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Abstract

Background: Pluripotent embryonic stem cells are considered to be an unlimited cell source for tissue regeneration and
cell-based therapy. Investigating the molecular mechanism underlying the regulation of embryonic stem cell expansion is
thus important. 14-3-3 proteins are implicated in controlling cell division, signaling transduction and survival by interacting
with various regulatory proteins. However, the function of 14-3-3 in embryonic stem cell proliferation remains unclear.

Methodology and Principal Findings: In this study, we show that all seven 14-3-3 isoforms were detected in mouse
embryonic stem cells. Retinoid acid suppressed selectively the expression of 14-3-3s isoform. Knockdown of 14-3-3s with
siRNA reduced embryonic stem cell proliferation, while only 14-3-3s transfection increased cell growth and partially rescued
retinoid acid-induced growth arrest. Since the growth-enhancing action of 14-3-3s was abrogated by b-catenin knockdown,
we investigated the influence of 14-3-3s overexpression on b-catenin/GSK-3b. 14-3-3s bound GSK-3b and increased GSK-3b
phosphorylation in a PI-3K/Akt-dependent manner. It disrupted b-catenin binding by the multiprotein destruction complex.
14-3-3s overexpression attenuated b-catenin phosphorylation and rescued the decline of b-catenin induced by retinoid
acid. Furthermore, 14-3-3s enhanced Wnt3a-induced b-catenin level and GSK-3b phosphorylation. DKK, an inhibitor of Wnt
signaling, abolished Wnt3a-induced effect but did not interfere GSK-3b/14-3-3s binding.

Significance: Our findings show for the first time that 14-3-3s plays an important role in regulating mouse embryonic stem
cell proliferation by binding and sequestering phosphorylated GSK-3b and enhancing Wnt-signaled GSK-3b inactivation. 14-
3-3s is a novel target for embryonic stem cell expansion.
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Introduction

Embryonic stem (ES) cells are pluripotent cells that possess self-

renewal properties and retain the capacity for differentiation into

all 3 germ layer cells [1,2]. Because of their high proliferation

capability, pluripotency and low immunogenicity, ES cells are

considered to be a valuable source for cell therapy, tissue

regeneration, drug testing and developmental biology [3,4]. ES

cell proliferation and renewal are maintained by diverse factors

that activate the renewal genetic program via selective signaling

pathways [5,6] among which the b-catenin pathway plays a pivotal

role [7,8]. At the basal state, b-catenin is associated with

a multiprotein destruction complex composed of APC (adenoma-

tous polyposis coli), axin, casein kinase 2 and glycogen synthase

kinase 3b (GSK-3b) where it is phosphorylated and degraded via

ubiquitin/proteasome [9–11]. Upon Wnt activation through

binding to frizzled and/or LRP5/6 receptors, disheveled (Dvl)

displaces GSK-3b from the APC complex resulting in reduced b-
catenin degradation, and increased cytosolic b-catenin which is

translocated to nucleus where it is associated with Tcf/Lef

transcription factor to drive the expression of renewal and

proliferative genes. Experimental data have provided convincing

evidence for the crucial role of GSK-3b/b-catenin in ES cell

renewal [12–14]. GSK-3b is a serine/threonine protein kinase

which was originally discovered as an enzyme that phosphorylates

and inactivates glycogen synthase in response to insulin, and was

subsequently reported to phosphorylate b-catenin and facilitate b-
catenin ubiquitination and degradation [15]. GSK-3b inhibition

was shown to maintain ES cells in the renewal state [14]. Thus,

GSK-3b occupies a central position in controlling b-catenin and
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ES cell renewal and differentiation. Its activity must be tightly

regulated. However, little is known about its regulation in ES cells.

We propose in this study that 14-3-3 proteins regulate GSK-3b
availability.

14-3-3 proteins are 28- to 33-kDa acidic polypeptides found in

all eukaryotic organisms [16–18]. 7 members (b, c, e, g, s, h/t
and f) are found in mammals. These isoforms form homo- or

hetero-dimers to serve as scaffolds. At least 200 proteins are

reported to interact with 14-3-3 [16]. Through binding to various

classes of proteins including enzymes, transcription factors,

cytoskeletal proteins, signaling molecules, apoptosis factors and

tumor suppressors, 14-3-3 proteins are involved in diverse cellular

functions and pathophysiological processes [17]. 14-3-3 isoforms

have been reported to regulate GSK-3b. 14-3-3f was reported to

bind GSK-3b, and stimulates tau phosphorylation in the brain

[19]. 14-3-3b interacts with Ser9-phosphorylated GSK-3b to

control neuronal survival [20]. 14-3-3 was also reported to interact

with b-catenin and modify its transcriptional activity. 14-3-3f
interacts with b-catenin and enhances b-catenin transactivation

