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Ferritin Blocks Inhibitory Effects of Two-Chain High
Molecular Weight Kininogen (HKa) on Adhesion and
Survival Signaling in Endothelial Cells
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Abstract

Angiogenesis is tightly regulated through complex crosstalk between pro- and anti-angiogenic signals. High molecular
weight kininogen (HK) is an endogenous protein that is proteolytically cleaved in plasma and on endothelial cell surfaces to
HKa, an anti-angiogenic protein. Ferritin binds to HKa and blocks its anti-angiogenic activity. Here, we explore mechanisms
underlying the cytoprotective effect of ferritin in endothelial cells exposed to HKa. We observe that ferritin promotes
adhesion and survival of HKa-treated cells and restores key survival and adhesion signaling pathways mediated by Erk, Akt,
FAK and paxillin. We further elucidate structural motifs of both HKa and ferritin that are required for effects on endothelial
cells. We identify an histidine-glycine-lysine (HGK) -rich antiproliferative region within domain 5 of HK as the target of
ferritin, and demonstrate that both ferritin subunits of the H and L type regulate HKa activity. We further demonstrate that
ferritin reduces binding of HKa to endothelial cells and restores the association of uPAR with o541 integrin. We propose that
ferritin blocks the anti-angiogenic activity of HKa by reducing binding of HKa to UPAR and interfering with anti-adhesive
and anti-proliferative signaling of HKa.
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Introduction

Angiogenesis, the formation of new blood vessels from pre-
existing vessels, is carefully regulated by a complex balance
between pro- and anti-angiogenic signaling [1]. Disruption of this
balance contributes to a number of pathological conditions. These
include the excess angiogenesis seen in diabetic retinopathy [2], as
well as the aberrant angiogenesis in the tumor microenvironment,
which is believed to contribute to tumor progression and
metastasis [3]. Conversely, defective angiogenesis can compromise
wound healing [4].

High molecular weight kininogen (HK) is a plasma protein
originally identified for its role in the intrinsic pathway of
coagulation. HK is comprised of six domains, D1-D6. Endopro-
teolytic cleavage of HK by kallikrein excises domain 4, yielding
two bio-active molecules: bradykinin, contained within domain 4,
and HKa, composed of domains 1-3 linked through a disulfide
bond to domains 5 and 6 [5]. Bradykinin is a potent nonapeptide
hormone with a 30 second half-life [6]. Among its other activities,
bradykinin binds to G-coupled receptors and triggers NO release,
which promotes angiogenesis. HKa, the other product formed
from cleavage of HK, has a longer 9 hour half-life [7], and
antagonizes bradykinin’s activity by serving as endogenous
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inhibitor of angiogenesis [8]. Proteins that modulate bradykinin
or HKa activity therefore have the potential to exert an important
effect on the balance between pro- and anti-angiogenic responses.

Ferritin is a 24 subunit protein best known for its role in
mtracellular iron storage and detoxification (reviewed in [9]).
Ferritin is composed of two subunit types, termed H and L, which
share considerable sequence similarity. Twenty-four of these
subunits assemble to form the mature ferritin protein. The H
subunit contains a ferroxidase activity, important in iron
oxidation, whereas the L subunit is important in iron nucleation,
iron core formation, and protein stability. The ratio of H to L
subunits is determined by tissue type and is also modulated by
inflammatory and other stimuli.

In addition to its intracellular localization, ferritin exists in the
plasma, where it may serve roles in addition to its classic function
in intracellular iron storage. For example, extracellular ferritin has
been suggested to serve in iron delivery [10,11], and to exhibit
immunosuppressive functions by affecting the proliferation and
function of lymphocytes [10,12—14]. Extracellular ferritin appears
to contain primarily L subunits, including a truncated version of
ferritin L [15]. Serum ferritin is elevated not only in conditions of
iron overload, but in acute and chronic inflammation and cancer.
Extracellular ferritin binds to cell surface receptors on mouse [16]
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and human [17] cells, and has been reported to exert a pro-
inflammatory effect on hepatic stellate cells [18].

Our laboratory identified ferritin as a protein that regulates the
activity of HKa [19-21]. In particular, ferritin blocks the anti-
angiogenic effects of HKa on endothelial cells both i vitro and
vivo [20]. HKa exerts its anti-angiogenic effect by inhibiting
endothelial cell migration and proliferation, as well as by inducing
apoptosis [20,22-24]. Ferritin antagonizes the ability of HKa to
both induce apoptosis and inhibit the migration of cultured
endothelial cells [20]. Ferritin is an effective HKa antagonist
viwo, blocking the inhibitory effect of HKa on angiogenesis in a
tumor xenograft and restoring angiogenesis to control levels [20].
Ferritin also inhibits the production of HKa by inhibiting the
proteolytic cleavage of its precursor, HK [19,21].

