breast tumours [31].

TNKSBP1, Tankyrase-1 was overexpressed and was previously

found to polymerize of poly(ADP-ribose) and to be required for

spindle structure and function [32]. TNKSBP1 mRNA in urine

sediment from patients with bladder carcinoma correlated with

tumour stage, and higher preoperative levels were associated with

increased risk of early recurrence [33]. The poly (ADP-ribose)

polymerization genes PARP9, 10 and 14 were overexpressed.

Generally little is known about their function, but PARP9 and 14

are also called B aggressive lymphoma proteins (BAL-family) and

mediates protection against apoptosis at DNA damage [34].

RBBP7, retinoblastoma protein 7, also overexpressed, is one

among several proteins that binds directly to the retinoblastoma

protein, which regulates cell proliferation. Both mRNA and

protein levels were found significantly overexpressed in non-small

cell lung cancer tissues and elevated serum levels were highly

correlated with distant metastasis [35]. It also plays an important

role in epithelial-mesenchymal transition [36]. In general, those

genes may play a role in pemetrexed resistance, but less likely in

resistance against platinum compounds.

DNA repair gene overexpression
DNA is the main cytotoxic target of cisplatin and carboplatin by

the induction of single and double-strand DNA breaks through

adducts and cross-linking, leading to cell death through apoptosis

[7]. To counteract the DNA damage induced by a platinum

compound, a highly complex repair cascade of several mechan-

isms is recquired. Recently, the Fanconi anemia/BRCA2 (FA)

pathway and Homologous Recombination (HR), a DNA double

Figure 5. Fold-change of gene expression between a primary resistant mesothelioma with only six months survival and the primary
sensitive case with almost six years survival. The top figure shows the DNA repair genes found in [7], depicting a grave overexpression of these
genes in the primary resistant case. Among them, CHEK1, FANCD2 and TYMS also seem to be important for acquired resistance (in ovals). Among the
32 top overexpressed genes (arbitrarily .6-fold), the 23 are involved in cell cycle, cytokinesis, and spindle formation, and several are known to be
negative prognostic factors in other cancers. The marked differences in indicate which gene functions may be important for aggressiveness and
intrinsic treatment resistance in mesothelioma. KRT7 and SDC1 genes that changed significally at acquired resistance were also .2-fold
overexpressed in the aggressive case. NQO1, a putative treatment target where protein expression was increased in acquired resistance, was .2-fold
overexpressed in the aggressive case.
doi:10.1371/journal.pone.0040521.g005
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Figure 6. Serum biomarker changes over time. Ca125 and Mesothelin (SMRP) biomarkers in serum were elevated at diagnosis and decreased
and increased according to the clinical and radiological regression and progression respectively. The straight horizontal dashed lines depict the
maximum normal values of the two markers. CYFRA 21-1 is not shown.
doi:10.1371/journal.pone.0040521.g006

Figure 7. Cartoon summarizing the most important findings related to pemetrexed-platinum resistance and tumour
aggressiveness in post- versus pre-treatment biopsies. All genes labelled red are significantly overexpressed except TYMS and CHEK1
where only the encoded protein overexpression was seen. Thymidylate synthase protein overexpression is a known resistance factor against
pemetrexed and the TYMP gene/protein was overexpressed. Pemetrexed inhibits the folate enzymes TYMS, GARFT and DHFR. Overproduction of
thymidylate and hypoxanthine can reduce the pemetrexed effect on all three enzymes and rescue tumour cells from pemetrexed toxicity. NT5C was
overexpressed and encodes an enzyme, 59, 39-nucleotidase, a key enzyme for production of thymidylate and hypoxanthine. TYMS and the
downstream metabolite 2-deoxy-D-ribose increase angiogenesis and tumour aggressiveness. POLA2 and POLD1 are important for DNA elongation,
telomerase extension and cell survival, but also for repair, namely nucleotide excision repair (NER, POLD1 combined with LIG3) and base excision
repair (BER, LIG3 with XRCC1) thus important for platinum resistance. Two novel DNA repair genes with undefined mechanism related to both drug
and radiation resistance, RECQL5 PRPF19, were overexpressed. Damage response gene CHEK2 and Chk1 protein was overexpressed, both involved in
delaying mitosis and facilitating DNA repair. Abbrevations: CHEK1/Chk1; checkpoint 1 kinase CHEK2; checkpoint 2 kinase dTDP; deoxythymidine di-
phosphate dTTP; deoxythymidine tri-phosphate dUMP; deoxyuridylate IMP; inositol mono-phosphate LIG3; Ligase III NT5C; 59, 39-nucleotidase,
cytosolic POLA2; DNA polymerase alpha subunit B POLD1; DNA polymerase delta subunit 1 TYMP; thymidine phosphorylase TYMS; thymidylate
synthase.
doi:10.1371/journal.pone.0040521.g007
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strand break (DSB) repair mechanism of perfect repair, has been