action [21]. On the other hand, 14-3-3f was reported to interact

with Chibby protein to export b-catenin from nucleus and

consequently attenuate the b-catenin transcriptional activity

[22]. These results indicate that 14-3-3 proteins are functionally

complex. Little is known about 14-3-3 proteins in ES cells, let

alone their roles in ES cell renewal and proliferation. In this study,

we investigated the involvement of 14-3-3 proteins in regulating

mouse ES cell (mESC) proliferation. We provide evidence that 14-

3-3s isoform regulates mESC proliferation by binding and

sequestering GSK-3b and enhancing Wnt3a-induced GSK-3b
phosphorylation and inactivation. 14-3-3s overexpression rescues

retinoid acid (RA)-induced growth arrest by increasing GSK-3b
phosphorylation and b-catenin level.

Materials and Methods

Cell Culture and Reagents
CCE, a mESC line derived from the 129/Sv mouse strain, was

obtained from StemCell Technologies with permission from Drs.

Robertson and Keller (Vancouver, Canada). CCE cells were

cultured on gelatin-coated dishes in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 15% fetal bovine serum

(Hyclone, Logan, UT, USA), 100 U/ml penicillin, 100 mg/ml

streptomycin, 1 mM sodium pyruvate, 0.1 mM non-essential

amino acids, and 10 ng/mL leukemia inhibitory factor at 37uC
in a humidified 5% CO2 atmosphere [23,24]. D3 and R1 mouse

ES cells [25,26] were cultured and maintained on feeder cells

comprising mitotically inactivated primary mouse embryonic

fibroblasts (MEFs) in the same medium of CCE cells. Mouse

recombinant Wnt3a and Wnt inhibitor, DKK-1 were from

Calbiochem (San Diego, CA, USA). The PI3-K inhibitor

wortmannin was from Sigma (St. Louis, MO, USA).

Plasmid Constructs and Transfection
cDNA of each 14-3-3 isoform (b, c, e, g, s, h and f) was

amplified by PCR and cloned into the p3XFlag-CMV expression

vector (Sigma) with the restriction enzymes HindIII and BamH1.

The expression vector of b-catenin was constructed as described

[27]. Small interfering RNA (siRNA) of 14-3-3s and b-catenin
was from Santa Cruz Biotechnology (Santa Cruz, CA). 14-3-3s
siRNA used for knockdown experiments comprised three RNA

sequences including sc-29591A (sense: GAAGACAUGGCAG-

CUUUCATT, antisense: UGAAAGCUGCCAUGUCUUCTT);

sc-29591B (sense: CCCAAACCCUGAAUGUUCATT, anti-

sense: UGAACAUUCAGGGUUUGGGTT) and sc-29591C

(sense: GUGUGACCAUGGUACCAAUTT, antisense: AUUG-

GUAC CAUGGUCACACTT) [28,29]. The siRNA specific to b-
catenin was sc-29209 (sense: AGCUGAUAUUGAUGGA-

CAGTT and antisense: CUGUCCAUCAAUAUCAGCUTT)

[30,31]. Expression vectors containing GSK-3b wild-type (WT)

and GSK-3b Ser9A mutant cDNA were from Addgene (plasmid

16260 and 16261) [32]. The GSK-3b Thr309A mutant cDNA

plasmid was cloned using a site-directed mutagenesis kit

(Stratagene, La Jolla, USA). Expression vectors and siRNA were

co-transfected into mESCs using Effectene transfection reagent

(Qiagen, GmbH, Hilden, Germany) as described [33,34]. In brief,

DNA plasmids or siRNA were mixed with Enhancer and

Effectene at a ratio of 1 (mg) to 1.6 (mL) to 4 (mL). The adherent

CCE colonies were trypsinized to yield single-cell suppression. The

D3 or R1 cells on MEFs were trypsinized and pre-precipitated for

1 h to remove feeder cells. DNA (or siRNA)-Effectene mixture was

added to CCE, D3 or R1 cell suspension, which was seeded on

gelatin-coating plates or MEF feeder cells for 24–48 h. Cells were

harvested and assayed.

Western Blot Analysis
Western blot analysis was performed as described [35]. Briefly,

cells were washed with phosphate-buffered saline (PBS) and lysed

in ice-cold RIPA lysis buffer (Upstate, Lake Placid, NY) containing

a protease inhibitor cocktail (Roche Diagnostics GmbH, Man-

nheim, Germany). The lysate was centrifuged, the supernatant

collected, and protein concentration determined by the Bio-Rad

Protein Assay kit (Bio-Rad Laboratories, Hercules, CA). 30 mg of

supernatant proteins was applied to each lane of an SDS

polyacrylamide gel. Proteins were resolved by electrophoresis

and transferred to PVDF membrane (Millipore, Bedford, MA).