The mechanism by which ferritin antagonizes HKa is unknown.
Ferritin binds to HKa; however, whether this underlies the ability
of ferritin to block the anti-angiogenic effect of HKa on
endothelial cells has not been investigated. Effects of ferritin on
signaling pathways modulated by HKa are also unknown. In this
manuscript, we explore the mechanisms underlying the antago-
nistic effects of ferritin on HKa activity. We find that ferritin
antagonizes HKa-mediated anti-angiogenic signaling at two key
steps, blocking inhibitory effects of HKa on both survival and
adhesion signaling. The interplay between ferritin and HKa, two
endogenous proteins, may be important in determining angiogenic
outcome in pathologic as well as physiologic settings.

Results

Ferritin-mediated enhancement of endothelial cell
survival in the presence of HKa is associated with
activation of Paxillin, AKT, and Erk

We have previously shown that HKa inhibits endothelial cell
survival i witro and in vivo, and that ferritin antagonizes the
antiproliferative activity of HKa [20]. Pro-survival effects of
ferritin in HKa-treated cells are dose-dependent (Figure S1), and
are observed using either metabolic [20] or clonogenic assays
(Figure 1A). In vivo, ferritin counteracts the antiangiogenic effects of
HKa in the tumor microenvironment [20]. In addition, as shown
in Figure 1B, C ferritin blocks the inhibitory effects of HKa in an
aortic ring assay, which measures angiogenic sprouting from
normal blood vessels ex vivo [25]. These results suggest that ferritin
may modulate the anti-angiogenic activity of HKa in a broad
array of physiological and pathophysiological contexts.

To elucidate the mechanism by which ferritin promotes cell
survival and proliferation in endothelial cells exposed to HKa, we
assessed effects of ferritin and HKa on survival signaling. In
particular, we tested the ability of ferritin to modulate MAPK44/
42 (Erk) and AKT, kinases that play central roles in governing cell
survival and proliferation in numerous cell types, including
endothelial cells [26-29]. We also examined effects of ferritin on
paxillin, a downstream target of Erk that has been implicated in
the apoptotic effects of HKa [30].

Endothelial cells were plated and allowed to adhere. To assess
the role of ferritin in modulating the Erk pathway, in some cases
cells were stimulated with bFGF or FXII. Cells were then treated
with HKa in the presence or absence of ferritin and effects on
signaling monitored 24 hours later using antibodies specific to
activated Erk, AKT and paxillin. As shown in Figure 1D-E,
phosphorylation of Erk, AKT and paxillin were all reduced when
endothelial cells were treated with HKa. However, co-treatment
with ferritin restored phosphorylation to levels seen in control cells
that had not been treated with HKa. Effects of HKa and ferritin
were both statistically significant (Figure 1E). Ferritin by itself did
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not affect any of these pathways (Figure 1). Ferritin did not restore
phosphorylation of Erk in cells treated with the Erk inhibitor
PD98059 (Fig. 1F), indicating that ferritin does not act as a non-
specific stimulator of Erk activity. Similar results were obtained
when Erk signaling was induced by treating endothelial cells with
Factor XII [31]: HKa reduced phosphorylation of Erk and ferritin
reversed this action (Fig. 1G). Collectively, these results demon-
strate that ferritin restores Erk and AKT signaling in cells treated
with HKa.

Ferritin promotes endothelial cell adhesion and adhesion
signaling in the presence of HKa

We next tested whether ferritin might also contribute to
endothelial cell survival by blocking the anti-adhesive activity of
HKa, since HKa has been shown to block adhesion of endothelial
cells to provisional extracellular matrix proteins (ECM) such as
vitronectin [24].

To test effects of ferritin on adhesion, we first performed a short-
term adhesion assay. HUVEC cells were plated on vitronectin-
coated dishes in the presence or absence of bFGF. At the time of
plating, cells were also treated with HKa alone, ferritin alone, or
with the combination of ferritin and HKa. Untreated cells served
as a control. Two hours post—plating and treatment, control cells
were adherent. Non-adherent cells were removed from the surface
by washing, and remaining adherent cells were fixed and stained
with crystal violet and visualized by microscopy. As seen in
Figure 2A and 2B, HKa significantly inhibited adhesion of cells to
vitronectin; however, co-treatment with ferritin enabled the cells to
adhere to vitronectin.