attributed the role as a coordinator of this cascade [37]. In our

previous study, several genes involved in HR were overexpressed

[8]. Of those genes, only the FANCD2 was overexpressed here.

FANCD2 is a key protein in this pathway as it interacts with

BRCA2 and further with the members of the FANC and RAD

family [37], and could thus play a role in platinum resistance in

our case. POLD1 encodes DNA polymerase delta that plays

a central role in chromosomal DNA replication, repair, and

recombination [38]. It was recently shown to be very important for

Nucleotide Excision Repair (NER) [39], known to be important

for cisplatin-induced damage (Fig. 7). LIG3 encode DNA ligase III

that is a key protein in Base Excision Repair (BER) together with

XRCC1, but was also recently involved in NER with POLD1, but

also with XRCC1 [40,41,42]. LIG3 overexpression was found to

predict progression of non-muscle invasive bladder cancer in

a large microarray study [43]. Homozygous mutation of LIG3

confers a high risk for pancreatic and other forms of cancer [44].

Some interesting novel DNA repair genes appeared over-

expressed in the tumour after resistance. PRPF19 encodes the

hPso4 protein that was induced 15- to 30-fold in cells by gamma

radiation and chemical mutagens. Loss of hPso4 expression

induced by siRNA results in accumulation of double strand breaks,

apoptosis, and decreased cell survival after DNA damage and

plays a major but previously undefined role in mammalian DNA

DSB repair [45]. RECQL5 encodes a helicase, Recql5 that plays

an important role in maintaining active DNA replication. It

prevents the collapse of replication forks and accumulation of DSB

and subsequent cell death after topoisomerase I poisoning by

irinotecan, probably acting as a regulator of HR and was recently

proposed as a treatment target [46]. Interestingly, Recql5 protein

is not widely expressed in normal or non-mesothelioma tumour

tissues (www.proteinatlas.org), and may thus be important both for

mesothelioma biology and resistance against DNA damaging

agents.

Damage response proteins delay the entrance of the damaged

cell into mitosis thus facilitating DNA repair. Here the CHEK2

gene was overexpressed (not enough tissue to examine protein

expression), and the Chk1 (checkpoint kinase 1) protein, encoded

by the CHEK1 gene increased its staining from below 5% to 50%

of the tumour cells after resistance (Fig. 4). Chk1 is a putative

treatment target, as selectively localized in tumour cells, and is

a key protein controlling the G2/M checkpoint and DNA repair as

well as playing a role in radiation- and chemo-resistance [47].

Recently, high-throughput RNAi screen identified CHEK1 as

target for sensitizing ovarian cancer cells to cisplatin and

pancreatic cancer cells to gemcitabine [48,49] as well as

mesothelioma cells to doxorubicin [50]. In our previous study,

comparing this case with the most aggressive, the last had an 8-fold

higher CHEK1mRNA expression (Fig. 5). Another indication on

the relation between CHK1 and pemetrexed is the finding that

caffeine, a CHK1 inhibitor sensitizes mesothelioma cell-lines for

pemetrexed, and thus may be a putative co-drug target for

mesothelioma [51]. CHEK1 appears as a very important gene in

resistance towards several DNA-damaging agents, and could be

a promising marker for pemetrexed-platinum response and

survival in mesothelioma.