Membranes were blocked with 5% milk, incubated with primary

antibodies overnight at 4uC, washed and incubated with

horseradish peroxidase-conjugated secondary antibodies for 1 hr

at room temperature. The protein bands were visualized by

enhanced chemiluminescence (PerkinElmer, Shelton, CT). Rabbit

polyclonal antibodies against b-catenin, phosphor-b-catenin,
GSK-3b, phospho-GSK-3b (Ser9), Akt, phospho-Akt, APC, axin,

ubiquitin and cyclin D1 were from Cell Signaling. Mouse

monoclonal or rabbit polyclonal antibodies against 14-3-3 iso-

forms, Oct3/4 and lamin A/C were from Santa Cruz Bio-

technology. Antibodies specifically for 14-3-3 isoforms were raised

against peptide regions or sequences as follows: C-terimal region of

14-3-3b, amino acids 130–170 of 14-3-3e, 206–246 of 14-3-3c,
205–245 of 14-3-3h, 172–202 of 14-3-3g, 109–149 of 14-3-3f and
the entire recombinant protein of 14-3-3s. Mouse monoclonal

antibodies against Flag, HA and actin were from Sigma.

Preparation of Nuclear Proteins
Nuclear proteins were extracted by using an extraction kit

(Chemicon). Briefly, cells were harvested and lysed with cytoplas-

mic buffer containing protease inhibitors for 15 min at 4uC,
mixed, and centrifuged at 8,000 g for 20 min at 4uC. Supernatants
were collected (cytoplasmic extraction) and pellets were resus-

pended in nucleus buffer containing protease inhibitors for 15 min

at 4uC. The resuspended sample was mixed and centrifuged at

16,000 g for 10 min at 4uC. The supernatant containing nuclear

extraction proteins was collected and stored at 280uC.

Cell Proliferation Analysis
For cell proliferation analysis in this study, 1.56105 transfected

cells were seeded (defined as 0 h) and incubated for the indicated

time. Cell number was determined by trypan blue assay. Cells

were trypsinized, resuspended in medium, and viable cells were
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counted by using a hemocytometer. Cell proliferation was

analyzed with a bromodeoxyuridine (BrdU) cell proliferation

assay kit (Chemicon). Briefly, BrdU, a thymidine analog, is

incorporated into newly synthesized DNA as cells enter the S

phase. Following partial denaturation of double-stranded DNA,

BrdU was detected immunochemically with a specific mouse

monoclonal antibody. The amount of BrdU was determined after

the addition of IgG-peroxidase conjugated secondary antibody,

peroxidase substrate and stop solution.

Promoter Activity Assay
b-catenin promoter activity was measured by using TOP-

FLASH/FOPFLASH reporter (Millipore). TOPFLASH/FOP-

FLASH constructs and 14-3-3s or control vectors were

incubated with Effectene transfection reagent in a 12-well plate

for 48 h. Cells were washed with PBS and lysed in lysis buffer

(Promega). Luciferase activity was measured with Luciferase

Assay Reagent (Promega), and the emitted light was determined

in a luminometer.

Immunoprecipitation and Ubiquitination Assay
CCE cells were transfected with 14-3-3s-Flag or co-transfected

with b-catenin and/or GSK-3b for 48 h. Cells were harvested and

lysed in RIPA buffer for 30 min at 4uC. After centrifugation, cell
lysates were immunoprecipitated with a mouse monoclonal anti-

Flag, anti-HA antibodies or mouse IgG as a control. The

immunoprecipitates were resuspended in Laemmli sample buffer

with 2-mercaptoethanol and boiled for 15 min. Proteins in the

immunoprecipitate were separated by SDS–PAGE and analyzed

by immunoblotting with rabbit polyclonal antibodies against b-
catenin, GSK-3b, axin or APC. To evaluate the isoform-specific

interaction of 14-3-3 with GSK-3b, each Flag-tagged 14-3-3

isoform expression vector was transfected into CCE cells,

immunoprecipitated with an anti-Flag antibody, then immuno-

blotted with anti-GSK-3b antibody. To investigate the phosphor-

ylated residue of GSK-3b that is involved in interaction with 14-3-

3s, GSK-3b wild-type (WT), GSK-3b S9A mutant or GSK-3b
T309A mutant constructs were co-transfected with 14-3-3s-Flag
vector. Transfected CCE cells were immunoprecipitated with anti-

Flag antibody, then immunoblotted with anti-GSK-3b antibody.