Next, we tested whether ferritin-promoted adhesion was
associated with restoration of signaling pathways disrupted by
HKa. Cell adhesion and spreading are controlled by complex
signaling events mediated by proteins of the cell surface and the
extracellular matrix. Key kinases in these signaling events are FAK
and Erk, which converge on the common downstream target
paxillin, an adaptor protein whose phosphorylation is required for
integrin-mediated cytoskeletal reorganization [32].

To test effects of ferritin on adhesion signaling, we measured its
effect on FAK and Erk signaling under short-term treatment
conditions. Endothelial cells were plated in the presence of bFGI
with HKa alone, ferritin alone, or the combination of ferritin and
HKa on vitronectin-coated plates. Controls were untreated. Cells
were lysed two hours later and phosphorylation of FAK, paxillin
and Erk were analyzed by western blot. Figure 2C and 2D
demonstrates that in the presence of HKa alone, phosphorylation
of paxillin and Erk diminished, despite the presence of bFGF. Co-
treatment with HKa and ferritin restored phosphorylation of
paxillin and Erk. Thus, restoration of short-term adhesion
(Figure 2) as well as long-term survival (Figure 1) of HKa-treated
endothelial cells by ferritin is associated with reestablishment of
critical signaling pathways.

Ferritin antagonizes the effects of HKa on endothelial cell
viability and signaling by binding to an HGK-rich region
of HKa

HKa comprises five domains: amino-terminal domains 1-3
linked through a disulfide bond to domains 5 and 6 [33]. Within
domain 5 lies a small 29 amino acid region termed the HGK-rich
region (histidine-glycine-lysine-rich region from D474 to K502
[20]), that mediates number of key functions of HKa, including
binding to the endothelial cell surface [34] and inhibition of
adhesion, invasion, and metastasis [35]. We previously observed
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Figure 1. Ferritin restores colony formation, angiogenesis, and phosphorylation of paxillin, Erk1/2, and AKT in HUVECs exposed to
HKa. A. HUVECs were treated with 50 nM HKa with and without 100 nM ferritin in the presence of 20 ng/ml bFGF for 24 hours. Growth medium was
replaced and colonies were allowed to grow for 10 days before fixing and staining with crystal violet. Means and standard deviations of 3
independent experiments are shown with *p<<0.01; **p<<0.002. B. Aortic rings were stimulated with 30 ng/ml VEGF and treated with 100 nM HKa
alone or in combination with 200 nM ferritin for 48 hours. Angiogenic sprouts were photographed on day 5. C. The number of sprouts were
quantified from three different rings for each condition with *p<<0.002. D. HUVECs were treated with 50 nM HKa alone, 100 nM ferritin alone, or co-
treated with HKa and ferritin in basal media containing 20 ng/ml bFGF and 10 pM ZnCl; for 24 hours. Activation of paxillin, Erk and Akt were
determined by western blotting using antibodies to phosphorylated (P) and total (T) proteins. E. Band intensities were quantified by densitometry
using ImageJ. Means and standard deviations of 3 independent experiments are shown, *p<<0.02; **p<0.0003. F. HUVECs were stimulated as in D,
and treated with 100 uM PD98059 in presence and absence of 100 nM ferritin. G. Cells were stimulated with 62 nM FXIl and treated as described in

D.
doi:10.1371/journal.pone.0040030.g001

that ferritin binds to this HGK-rich region of HKa in a cell-free
system [21].

We therefore explored whether interaction of ferritin with the
HGK-rich domain of HKa is responsible for ferritin’s ability to
block anti-angiogenic effects of HKa on endothelial cells. We first
assessed whether anti-proliferative effects of the HGK-rich D474-
K502 domain of HKa could be inhibited by ferritin. Endothelial
cells were incubated with HKa or the 29 amino acid HGK-rich
domain of HKa in the presence or absence of ferritin. Consistent
with previous results [20], HKa inhibited endothelial cell
proliferation, and this effect was blocked by ferritin (Figure 3A).
Stimulation with growth factors was not able to overcome the
inhibitory effect of HKa or modulate ferritin’s ability to antagonize
HKa (Figure 3B). We then examined if the HGK domain would
exert a similar inhibitory effect as HKa on endothelial cells, and if
ferritin would block these effects. As shown in Figure 3C, domain
5 of HKa reduced cell viability to 56% *£0.3% of control, and co-
treatment with ferritin increased cell viability to 85%4.0% of
control (p<<0.0004). The HGK-rich peptide exerted a similar
effect, reducing viability 66%*2.0, whereas a control peptide
(G440-L473, corresponding to a 33 amino acid region of HKa
located immediately adjacent to the HGK rich region) was not
able to affect proliferation (Figure 3C). Co-treatment with ferritin
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blocked the inhibitory effect of the HGK peptide, but did not
affect the response to the control peptide. Thus, ferritin exerts its
pro-survival effects on endothelial cells by targeting a small HGK-
rich region within domain 5 of HKa.