Cell adhesion molecules and leukocyte transendothelial
migration

Cell adhesion molecules and leukocyte transendothelial migra-

tion were among the top down-regulated pathways (Table 2,

Fig. 8). Currently both pathways were found to correlate with

recurrence after operation of stage I lung cancer in four large

datasets, and thus seem to play a role in tumour aggressiveness

[52]. Their role in chemoresistance is not clear but we already

detected down-regulation of these pathways in mesothelioma

versus normal parietal pleura. Here, CDH5 or vascular endothe-

lial cadherin is a key protein controlling the endothelial barrier

and its disruption by specific antibody both amplifies metastasis in

normal mice and overcomes the genetic resistance in mice [53].

Moreover, CDH5 is a candidate tumour suppressor and low

expression strongly correlated to worse survival in neuroblastomas

[54]. Claudins are integral membrane proteins and components of

tight junctions that serve as a physical barrier to prevent solutes

and water from passing through between epithelial or endothelial

cell sheets. CLDN1 (Fig. 3) and CLDN5 are down-regulated in

many cancers [55] and also in mesotheliomas [56] and low

expression of these claudins are associated with more aggressive

prostate cancer [57]. Importantly, another tight junction gene,

OCLN, occludin, was shown to be closely involved in resistance to

apoptogenes as cisplatin and gamma irradiation, and re-expression

of OCLN sensitized cancer cells to these agents [58]. VCL,

vinculin encodes a cytoplasmic actin-binding protein regulating

cell shape, integrin clustering, force generation, and strength of

adhesion as well as regulating apoptosis. In colorectal cancer

versus normal mucosa it was down-regulated and correlated to

carcinogenesis, invasion, and metastasis of colorectal carcinoma

[59]. Interestingly, the activation of vinculin sensitized melanoma

to chemotherapy and increased adhesion of cells to extracellular

matrix ligands, numbers of cell-matrix adhesions, and downstream

signaling [60]. ESAM is specifically expressed at endothelial tight

junctions and on platelets, and its down-regulation decreases

neutrophil extravasation [61]. JAM2/JAMB inhibition decreases

leukocyte infiltration [62].

Low CXCL12 and VCAM1 has been related to both cancer

progression and improved prognosis in various cancers, but no

clear relation to chemo-resistance has been reported. The down-

regulation of leukocyte transendothelial micration and adhesion is

thus connected to several mechanisms related to tumour

aggressiveness and treatment resistance, although these have not

been connected to either pemetrexed nor mesothelioma pre-

viously.

Candidate resistance markers
In the gene expression profile of malignant mesothelioma versus

normal pleura recently published, we found signatures related to

multi-resistance [8]. If we recognize this signature as mesotheli-

oma-specific, then the genes that are shared with the signature of

acquired resistance should be of high importance. There were 150

genes common between the top 1500 tumour versus normal gene

list and resistance profile (Supplemetary Excel Sheet 8) among

them KRT7 was highly overexpressed (Fig. 3), and the most

striking change in immunoreactivity was observed in its encoded

protein cytokeratin 7 (CK7) with a 75% augmentation of the

number of cells stained (Table 1, Fig. 4). Positivity for CK7 in

more then 75% of cells is regularly observed in several types of

carcinoma (www.proteinatlas.org), as well as mesotheliomas [63],

but to our knowledge there has not been reported such a degree of

augmentation of immunoreactivity for cytokeratins in the course of

therapy resistance in carcinomas, nor in mesothelioma. Evidence

for KRT7 in resistance specifically against anti-metabolites was

shown by cellular response to 5-fluorouracil in 5-FU-resistant

colon cancer cell lines during treatment and recovery where

KRT7 was among the differentially overexpressed genes [64].

Moreover, when pre-treatment expression was compared with the

expression in a primary resistant case, KRT7 was 3.2-fold

overexpressed in the aggressive case (Fig. 5). Thus, this gene-
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protein couple could be explored further as a marker of tumour

aggressiveness as well as for pemetrexed/carboplatin resistance.

SDC1 and its encoded protein syndecan-1 (CD138) are over-

expressed in mesothelioma and myeloma, but downregulation

rather than overexpression has been linked to drug resistance [65].