For assay of b-catenin ubiquitination, CCE cells were co-

transfected with 14-3-3s-Flag or HA–b-catenin expression vectors

Figure 1. 14-3-3s is involved in mESC proliferation. (A) CCE cells were treated with 10 mg/mL retinoic acid (RA) for 12 to 72 h as indicated, and
protein levels of 14-3-3 isoforms were determined by Western blot analysis. Actin was used as loading control. (B) CCE cells were transfected with
scramble or 14-3-3s siRNA and each 14-3-3s isoform protein was determined by Western blot analysis after 48 h transfection. (C) Viable CCE cells
were determined by trypan blue assay, and (D) BrdU incorporation was analyzed. Error bars are mean 6 s.d. (n = 3). N.S. denotes statistically not
significant; *, p,0.05.
doi:10.1371/journal.pone.0040193.g001
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for 46 h, then incubated with MG-132 (10 mM) for an additional

2 h. Cell lysates were harvested, immunoprecipitated with a mouse

monoclonal anti-HA antibody, and immunoblotted with rabbit

polyclonal antibodies against ubiquitin (Cell Signaling).

GSK-3b Activity Assay
Assay of GSK-3b activity was based on measuring tau

phosphorylation at Ser-396 and Ser-199 [36,37] by using an

ELISA kit (Invitrogen). In brief, CCE cells were co-transfected for

48 h with GSK-3b expression vector and 14-3-3s-Flag vectors or

their respective control vectors. The transfected CCE cells were

lysed with RIPA buffer and immunoprecipitated with a specific

antibody against GSK-3b. The immunoprecipitate was washed

and incubated with an assay buffer containing 100 mM ATP and

recombinant Tau proteins, then with an antibody against

phospho-Ser396 of Tau, a secondary antibody, and substrates.

The reaction was terminated by adding a stop reagent, and the

optical density of the sample was analyzed at 450 nm in an ELISA

reader. Values of Tau phosphor-Ser396 were normalized to the

total protein level of Tau.

Statistical Analysis
Differences between groups were analyzed by Student t test. A

p value less than 0.05 was considered statistically significant.

Results

14-3-3s Promotes Mouse ES Cell (mESC) Proliferation
Retinoic acid (RA) is known to induce differentiation and

suppress proliferation of mESC [38,39]. However, the underlying

mechanism is not entirely clear. To investigate whether 14-3-3

proteins are involved in regulating the actions of RA, we analyzed

14-3-3 isoforms in RA-treated mESCs. Among seven 14-3-3

isoforms, only 14-3-3s was significantly reduced by RA

(Figure 1A). To determine the role of 14-3-3s in mESC

proliferation, we treated CCE cells with two 14-3-3s siRNA

sequences. Using a previously reported sequence [28,29], our

results confirm that 14-3-3s siRNA specifically suppressed 14-3-

3s proteins without changing the expression of other 14-3-3

isoforms (Figure 1B). Knockdown of 14-3-3s resulted in reduced

CCE viable cell numbers (Figure 1C) and BrdU incorporation

Figure 2. 14-3-3s overexpression increases CCE proliferation. (A) and (B) CCE cells were transfected with control (CTR) or each 14-3-3 isoform
and (A) all isoform proteins were analyzed by Western blotting, (B) cell numbers were counted. (C) CCE cells transfected with CTR or 14-3-3s vectors
were treated with (lower panel) or without RA (upper panel) and cell number were counted. (D) CCE cells transfected with CTR or 14-3-3s vectors and
BrdU incorporation were determined. Error bars are mean 6 s.d. (n = 3). N.S. denotes statistically not significant; *p,0.05; **p,0.01.
doi:10.1371/journal.pone.0040193.g002
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(Figure 1D) at 48 h. The inhibitory effect of 14-3-3s knockdown

was confirmed by another siRNA sequence (Figure S1). We next

evaluated the influence of 14-3-3 overexpression on CCE pro-

liferation. CCE cells were transfected with each isoform of 14-3-3

and the isoform protein overexpression was verified by Western

blotting (Figure 2A). Only 14-3-3s overexpression increased CCE

cell numbers (Figure 2B). Furthermore, overexpression of 14-3-3s
significantly increased viable cell numbers (Figure 2C, upper

panel) and BrdU incorporation (Figure 2D) and partially rescued

RA-induced decline in cell number (Figure 2C, lower panel). To

ensure that the involvement of 14-3-3s in mESC proliferation is

not limited to CCE, we evaluated the effect of 14-3-3s in other

mESC proliferation. Overexpression of 14-3-3s in R1 and D3

mESC significantly increased viable cell number and BrdU

incorporation to an extent comparable to CCE cells (Figure S2).

Taken together, these results indicate that 14-3-3s plays a critical

role in CCE proliferation.