To test whether the inhibitory effects of ferritin on HKa
signaling mapped to the same HGK-rich domain of HKa, we
treated cells with the 29 amino acid HGK-rich domain in the
presence and absence of ferritin and assessed effects on adhesion
signaling. As shown in Figure 3D and 3E, treatment of cells with
the HGK rich domain inhibited activation of both Erk and
paxillin. Ferritin alone had no effect on activation of these
signaling molecules. However, co-treatment with ferritin blocked
the inhibitory effect of the HGK rich domain on both
phosphorylation of paxillin and Erk. These results demonstrate
that ferritin restores adhesion signaling by interfering with the
activity of the HGK rich domain of HKa.

Recombinant human Ferritin-H and Ferritin-L bind to
domain 5 of HKa

Ferritin is composed of an admixture of 24 subunits of the H
and L type. H and L subunits assemble in various ratios to create
“H-rich” (HFt) or “L-rich” (LFt) molecules. The H and L subunits
of ferritin exhibit some sequence similarity, but also exhibit
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Figure 2. Ferritin reverses the anti-adhesive properties of HKa. Cells were incubated with HKa (50 nM) alone, HKa (50 nM) plus ferritin
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doi:10.1371/journal.pone.0040030.g002

functional differences [9] and bind to different receptors
[16,17,36]. Ferritin found in the plasma (serum ferritin) is
composed predominantly of a subunit closely related to the L
type [13].

To determine whether ferritin subunit composition affected its
ability to antagonize HKa activity, we first tested whether
recombinant ferritins bound to HKa in a pull-down experiment.
For these experiments we used a protein in which domain 5 of
HKa, which contains the HGK-rich peptide sequence, was fused
to GST [20]. Recombinant ferritin homopolymers composed
either solely of the L subunit or solely of the H subunit [37] were
biotinylated, incubated with GST-tagged domain 5 of HKa, and
immunoprecipitated with anti-GST antibody. As shown in
Figure 4A, ferritins composed of either subunit associated with
domain 5 of HKa (lanes 1-4). Controls indicated that GST alone
did not associate with either HFt or LFt (Figure S2).

We then tested whether HFt and LFt were equally capable of
blocking the anti-proliferative effects of HKa on endothelial cells.
As shown in Figure 4B, treatment with either HFt or LFt
significantly blocked loss of wviability in HKa-treated cells
(p<<0.004). To determine whether these protective effects of HFt
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and LIt were associated with restoration of adhesion or survival
signaling, we treated endothelial cells with HKa in the presence or
absence of HFt or LFt or the combination of HFt and LFt for
either short or long term, and measured effects on adhesion and
survival signaling, respectively. As shown in Figure 4C-D and
Figure 5, both recombinant ferritins restored activation of paxillin
and Erk in cells treated with HKa. Thus, ferritins composed of
either subunit can restore adhesion and survival signaling in
endothelial cells treated with HKa.

Ferritin reduces binding of HKa to endothelial cells and
restores association of uPAR with a5B1 integrin

HKa initiates signaling pathways in endothelial cells by binding
to specific cell surface receptors. The binding site for HKa on
endothelial cells includes uPAR [38] and other proteins [39,40].
uPAR is a GPI-linked cell surface receptor that recruits other
membrane proteins, including integrins o5B1, into signaling
complexes, permitting the triggering of downstream events, such
as activation of Erk and Akt [41]. To test whether ferritin blocks
HKa signaling by diminishing binding of HKa to the cell surface,
we used flow cytometry. As seen in Figure 6, fluorescently labeled
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doi:10.1371/journal.pone.0040030.9003

HKa exhibited specific binding to HUVECs that was competed by
excess unlabeled HKa. Co-treatment of cells with the combination
of HKa and ferritin (molar ratio of 1:2) reduced binding of HKa
approximately 50%. Co-treatment of HKa with the control
protein BSA did not affect binding.