Intriguingly, while SDC1 mRNA was overexpressed, the IHC

showed down-regulation, thus pointing at a post-translatory

degradation process involved (data not shown). Thus, only

SDC1 mRNA expression could be further studied as a putative

resistance marker.

Among the down-regulated, both transcripts of SPARCL1,

encoding hevin, were changed more than 2-fold (Fig. 3). This gene

has recently been assigned a tumour suppressor role as well as

down-regulation in metastasis in pancreatic cancer [66]. Hevin

IHC was chosen due to its primarily high gene expression and

high down-regulation at resistance. It showed very strong staining

in all pre-treatment tumour cells but only a slightly less strong

staining post-resistance. Thus, SPARCL1 mRNA only could be

a putative resistance marker. Of the remaining genes there is no

established relation to pemetrexed or platinum resistance, but

PMP22, SRPX are indicators of increased tumour progression

and/or aggressivity in other cancers [67]. OSR1 is a transcription

factor that regulates p53 in concert with other genes, and its

overexpression activates p53 [68]. This may be very important but

a direct role the progression of cancer has not been described.

CDKN1B or its encoded protein p27 down-regulation is involved

in several cancers, in mesothelioma low p27 protein expression

correlated with short survival [69]. Low p27 also was predictive to

survival of breast cancer after fluorouracil, cyclophosphamide, and

methotrexate treatment [70]. Interestingly CDKN1B was down-

regulated both in tumour versus normal and after resistance

(Fig. 8). Recently, low p27 expression in lung cancer cells was

correlated to pemetrexed resistance [71]. With this background,

CDKN1B could also be explored as a putative resistance marker

in mesothelioma. Selenoprotein 1 (SEPP1) was down-regulated as

found in small-cell lung cancer [72].

Protein versus mRNA expression
The following genes were all overexpressed in our previous

study of mesotheliomas versus normal pleura, and were proposed

as targets for treatment. We wanted to assess whether the protein

expression of those genes was related to pemetrexed/carboplatin

resistance.

TS and CHEK1 were discussed in the previous section. NQO1

is a detoxifying reductase, where lack of function in somatic cells is

related to increased benzene oncogenesis and inactivating poly-

Figure 8. Leukocyte transendothelial migration in tumour versus normal parietal pleura and at acquired resistance. Leukocyte
transendothelial migration were among the top down-regulated pathways. Here we show the tumour versus normal profile with overexpressed (red)
and down-regulated (green) genes, and genes marked with oval were down-regulated post-resistance. Abbrevations: CDH5; cadherin 5, type 2
(vascular endothelium) CLDN1; claudin 1 CLDN5; claudin 5 CXCL12; chemokine (C-X-C motif) ligand 12 ESAM; endothelial cell adhesion molecule
JAM2; junctional adhesion molecule 2 OCLN; occludin (EC:2.1.1.67) VCAM1; vascular cell adhesion molecule 1 VCL; vinculin.
doi:10.1371/journal.pone.0040521.g008
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morphism has been related to dismal prognosis and predictive of

treatment failure in breast cancer [73]. In tumour cell over-

expression this is common and shown to induce proliferation in

melanoma cells [74]. The encoded protein NQO1 was primarily

highly expressed in cytoplasma, but low expressed in the nucleus.

Although the gene was not differentially expressed at resistance,

nuclear protein expression increased from 20 to 70%. Again, in

our previous study, the NQO1 mRNA in the most aggressive and

primary resistant case was 5.5-fold overexpressed (Fig. 5). Thus

nuclear expression of this protein may as well be a marker of

resistance. Previously we proposed this protein as a treatment

target, as its overexpression is a prerequisite for the effect of the

novel anticancer compound beta-Lapachone [75] that induce

selective tumour apoptosis by an unknown mechanism, as well as

radio-sensitisation in vitro. Moreover in cell lines beta-Lapachone is

found to inhibit DNA polymerase alpha, DNA replication and TS

activity, topoisomerase I, NFkappa-beta activity as well as

induction of topoisomerase II alpha mediated DNA breaks [76].

Most of these pathways were overexpressed in mesothelioma, and

thus this compound could be an interesting combination possibly

with pemetrexed and platinum.