14-3-3s Promotes mESC Proliferation via b-catenin
To determine whether b-catenin is involved in 14-3-3s-

mediated mESC proliferation, CCE cells were co-transfected with

14-3-3s overexpression vector and b-catenin siRNA. Suppression

of b-catenin expression in CCE transfected with a previously

described siRNA [30,31] (Figure 3A) resulted in abrogation of 14-

3-3s-induced cell number increases (Figure 3B). These results

were confirmed by another siRNA sequence of b-catenin which

exhibited a lesser effect on suppressing b-catenin and a correlated

lesser effect on reducing CCE proliferation (Figure S3). To

investigate the relationship between 14-3-3s and b-catenin, we
transfected CCE cells with 14-3-3s and analyzed b-catenin
phosphorylation, ubiquitination, degradation and nuclear trans-

location. Phosphorylation and ubiquitination of b-catenin were

significantly decreased (Figure 4A and 4B), whereas total b-catenin
protein level was increased (Figure 4C, upper panel) in 14-3-3s
overexpressed CCE cells. Furthermore, b-catenin protein levels

were increased in the nuclear fraction (Figure 4C, lower panel).

Thus, 14-3-3s prevents b-catenin from phosphorylation, ubiqui-

tination and degradation, thereby increasing b-catenin protein

stability and nuclear translocation.

To ensure that nuclear b-catenin is active in promoting b-
catenin/Tcf-targeted gene expression in mESCs, we analyzed b-
catenin transcriptional activity by using TOPFLASH/FOP-

FLASH reporters. 14-3-3s overexpression increased the pro-

moter activity by ,5-fold over the control (Figure 4D). We next

determined the expression of cyclin D1, one of the b-catenin
target genes that are critical in cell cycle progression and cell

proliferation. Cyclin D1 protein level was increased by ,3-fold

in 14-3-3s-overexpressed cells (Figure 4E). Taken together, the

results indicate that 14-3-3s promotes mESC proliferation via b-
catenin.

14-3-3s Interacts with GSK-3b and Suppresses GSK-3b
Activity
We performed immuneprecipitation (IP) to determine interac-

tion of 14-3-3s with GSK-3b as well as proteins in the b-catenin
destruction complex. CCE cells were transfected with Flag-tagged

14-3-3s, 14-3-3s protein complex was pulled down by IP using

a Flag antibody and interacting proteins were analyzed with

Western blotting. 14-3-3s was co-immunoprecipitated with GSK-

3b but not b-catenin, axin or APC (Figure 5A. upper panel). 14-3-

3s was also co-immunoprecipitated with GSK-3b in R1 and D3

mESC (Figure 5A, middle and lower panels). To determine

whether GSK-3b selectively interacts with 14-3-3s isoform, we

transfected CCE with each Flag-tagged 14-3-3 isoform, immuno-

precipitated the complex with Flag antibody and analyzed GSK-

3b protein by Western blotting. GSK-3b was co-precipitated only

with 14-3-3s (Figure 5B). These results suggest that 14-3-3s binds

GSK-3b in 14-3-3s transfected CCE cells. Binding and catalytic

activities of GSK-3b are regulated by phosphorylation. We

prepared GSK-3b mutants for potential 14-3-3 binding sites at

Ser9 (S9A) or Thr309 (T309A), constructed the mutant into the

expression vector and analyzed the influence of mutant over-

expression on interaction with 14-3-3s. 14-3-3s interaction with

GSK-3b was reduced by S9A mutation but not T309A

(Figure 5C). These results suggest that 14-3-3s binding of GSK-

3b requires phosphorylation at Ser9. Since PI-3K/Akt pathway is

involved in GSK-3b Ser9 phosphorylation, we evaluated the effect

of wortmannin, a PI-3K inhibitor on interaction of GSK-3b with

14-3-3s. Wortmannin blocked the interaction in a concentration-

dependent manner (Figure 5D).

We suspected that 14-3-3s binding of GSK-3b might result in

GSK-3b sequestration and inactivation. To address this, we

analyzed the level of phosphorylated GSK-3b (pGSK-3b) and

GSK-3b catalytic activity in 14-3-3s overexpressed CCE cells.

Compared to non-transfected cells, GSK-3b catalytic activity was

significantly reduced in 14-3-3s transfected cells (Figure 5E). In

accordance with reduction of the catalytic activity, pGSK-3b was

enhanced by 14-3-3s overexpression which was abrogated by

wortmannin induced Akt dephosphorylation and inactivation

(Figure 5F). These results indicate that 14-3-3s overexpression

enhances GSK-3b phosphorylation and induces 14-3-3s binding

Figure 3. 14-3-3s-enhanced CCE proliferation is suppressed by
b-catenin siRNA. (A) CCE cells were transfected with scramble or the
reported b-catenin siRNA sequence and co-transfected with 14-3-3s
vectors for 48 h. b-catenin proteins were determined by Western blot
analysis. (B) Viable cells were determined by trypan blue assay. Error bar
is mean 6 s.d. (n = 3). *p,0.05; **p,0.01.
doi:10.1371/journal.pone.0040193.g003
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and sequestration of phosphorylated GSK-3b in a PI-3K/Akt

dependent manner.