@ PLoS ONE | www.plosone.org

The binding of HKa to uPAR disrupts uPAR-mediated
signaling. We tested whether the diminished binding of HKa to
the endothelial cell surface in the presence of ferritin (Figure 6) was
sufficient to block the ability of HKa to the uPAR signaling
complex. Cells were incubated with either HKa or Ft alone, or
with the combination of HKa plus ferritin. Signaling complexes
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doi:10.1371/journal.pone.0040030.g004

were immunoprecipitated using anti-a5B1 integrin antibody and
probed for the presence of uPAR using western blotting. As shown
in Figure 7A, B, incubation with HKa dissociated uPAR from
a5P1 integrin, consistent with previous reports [38]. However, co-
treatment with ferritin restored complex formation between uPAR
and integrin a5B1. Thus, incubation with ferritin prevents HKa
from disrupting upstream (UPAR-mediated) as well as down-
stream (Erk and Akt) signaling in endothelial cells. Ligand blotting
demonstrates that ferritin binds to HKa but does not directly bind
to uPAR (Figure 7C), suggesting that ferritin exerts its effects by
displacing HKa from an association with uPAR rather than
through direct interaction with uPAR. An overall model depicting
effects of ferritin and HKa on endothelial cells is shown in
Figure 7D.

@ PLoS ONE | www.plosone.org 6

Discussion

In this manuscript, we explore the mechanism underlying the
cytoprotective effect of ferritin on endothelial cells exposed to
HKa. We observe that (1) ferritin promotes adhesion of HKa-
treated cells and restores critical survival and adhesion signaling
pathways mediated by Erk, Akt, FAK and paxillin; (2) ferritin
inhibits the anti-proliferative and anti-adhesive effects of HKa by
targeting the HGK-rich domain of HKa; (3) both ferritins of the H
and L subunit type can regulate HKa activity; and (4) ferritin
diminishes binding of HKa to endothelial cells and restores the
association of uPAR with a5B1 integrin. An overall model
depicting effects of ferritin on HKa is shown in Figure 7D.

Ferritin restores multiple signaling pathways disrupted by HKa.
These include pathways mediated by Erk and Akt, key pro-
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or LFt(100 nM), or the combination of HKa plus ferritin. A. Adherent cells were lysed and analyzed by western blotting. B. Phosphorylation was
quantified by densitometry; shown are means and standard deviation of 3 independent experiments. *p<<0.02; **p<<0.004.

doi:10.1371/journal.pone.0040030.9005

survival kinases. Erk signaling is critical to endothelial cell survival
and sprouting i vitro [26,27] and in vivo [29]; Akt also plays a key
role in the endothelial cell response to growth factors [28]. Both of
these pathways are targeted by HKa [31,42]. The ability of ferritin
to interfere with HKa-mediated inhibition of these pathways was
associated with its ability to promote endothelial cell survival and
proliferation (Figure 1, 3). HKa also inhibits endothelial cell
adhesion to vitronectin by reducing phosphorylation of FAK and
paxillin [24]. We found that in addition to its effects on survival,
ferritin blocked inhibitory effects of HKa on adhesion signaling by
interfering with HKa-dependent blockade of paxillin and FAK.
Ferritin alone exerted no measurable effects on these pathways
(Figures 1, 2, 3, 4). These observations may provide a molecular
explanation for our findings that ferritin inhibits the antiprolifer-
ative and apoptotic effects of HKa on endothelial cells and blocks
the anti-angiogenic effect of HKa in an aortic ring angiogenesis
assay (Iigure 1) and the tumor environment [20].

We further identify uPAR as a key upstream node of ferritin and
HKa interaction. Erk, Akt, FAK and paxillin are all downstream
of uPAR, suggesting that interference with binding of HKa to

@ PLoS ONE | www.plosone.org

uPAR and restoration of uPAR signaling are the proximate events
in ferritin-mediated inhibition of HKa activity, as depicted in the
model shown in Figure 7D. Supporting this interpretation, we
observed that ferritin interacts directly with HKa (Figure 4) but not
uPAR (Figure 7), and that ferritin reduces overall binding of HKa
to cells (Figure 6). Critically, ferritin restored the association of
integrin o541 with uPAR in cells treated with HKa (Figure 7A, B),
an event that was associated with activation of Erk, paxillin and
FAK (Figure 2). We suggest that collectively, these events act in
concert to restore adhesion (Figure 2) and proliferation (Figure 3)
in endothelial cells challenged with HKa.