RAD21 gene expression was not differentially expressed and

RAD21 protein expression was high in the primary biopsy where

90% of cells were positive, but there was a slight increase both in

intensity and positive cell count after resistance. RAD21 is a critical

gene in double-strand DNA repair and mitotic growth and gene

overexpression was recently shown to be involved in invasion and

metastasis in oral squamous cell carcinoma [77]. Silencing of

RAD21 gene expression decreased cell growth and enhanced

cytotoxicity of etoposide and bleomycin in human breast cancer

cells [78].

AGGF1, a recently discovered potent angiogenic [79], and is

implicated in damage response related to radiation defence, as

ionizing radiation induces overexpression of AGGF1 in lympho-

blastoid cells [80]. VG5Q, the protein encoded by this gene was

highly overexpressed in more then 95% of tumour cells, and after

progression virtually 100%. As it did not change significantly this

gene/protein may not be directly involved in pemetrexed and

platinum resistance but could be important for progression

through stimulating neo-angiogenesis.

Finally, with the exception of membrane EMA, the routine

immunohistochemical markers were not altered after resistance,

and thus cannot serve as resistance markers or markers of

changing biology (Table 1).

Gene expression of the most sensitive versus the most
aggressive case

In order to explore the possible gene expression differences of

a sensitive case with more resistant case, the fold change of

expression was compared with a case in our previous study with

only six months survival [8]. The analysis revealed highly

overexpressed DNA repair genes in the aggressive case (Fig. 5).

Many-fold difference was detected in CHEK1, TOP2A and genes

related to double-strand break repair. The TYMS gene was

overexpressed only 1.5-fold. The aggressive case also had 8.25-fold

increased HJURP and 11-fold increased CENPA. Recently, these

genes were found to be involved in DNA double strand break

repair and cell segregation as well as survival in breast cancer [81].

Interestingly, only CCNO/UNG2 was underexpressed in the

aggressive tumour, and there is a hypothesis how this may

contribute to antifolate resistance [82]. The glycosylase UNG2

initiates and is the rate-limiting factor for Base Excision Repair

(BER) of uracil [83]. In nature, toxic uracil incorporation in DNA

is removed by UNG2 and replaced by dTTP as should be. When

dTTP is lacking due to antifolate treatment, the DNA break persist

and the cell enters apoptosis. Overexpressed UNG2 and

concordant BER could thus confer to more DNA breaks and

tumour cell kill, while a low expression would not induce the same

amount of DNA breaks and thus inhibit the effect of pemetrexed.

Among the top overexpressed genes in the primary resistant

case versus the sensitive case, several very interesting genes were

found (Fig. 5, fold-change within brackets in the text). The gene

with the highest difference between aggressive and responsive

tumour was the KRT14 (Keratin 14) (93-fold) where it recently

was shown that the presence of Keratin14 positive progenitor

airway epithelial cells in NSCLC predicted a poor prognosis, and

this predictive value was strongest in smokers, in which it also

correlated with metastasis [84]. OXTR, oxytocine receptor gene

(80-fold) has also been detected in breast cancer cells with intrinsic

and acquired resistance to doxorubicin [85]. Radio-resistance,

early recurrence and metastasis are related to high CCNB1 (17.4-

fold) expression in head and neck cancer as well as acquired radio-

resistance, possibly through the activation of NFkB and other anti-

apoptotic mechanisms [86,87]. The KIF14 (Kinesin 14) (13-fold) is

an oncogene related to several cancers and where mRNA

overexpression is a negative prognostic factor in lung and breast

cancer [88]. CEP55 (12-fold) encodes a centrosome-related gene

where high expression was negative prognostic for head and neck

cancer and its down-regulation inhibited migration and metastasis

of cells [89]. SERPINB5 (9.8-fold) is strongly associated to breast

cancer metastasis [90] and negative prognostic in pancreatic

cancer [91]. BUB1 (9.6-fold) and BUB1B (5.7-fold) are involved in

the spindle assembly checkpoint, and overexpression of BUB1B

significantly correlated with higher histological grade, advanced

pathological stage, and high cell proliferation in bladder cancer

and predicted tumour recurrence and disease progression [92].