14-3-3s Overexpression Disrupts Association of b-
catenin with the Multiprotein Destruction Complex
Since 14-3-3s overexpression induces GSK-3b binding and

inactivation, we reasoned that 14-3-3s overexpression could

reduce b-catenin association with GSK-3b in the multiprotein

destruction complex. To assess this, CCE cells were co-transfected

with/without HA-tagged b-catenin and 14-3-3s vectors. Associ-

ation of b-catenin with APC, axin or GSK-3b was analyzed by

immunoprecipitation followed by immunoblotting. Overexpres-

sion of 14-3-3s significantly reduced association of b-catenin with

GSK-3b as well as APC and axin, and increased the b-catenin

level (Figure 6A). Besides, the binding of overexpression or

endogenous b-catenin with p-GSK-3b is barely detected

(Figure 6A). In addition, transfection of S9A GSK-3b mutant

abolished 14-3-3s-induced b-catenin expression while transfection

of T309A did not (Figure 6B). These results are consistent with the

interpretation that 14-3-3s level is pivotal in controlling GSK-3b
action and regulating b-catenin bioavailability. To provide

additional evidence for this, we evaluated the effect of RA on

pGSK-3b and b-catenin levels. RA treatment suppressed 14-3-3s-
increased pGSK-3b and reduced p-b-catenin (Figure 6C). 14-3-3s
transfection restored pGSK-3b and increased b-catenin reduced

by RA (Figure 6C). Furthermore, RA treatment for 48 h slightly

reduced Oct3/4 level. However, 14-3-3s did not significantly

affect Oct3/4 expression (Figure 6C). These results indicate that

Figure 4. 14-3-3s overexpression enhances b-catenin stability and nuclear translocation. (A) CCE cells were transfected with control (CTR)
or 14-3-3s vectors for 48 h. Phosphorylated b-catenin (p-b-catenin) was determined by Western blot analysis. Actin was used as loading control. (B)
b-catenin ubiquitination was analyzed by immunoprecipitation (IP) followed by Western blotting (WB). (C) Cell lysate and nuclear fraction were
prepared from CTR and 14-3-3s-transfected CCE cells and b-catenin was determined by Western blot analysis. LaminA/C and Actin were used as the
loading control of nuclear and cytosolic fractions. (D) b-catenin transactivation activity was determined by luciferase-based TOP reporter assay. FOP
reporter activity was used as a control. Data represent mean6 s.d. (n = 3). **, p,0.01. (E) Cyclin D1 expression in CTR or 14-3-3s transfected CCE was
determined by Western blot analysis. Actin was used as loading control.
doi:10.1371/journal.pone.0040193.g004
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Figure 5. 14-3-3s interacts with GSK-3b. (A) CCE, R1 and D3 cells transfected with control or 14-3-3s vectors were lysed and 14-3-3s complex
was pulled down by immunoprecipitation (IP) with a Flag antibody. Proteins in the complex were analyzed by Western blotting (WB). (B) CCE cells
were transfected with each isoform vector. 14-3-3 complex was pulled down and GSK-3b was determined by Western blotting. (C) Association of 14-
3-3s with WT or mutant GSK-3b was determined by immunoprecipitation (IP) with a Flag Antibody followed by Western blotting (WB) with GSK-3b
and p-GSK-3b antibodies. (D) CCE cells transfected with Flag-tagged 14-3-3s (s) or control (CTR) vectors were treated with wortmannin. 14-3-3s
complex was immunoprecipitated with a Flag antibody and GSK-3b was analyzed by Western blotting. (E) 14-3-3s overexpression reduced GSK-3b
activity. Data represents mean6 s.d. (n = 3). *, p,0.05; **, p,0.01. (F) CCE cells were transfected with control or 14-3-3s vectors for 42 h followed by
treatment with wortmannin (Wort) for 6 h. Total and phosphorylated protein levels of GSK-3b and Akt were detected by Western blot analysis.
doi:10.1371/journal.pone.0040193.g005
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14-3-3s may regulate mouse ES cell proliferation without

influence stemness and pluripotency. To further evaluate the

endogenous association of 14-3-3s with GSK-3b, we performed

the IP experiments and found that GSK-3b interacts with

endogenous 14-3-3s (Figure 6D). Treatment of RA significantly

reduced 14-3-3s binding with GSK-3b (Figure 6D). Taken

together, these results indicate high 14-3-3s levels increase b-
catenin by releasing b-catenin from GSK-3b and confer resistance

to RA-induced b-catenin degradation by maintaining GSK-3b
phosphorylation.