We demonstrate that the HGK-rich domain of HKa is critical
to the ability of ferritin to modulate the biological activities of
HKa. We previously showed in plate-binding assays that the
binding of HKa to ferritin is mediated through a small HGK-rich
region of HKa that maps to domain 5 [20]. Supporting previous
observations [23], this domain was able to inhibit endothelial cell
proliferation and adhesion signaling (Figure 3). We further
observed that ferritin was able to counteract effects mediated by
this HGK-rich peptide as well as the intact HKa protein (Figure 3).
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Binding of ferritin to HKa is not ferritin subunit-specific. We
observed that domain 5 of HKa interacted with ferritins composed
of either the H or the L ferritin subunit types (Figure 4). Further,
both HFt and LFt were able to counteract inhibitory effects of
HKa on survival (Figure 4) and adhesive signaling (Figure 5).
Although subunit composition varies by tissue type, natural
ferritins generally contain some mixture of ferritin H and L
subunits. These results suggest that all ferritins, independent of
tissue source, are capable of exerting an inhibitory effect on HKa
signaling. Human ferritin H and ferritin L. have 56% amino acid
sequence identity and similar overall structures, both in the
monomeric and icositetrahedron form [43,44]. The ability of both
ferritin H and L ferritin subunit types to interact with HKa
suggests that binding of HKa to ferritin is mediated by a structural
motif or sequence that is shared by the ferritin H and L subunits.

The physiological source of ferritin that binds to HKa is not
known. Circulating plasma ferritin is one possibility, and levels of
this protein are roughly comparable to endogenous levels of HKa
[21]. Because ferritin increases in inflammation or malignancy,
plasma ferritin might be particularly effective at inhibiting HKa
activity during these conditions. Further, because HKa is
produced following docking and cleavage of HK on endothelial
cells, locally produced HKa may recruit ferritin from the
circulation to the endothelial cell surface. Alternatively or
additionally, macrophages, which have recently been identified
as a source of secreted ferritin [15], could serve as a local source of
ferritin; concentrations of ferritin immediately adjacent to such
cells may be appreciable, enabling ferritin to serve as an
endogenous regulator of HKa that facilitates maintenance of
endothelial cells.

@ PLoS ONE | www.plosone.org

The ability of ferritin to bind to and inhibit the activity of HKa
is a non-canonical ferritin function. Ferritin is principally known
for its role in iron storage [9]. However, our previous work
indicated that holoferritin (containing an iron core) and apoferritin
(without iron) exhibited similar capacities to inhibit endothelial cell
proliferation [20]. Our current observation that the ferritin
subunits, which differ dramatically in their ferroxidase activity,
are both able to bind to and inhibit HKa activity further suggests
that the ability of ferritin to interact with HKa is independent of its
iron storage function. This interpretation is congruent with the
evolving view that ferritin may have extracellular signaling
activities [18] in addition to its classical role in iron storage.

Materials and Methods

Cell culture

Human Umbilical Vein Endothelial Cells (HUVECs) were
purchased from Lonza (Walkersville, MD) and cultured in EGM-2
growth medium supplemented with 2% fetal bovine serum at
37°C in a humidified incubator at 5% CQO,. Cells were used at
passages 3-8.

Cell treatment and viability assays

Cell wviability was assayed and quantified using 3-(4,5-
Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium  bromide (MTT)
reagent from Sigma. Cells were seeded in growth medium at a
density of 6,000 cells per/well in a 96-well plate, allowed to adhere
for 4 hours and the medium was replaced with M199 (Gibco)
basal medium without growth factors overnight. Cells were treated
in the presence or absence of 20 ng/ml of basic fibroblast growth
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factor (bFGF; BD Biosciences) and 10 uM ZnCl; in M199 basal
starvation medium (GIBCO) with the following reagents: two
chain high molecular weight kininogen (HKa; Enzyme Research
Laboratories); HGK-rich peptide
**DHGHKHKHGHGHGKHKNKGKKNGKHNGWK *(A-
naspec); control peptide *'GHGLGHGHEQQHGL-
GHEHKFKLDDDLEHQGGHVL*?(Anaspec); spleen ferritin
(Scripps Laboratories), recombinant HFt or LFt (below) for
24 hours prior to MTT assay. For clonogenic assays, colonies
were allowed to grow for 10 days before fixing and staining with
crystal violet.