BUB1 is also a possible negative prognostic factor in mesothelioma

[93]. Survivin, encoded by BIRC5 (7.6-fold) has, besides its anti-

apoptotic function, a role in microtubule dynamics and control

bipolar spindle formation [94]. Survivin is overexpressed in many

human cancers, associated with resistance to chemotherapy or

radiation therapy, and linked to poor prognosis, also in

mesothelioma [95,96]. Importantly, survivin also seems to control

Ran, encoded by RAN (2-fold). Ran is a small GTPase regulator

of mitotic spindle formation and is overexpressed in human cancer

as compared with normal tissues. Gene silencing of RAN induces

aberrant mitotic spindle formation, mitochondrial dysfunction,

and apoptosis [97]. CDC2 (9.4-fold) is a spindle checkpoint gene

and overexpression is a negative prognostic factor in several

tumours [98] as well as a putative treatment target in gliomas [99].

Its overexpression was also verified in a cohort of 84 mesotheli-

omas [50]. LRP8 (8-fold) is overexpressed in lung cancer and

involved in lung tumorigenesis [100]. CDC20 (7.5-fold) appears to

act as a regulatory protein in the cell cycle and is required for two

microtubule-dependent processes, nuclear movement prior to

anaphase and chromosome separation. A signature of genes

including CDC20, CCNB1, CDC2, CDKN3, MAD2L1, PRC1

and RRM2, were prognostic for 5-year survival in over 400 lung

cancer cases [101], and interestingly, CDC20, CDC2, CCNB1

were also highly overexpressed in the aggressive case. E2F7 (7.4-

fold) is implicated in damage response to DNA damaging agents

[102]. CCNB2 (7.4-fold) another cyclin overexpressed in several

cancers, was interestingly proposed as a serum marker for various

cancers as serum CCNB2 mRNA was significantly elevated in

patients versus benign diseases or normal [103]. AURKA (6.8-

fold) overexpression leads to centrosome amplification, genetic

instability and transformation, as well as cisplatin resistance. Its

activation of the NFkB pathway has been proposed as an
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important mechanism [104]. AURKA is overexpressed in several

cancers, and has been associated with shorter survival in

mesotheliomas [105] and small molecule inhibitors of AURKA

are currently in phase II trials [106]. MKI67 (6.2-fold) encodes an

antigen identified by monoclonal antibody Ki-67, a nuclear

protein and proliferation marker that is a negative prognostic for

pleural mesothelima [69].

Among those top overexpressed genes, 23 are involved in cell

cycle (Fig. 9), cytokinesis, and spindle formation, and several are

known to be negative prognostic factors in other cancers. The

grave difference in gene expression between these two phenotyp-

ically different cases in the primary situation indicate that some

important systems are more deregulated in the aggressive case.

However, most of the genes that changed in acquired resistance

were different.

Serum biomarkers
Neither the MSLN gene nor its encoded protein changed in

tumour at resistance and tumour growth (Table 1) but serum

mesothelin was reduced at response and increased at resistance

(Fig. 6). While serum mesothelin is a valuble mesothelioma marker

for diagnosis and disease progression, we have previously shown

that increased mesothelin expression in tumour was not associated

to shorter survival, rather the opposite [15], lending notion to the

theory of tumour burden as the main source of SMRP change and

not tumour aggressiveness. Similarly, serum CA125 was positively

associated to clinical and radiological course, but its encoding gene

MUC16 did not change in the tumour, also indicating that tumour

burden and not differential gene expression in tumour increases

serum levels. Neither CYFRA21-1 in serum nor its encoding

KRT19 gene in the tumour changed significantly.

Conclusion

More than half of mesothelioma patients do not respond to the

standard treatment of pemetrexed and cisplatin and acquired

resistance in responders is almost obligate. Thus, biological

information leading to tailored treatment is clearly warranted.