14-3-3s Acts in Concert with Wnt to Control GSK-3b
As anticipated, Wnt3a increased pGSK-3b and b-catenin in

CCE cells (Figure 7A). 14-3-3s overexpression augmented Wnt3a-

induced pGSK-3b phosphorylation and b-catenin elevation

(Figure 7A). DKK1, an inhibitor of Wnt signaling blocked the

action of Wnt3a on pGSK-3b and b-catenin but had a lesser effect

on 14-3-3s transfected CCE cells (Figure 7A). We next de-

termined the GSK-3b binding by 14-3-3s in the presence of

Wnt3a and 14-3-3s transfection. In the absence of 14-3-3s
overexpression, we detected lower interaction between endoge-

Figure 6. 14-3-3s reduces b-catenin association with the APC/axin/GSK-3b complex and increases b-catenin. (A) Association of HA-
tagged (left panels) and endogenous (right panels) b-catenin with the APC complex was determined by IP with HA antibodies and Western blotting
(WB) with the indicated antibodies. (B) CCE cells were transfected with GSK-3b WT or the indicated mutants and b-catenin, GSK-3b, APC and Axin
proteins were analyzed by Western blotting. (C) CCE cells with or without 14-3-3s overexpression were treated with RA. The indicated GSK-3b, b-
catenin and Oct3/4 proteins were analyzed by Western blotting. (D) Cells were treated with or without RA for 48 h, the association of endogenous 14-
3-3s with GSK-3b was determined by IP with GSK-3b antibody and Western blotting of 14-3-3s.
doi:10.1371/journal.pone.0040193.g006
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nous 14-3-3s and GSK-3b (Figure 7B). 14-3-3s binding of GSK-

3b was detected in 14-3-3s transfected cells which were enhanced

by Wnt3a treatment (Figure 7B). DKK1 did not have a significant

effect on interaction of 14-3-3s with GSK-3b in 14-3-3s
transfected cells treated with Wnt3a (Figure 7B). These results

suggest high levels of 14-3-3s augment the Wnt signaling to

enhance GSK-3b inactivation and increase b-catenin stability.

Discussion

Our findings provide important information regarding the

novel role of 14-3-3s in regulating mESC proliferation. Despite

the expression of all seven isoforms of 14-3-3 proteins in

mESCs, only 14-3-3s participates in mESC proliferation by

binding, sequestration and inactivating GSK-3b. Our results

demonstrate that 14-3-3s overexpression enhances GSK-3b
phosphorylation and inactivation as well as increases interaction

between 14-3-3s and GSK-3b. Furthermore, 14-3-3s over-

expression triggers dissociation of b-catenin from the APC/

axin/GSK-3b complex, the so-called multiprotein destruction

complex. Since the transcriptional bioavailability of b-catenin is

tightly controlled by GSK-3b in the destruction complex, our

data lead us to conclude that 14-3-3s is capable of sequestering

GSK-3b and thereby releasing b-catenin from the multiprotein

destruction complex which translocates into the nucleus and

carries out the proliferative transcription.

GSK-3b inactivation depends on phosphorylation within the

multiprotein destruction complex. At resting state, GSK-3b is

active in phosphorylating b-catenin to induce its degradation via

ubiquitination/proteasome. When stimulated by Wnt, GSK-3b is

phosphorylated and dissociated from the multiprotein destruction

complex, thus releasing b-catenin. It is generally thought that

phosphorylated GSK-3b is rapidly dephosphorylated and reasso-

ciated with the APC/axin complex. In this study, we provide

evidence that phosphorylated GSK-3b is controlled by 14-3-3s.
High levels of 14-3-3s sequester and inactivate GSK-3b via which

they enhance Wnt signaling to increase b-catenin. It is interesting
that DKK blocks the effect of Wnt3a as expected but did not

interfere with action of 14-3-3s on GSK-3b binding. These

findings indicate that 14-3-3s provides a discrete pathway to

control GSK-3b availability and activity.

It is well recognized that RA induces ES cells to undergo

differentiation and proliferation arrest. A number of mechanisms

of RA actions have been proposed but the exact mechanisms are

not clear. We show in this study that 14-3-3s/GSK-3b pathway is

involved in RA-induced inhibition of mESC proliferation. RA

selectively suppresses 14-3-3s. It increases b-catenin phosphory-

lation and reduces b-catenin resulting in reduction of mESC

proliferation. High levels of 14-3-3s confer resistance to RA by

restoring GSK-3b phosphorylation and sequestration. Thus, 14-3-

3s is pivotal in regulating GSK-3b/b-catenin bioavailability as

illustrated in Fig. 8.

Our results reveal that knockdown of 14-3-3s with siRNA

reduces mESC proliferation by only 30–40% compared to control

(Figure 1C and 1D), suggesting that mESC proliferation does not

depend entirely on 14-3-3s. A compensatory effect may be

regulated by other signal pathways. This notion was supported by

a recent report which indicates that 14-3-3s-deleted mESC give

rise to viable mice with B-cell developmental defects [40]. It is

interesting that of all seven 14-3-3 isoforms expressed in mESCs,

only 14-3-3s is involved in regulating b-catenin-mediated mESC

proliferation. In contrast, 14-3-3f was reported to bind GSK-3b
and enhances Tau phosphorylation in brain [19], and 14-3-3f was
reported to facilitate b-catenin export from the nucleus and

thereby reduces b-catenin transcriptional activity [22]. Reasons for

differential regulation of GSK-3b and b-catenin by different 14-3-

3 isoforms in different tissues and cells are unclear and require

further investigation.