Effect of HKa on signaling molecules in HUVECs

Cells were seeded at 4x10° cells per/well in a 6- well plate in
growth medium and allowed to adhere for 4 hours before the
medium was replaced with M199 basal medium without growth
factors. Following overnight incubation, the cells were either left
untreated or treated with HKa, HGK-rich peptide, control
peptide or 100 uM PD98059 (Promega) in the presence or
absence of ferritin in medium containing 20 ng/ml of bFGF or

@ PLoS ONE | www.plosone.org

62 nM FXII (Haematologic Technologies Inc) and 10 uM ZnCl,
for 24 hours. Cells were lysed in Triton X-100 (TX-100) lysis
buffer (50 mM Tris, pH 7.5, 150 mM sodium chloride, 0.5% TX-
100) supplemented with protease and phosphatase inhibitor
cocktails (Roche) and protein concentration of the clarified
samples determined using BCA protein assay kit (Pierce). Proteins
were separated by SDS PAGE and transferred into a polyviny-
lidene difluoride (PDVF) membrane. The membranes were
blocked in 5% BSA in Tris-buffered-saline containing 0.05%
Tween-20, and probed with the following antibodies: anti-
phospho-MAPK 44/42, anti-total-MAPK 44/42, anti-phospho-
Paxillin Y118, anti-Paxillin, anti- phospho-FAK Y397, anti-FAK,
anti-phospho-Akt (Akt S473) (Cell Signaling); anti-GAPDH
(Fitzgerald Industries International, Inc.); Streptavidin-HRP
(Pierce); and anti-GST (Sigma). Secondary antibodies were either
horseradish peroxidase (HRP)-conjugated goat anti-rabbit immu-
noglobulin G (IgG) or HRP-conjugated goat anti-mouse IgG
(Biorad). Signals were detected with SuperSignal West Pico
Chemiluminescent Substrate (Thermo Scientific) and membranes
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were developed with the Luminescent Image Analyzer LAS-3000
(Fujifilm).

Aortic sprouting

Isolation and preparation of aortic rings were performed
essentially as described [25]. In brief, aortas were isolated from
8-12 —week old C57BL/6 mice, transferred into 5 ml Opti-MEM
(GIBCO), carefully cleaned of the protective fatty layer and all
accessory vessels, and sectioned into 0.5 mm rings. The rings were
incubated at 37°C for 2 hours in medium, embedded into growth
factor reduced Matrigel (BD), and treated with HKa (100 nM) in
presence or absence of spleen ferritin (200 nM) in Opti-MEM
supplemented with 2.5% FBS and Penicillin/Streptomycin
(GIBCO) plus 30 ng/ml recombinant mouse VEGF (R&D
Systems) for 48 hours. Media was replaced and subsequently
changed every two days. Aortic rings were photographed at day 5
post treatment. Quantification was performed by counting the
number of sprouts originating from the aortic rings.

Cell adhesion assay

Six-well cell culture plates were coated with 2 ng/ml vitronectin
(Promega), blocked with 0.1% bovine serum albumin (BSA) and
washed with phosphate buffered saline (PBS). HUVECs
(4x10°cells/well) were plated in medium containing 20 ng/ml
bFGF and 10 pM of ZnCl, and treated with either HKa or HGK-
rich peptide in the presence or absence of ferritin. When control
cells were adherent (1 to 2 hours at 37°C), all samples were lysed
in TX-100 lysis buffer and subjected to Western blotting. To count
adherent cells, coverslips were washed with PBS, fixed in 10:10:80
acetic acid:methanol:water, and treated with 0.4% crystal violet.

Expression and purification of recombinant HFt and LFt

cDNA encoding the human ferritin H subunit was cloned into
the pET-17 bacterial expression vector (Novagen) and trans-
formed into E.coli BL21(DE3) for expression. Following overnight
induction with 1 mM IPTG, cell pellets were collected and
resuspended in 20 mM Tris-HCI pH 7.5, 1 mM EDTA, 1 mM
PMSF, and 10% sucrose. Cells were lysed using an Emulsiflex C-5
cell homogenizer, and cell debris pelleted. The supernatant was
heated at 70°C for 10 min, clarified by centrifugation, and passed
over a QQ-sepharose (Amersham) column equilibrated with 50 mM
Tris-HCI pH 7.5. The column was eluted with a gradient of
20 mM-2 M NaCl and the fractions containing HFt were pooled
and loaded onto a Superdex S-200 (GE Healthcare) gel filtration
column equilibrated with 50 mM Tris-HCl pH 7.5, 200 mM
NaCl. Fractions containing HFt were pooled, analyzed for purity
via SDS-PAGE electrophoresis, and concentrated to 10 mg/mL.
LFt ¢cDNA was similarly cloned into the pET-17 vector and
expressed and purified using the same protocol. Endotoxin was
removed using Detoxi-gel endotoxin removing gel (Thermo
Scientific) and quantified using QCL-1000 Quantitative Chromo-
genic LAL Assay (Lonza).