We present here for the first time, an example of in vivo

resistance gene profile of pemetrexed-carboplatin treatment in

mesothelioma. At resistance the TS protein, the main target of

pemetrexed increased. DNA damage response, repair, elongation

and telomere extension, related directly and indirectly to platinum

resistance were overexpressed, such as the CHEK2 gene, the

CHK1 protein, the POLD1, POLA2, LIG3, FANCD2 and finally

Figure 9. Cell cycle changes tumour versus normal and acquired resistance. Cell cycle was one of the KEGG pathways with most de-
regulated genes both in tumour versus normal (23 genes- red correspond to overexpressed, dark green correspond to down-regulated) involved in
all phases of the cell cycle (G1-S-G2-M). At acquired resistance, only CDKN1B (in oval) was down-regulated and CHEK2 was overexpressed (in oval).
Abbrevations: CDKN1B; cyclin-dependent kinase inhibitor 1B (p27, Kip1) CHEK2; checkpoint kinase 2.
doi:10.1371/journal.pone.0040521.g009
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the novel DNA repair genes PRPF19 and RECQ5, not previously

described in mesothelioma. Down-regulation of leukocyte trans-

endothelial migration and cell adhesion genes were overrepre-

sented and are novel pathways involved in resistance and tumour

aggressiveness. Overexpression of KRT7 along with its encoded

protein CK7 and TYMP with its encoded highly pro-angiogenic

thymidine phosphorylase protein as well as down-regulated

SPARCL1 and CDKN1B are proposed resistance markers.

Comparison of the primary expression of the sensitive versus

a primary resistant case showed multi-fold overexpressed DNA

repair, cell cycle, cytokinesis, and spindle formation in the latter.

Serum CA125 and SMRP reflected the clinical and radiological

course and probably tumour burden.

The present analysis and previous microarray study is to our

knowledge the only genome-wide profiling study on mesothelioma

patients receiving chemotherapy as the main treatment, which is

by far the largest group of patients treated in clinical practice [9].

Thus, these findings should be confirmed in a larger patient cohort

with profiling of biopsies before treatment and after treatment

failure. Such a study is strongly recommended in order to achieve

a deeper understanding of mesothelioma resistance mechanisms in

vivo and identify the markers that may guide treatment decisions to

improve and personalize treatment in this patient group.

Supporting Information

Figure S1 Loading plots and Principal Component
Analysis (PCA). The coloured spots in the loading plots above

represent differentially expressed genes where red spots in the

middle represent Affymetrix and blue represent Illumina, green

represent low variance genes overlapping differentially expressed

genes between the platforms. The PCA score-plots of the gene

expression of the same RNA from the same samples on Affymetrix

and Illumina platforms below are virtually identical (see case IDs),

where red are tumour and black are parietal pleura samples.

(TIFF)

Figure S2 Venn diagram of up- (red) and down-regulat-
ed (green) genes of mesothelioma tumour versus normal
parietal pleura. An overlap between the Affymetrix and

Illumina platforms of 65% is seen.

(TIFF)

Figure S3 Silencing of NT5C and pemetrexed treat-
ment. Cell cycle distribution of NT5C silenced (+) or negative

siRNA control (–) in malignant mesothelioma cells, after 48 hours

of pemetrexed treatment. The percentages represent the amount

of live cells in control and pemetrexed treated cells. Levels of

significance: * = P,0.05, ** = P,0.01, *** = P,0.001, ****

= P,0.0001.

(TIFF)

Table S1 siRNA specific for NT5C (Sigma-Aldrich).

(DOCX)

Table S2 Sheet 1–8. Sheet 1–3. The top 1500 ranked list and

GO entities of differentially expressed genes showed an over-

expression of genes involved in mitosis, cell cycle checkpoint and

DNA repair and down-regulated multicellular organismal de-

velopment, inflammatory response and vasculogenesis among

others. Sheet 4–7. High quality RNA was successfully extracted

from the post-resistance tumour samples and analysed with the

Illumina platform as described. The acquired resistance analysis

revealed 241 overexpressed and 289 down-regulated genes in the

post-resistance samples (Sheet 4 and 5). There were 23

significantly overexpressed and 65 down-regulated GO-terms

(Sheet 6 and 7, p,0.05). Sheet 8. Acquired resistance and

tumour profile. Common gene list.

(XLS)
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