According to the result in association of 14-3-3s with GSK-3b
S9A mutant, our results indicate that 14-3-3s binds preferen-

tially phosphorylated GSK-3b (Figure 5C). Using a pharmaco-

logical inhibitor of PI-3K, we show that PI-3K/Akt is required

Figure 7. 14-3-3s enhances Wnt/b-catenin signaling. (A) CCE cells
were transfected with control or 14-3-3s vectors for 30 h followed by
treatment with recombinant mouse Wnt3a (10 ng/mL) for 18 h.
Recombinant mouse DKK-1 (1 ng/mL) was added 2 h before Wnt3a.
Protein levels of b-catenin, GSK-3b and phosphorylated GSK-3b were
detected by Western blot analysis. (B) 14-3-3s/GSK-3b complex was
determined by IP with a GSK-3b antibody, and Flag and GSK-3b proteins
were analyzed by Western blotting.
doi:10.1371/journal.pone.0040193.g007
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for 14-3-3s binding of GSK-3b. GSK-3b phosphorylation at

Ser9 and Thr309 are potential residues for 14-3-3 interaction.

Mutation of GSK-3b Ser9 abrogates GSK-3b binding to 14-3-

3s whereas mutation of Thr309 did not alter its binding. These

results suggest that PI-3K/Akt plays an essential role in

promoting 14-3-3s binding and sequestration of GSK-3b by

Ser9 phosphorylation. PI-3K/Akt is recognized as an important

signaling pathway for promoting ESC proliferation. We demon-

strate that enhanced 14-3-3s/GSK-3b interaction is an impor-

tant downstream mechanism by which PI-3K/Akt mediates ESC

proliferation and renewal.

It is interesting to note that b-catenin siRNA does not

completely abrogate the enhancing action of 14-3-3s on cell

proliferation (Figure 3B). It is possible that 14-3-3s may enhance

cell proliferation by multiple mechanisms. Besides the Wnt/b-
catenin mechanism, 14-3-3s may bind phosphorylated Raf-1,

activate Raf-1 and its downstream signaling pathway [41,42].

Moreover, 14-3-3 was found to regulate the mammalian target of

rapamycin (mTOR) pathway by interacting with tuberous sclerosis

complex 2 (TSC2), and sequestering it from binding to mTOR

complex, thereby increasing the mTOR activity on de novo

protein synthesis and cell proliferation [43,44].

In summary, this study shows for the first time that 14-3-3s
regulates mESC proliferation by binding and sequestering GSK-

3b as well as inducing GSK-3b phosphorylation and inactivation

in a PI-3K/Akt-dependent manner. 14-3-3s is a novel target for

ES cell expansion.

Supporting Information

Figure S1 14-3-3s knockdown suppressed cell prolifer-
ation. CCE cells were transfected with scramble or 14-3-3s
siRNA (Invitrogen, sence: GCGCAUCAUCGAU UCUGCCCG-

GUCA; antisence: UGACCGGGCAGAAUCGAUGAUGCGC)

for 24 h or 48 h. (A) Knockdown of 14-3-3s expression was

determined by Western blot analysis after transfection for 48 h. (B)

Proliferation and viable cell numbers of CCE cells were

determined by trypan blue assay, and (C) BrdU assay. Each bar

represents mean 6 s.d. (n = 3). N.S. denotes statistically not

significant; *, p,0.05.

(EPS)

Figure S2 14-3-3s transfection increased (A) cell num-
bers (B) BrdU incorporation in R1 and D3 mES cells.
Each bar is mean 6 s.d. of three independent experiments. *

p,0.05.

(EPS)

Figure S3 b-catenin knockdown suppressed 14-3-3s-
enhanced cell proliferation. CCE cells were co-transfected

with control or 14-3-3s overexpression vectors, and scramble or

b-catenin siRNA (Invitrogen, sence: CCCAGAAUGCC-

GUUCGCCUUCAUUA; antiscene: UAAUGAAGGC-

GAACGGCAUUCUGGG) for 48 h. (A) Protein level of reduced

b-catenin was confirmed by Western blot analysis after trans-

fection for 48 h. (B) Proliferation of CCE cells was determined by

trypan blue assay after 48 h transfection. Each bar represents

mean 6 s.d. (n = 3). *, p,0.05; **, p,0.01.

(EPS)

Figure 8. A schematic model illustrating the role of 14-3-3s in regulating ES cell proliferation via GSK-3b/b-catenin pathway.
doi:10.1371/journal.pone.0040193.g008
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