Expression and purification of recombinant HK5

cDNA encoding domain 5 of the human high molecular weight
kininogen protein (HK5) was subcloned into the pGEX-6P-1
bacterial expression vector (GE Healthcare) in frame with
glutathione S-transferase (GST) and recombinant protein was
expressed and purified as described [20].

Biotinylation of ferritin H and ferritin L

Biotinylation of recombinant HFt and LFt was performed using
EZ-Link NHS-PEO4-Biotinylation Kit (Pierce) according to the
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manufacturer’s recommendations. The HABA/Avidin assay
(Biotin Quantification Kit, Pierce) was used to estimate molar
biotin incorporation.

GST-pull-down of recombinant proteins

Protein G Sepharose beads (GE Healthcare Biosciences) were
washed and incubated with either GST-D5 plus biotinylated HFt,
GST-D5 plus biotinylated LEFt, GST-D5 plus the combination of
biotinylated HFt and LFt, or GST-D5 plus non-biotinylated HFt
or LFt at 4°C overnight. Anti-GST antibody (Sigma) was added
and incubation continued for an additional 2 hr at 4°C. Beads
were washed, centrifuged, and bound complexes analyzed by
western blotting.

Alexa Fluor 488

One mg of HKa or D5 was labeled with Alexa Fluor 488
according to the manufacturer’s protocol (Molecular Probes/
Invitrogen). Samples were incubated for 1 hour at room temper-
ature and labeled proteins were purified using the purification
resin provided with the kit.

Flow cytometric analysis

Five x10° HUVEC cells were treated with 50 nM Alexa-Fluor
488-labeled HKa in the presence or absence of 100 nM unlabeled
ferritin, 100 nM BSA, or 50-fold excess unlabeled HKa in basal
medium containing 20 ng/ml bFGF and 10 uM ZnCl, for one
hour at 37°C. Cells were treated in suspension, washed with 1%
FBS in PBS and analyzed on FACSCaliber using CellQuest Pro
Software.

Co-immuno-precipitation of UPAR and Integrins o501

Endothelial cells were plated on 2 ng/ml vitronectin coated
plates. When cells were adherent, the culture medium was
replaced with M199 basal medium overnight. Cells were either
left untreated or treated with HKa in the presence or absence of
ferritin in medium containing 20 ng/ml of bFGF and 10 uM
ZnCl, for 24 hours. Cells were lysed in TX-100 lysis buffer and
protein concentration of clarified samples determined using BCA
protein assay kit (Pierce). For immuno-precipitation 500 pg of cell
lysates were incubated with an anti-a5B1 antibody (Millipore) at
4°C overnight with agitation. Beads were washed with 1% BSA in
lysis buffer, added to samples, and incubated for 2 hours. Bound
complexes were centrifuged and subjected to SDS-PAGE.
Membranes were probed with anti-UPAR antibody (Santa Cruz)
and anti-B1 integrin antibody (Millipore).

Ligand blot
Ferritin binding to immobilized recombinant proteins was
determined by a ligand blot as previously described [21].

Statistical Analysis

Results were analyzed by one-way ANOVA followed by
pairwise comparison using Students’ t-test. Data was considered
significant at p=0.05.

Supporting Information

Figure S1 Effects of ferritin on HKa-Mediated inhibi-
tion of endothelial cell viability are dose-dependent.
HUVECs were treated with nothing (C'TL) or 50 nM HKa in the
presence of increasing concentrations of Ft (0-400 nM) for
24 hours and viability assessed using an MTT assay. Cells were
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also treated with various concentrations of ferritin alone. Shown
are means and standard deviations of triplicate determinations.
(TIF)

Figure $2 GST does not bind ferritin non-specifically.
Lanes 1-4: Purified and biotinylated recombinant HFt (20 pg) or
LFt (20 pg) were incubated with 10 ug recombinant GST and the
resulting complexes immunoprecipited with anti-GST antibody.
Non-biotinylated HFt and LFt were used in the immunoprecipta-
tion shown in lanes 4. Lanes 5-7:2 ug of biotinylated HFt, LFt and
GST were electrophoresed individually. Membranes were probed
with streptavidin-HRP to detect biotinylated ferritin (B-ferritin) as
well as with anti-GST antibody.

(TIF)
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