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Abstract

Multivariate pattern recognition approaches have become a prominent tool in neuroimaging data analysis. These methods
enable the classification of groups of participants (e.g. controls and patients) on the basis of subtly different patterns across
the whole brain. This study demonstrates that these methods can be used, in combination with automated morphometric
analysis of structural MRI, to determine with great accuracy whether a single subject has been engaged in regular mental
training or not. The proposed approach allowed us to identify with 94.87% accuracy (p,0.001) if a given participant is a
regular meditator (from a sample of 19 regular meditators and 20 non-meditators). Neuroimaging has been a relevant tool
for diagnosing neurological and psychiatric impairments. This study may suggest a novel step forward: the emergence of a
new field in brain imaging applications, in which participants could be identified based on their mental experience.
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Introduction

Pioneers in neuroscience studied patients with lesions and

associated behavioural abnormalities, such as the classic case of

Phineas Gage [1], in order to determine aspects of brain function.

The advent of neuroimaging provided sufficient detail to enable

the detection of brain damage in vivo, by the naked eye, and

created the basis for neuroradiology [2]. Modern advances in

neuroimaging, along with the use of computers, have resulted in

more precise automated quantitative analysis. However, subtle

differences in images were still difficult to identify accurately, until

the application of Machine Learning methods for classification of

brain images, such as Support Vector Machine (SVM [3]).

These computational methods of pattern recognition have been

used to aid discrimination of clinical brain pathologies associated

with easily identifiable behavioural disorders [4,5]. Indeed, most

studies focus on identifying participants with psychiatric or

neurological conditions. However, less is known about the ability

of these methods to classify the ‘‘mental habits’’ of a non-clinical

population based only on information extracted from the brain.

For example, suppose clinicians observe a group of subjects on a

street market. It may not be too difficult to diagnose a person with

autism. However, in the same scene it will be difficult to guess

whether a person practices some form of mental training such as

meditation.

Previous research has revealed that meditation can be

associated with changes in brain function and morphology. For

example, Lutz et al. [6] demonstrated that long-term Buddhist

meditation practitioners were able to self-induce sustained

electroencephalographic high-amplitude gamma-band oscillations

and phase-synchrony during meditation. This was particularly

apparent at lateral frontoparietal electrodes. Kozasa et al. [7]

compared the neural activity of non-meditators and meditators

during a task which assessed attention (the Stroop Word-Color

Task). Non-meditators showed greater activity than meditators in

the right medial frontal, middle temporal, precentral and

postcentral gyri and the lentiform nucleus. There were no regions

with greater activity in meditators relative to non-meditators.

Therefore, non-meditators required greater neural activation

compared to regular meditators to achieve equivalent behavioural

performance. This supports the hypothesis that meditation

training results in greater efficiency via improved sustained

attention and impulse control.

In addition, there is evidence that long-term meditation practice

is associated with increased cortical thickness. Lazar et al. [8]

reported that prefrontal cortex and right anterior insula were

thicker in meditators compared to matched controls. These areas

are thought to be involved in attention, interoception and sensory

processing. Alternatively, Hölzel et al. [9] compared Vipassana

meditators with non-meditators and found greater grey matter

concentration in the right anterior insula, left inferior temporal

gyrus and right hippocampus.

The current study looks to build on this previous research by

asking: is it possible to determine whether a person regularly

meditates using only their structural brain image? We set out to

explore this question by classifying participants by their expertise

in meditation and then attempting to identify subtle differences

between participants engaged in regular meditation and those who
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do not meditate. A pattern recognition approach based on SVM

and feature selection was applied as a tool for automated

classification.

Materials and Methods

This project was approved by the Ethics Committee of the

Instituto Israelita de Ensino e Pesquisa Albert Einstein - Brazil

(no. 07/762). Participants taking part in the study were given

adequate information before participating and freely signed a

consent form.

Participants
Participants were recruited from mailing lists and were split into

regular meditators (19 subjects) or non-meditators (20 subjects)

dependent on their responses. Regular meditators were considered

to be those who practised meditation three times a week, and had

been practising for at least three years. Non-meditators were those

who reported practising less than once a week, or not at all.

The groups were matched for age (meditators: 45.4769.47;

non-meditators: 43.8069.35), gender (meditators: 8M/11F; non-

meditators: 9M/11F) and education level (meditators: 78%

undergraduate degree, 22% post-graduate; non-meditators: 65%

undergraduate degree, 25% post-graduate, 10% secondary

school). There was no statistically significant difference between

groups on any of these factors. On average, the meditator group

had been regularly meditating for 8.564.1 years. The styles of

meditation used in this group were: ‘‘zazen’’ (N = 4), mantra

meditation (N = 2) mindfulness of breathing (N = 6), kriya yoga

meditation (N = 4) and meditation associated with hatha yoga

(N = 3).

Participants were screened for possible mental health problems,

on-going psychological or psychiatric treatment, and use of

psychotropic drugs under the supervision of a psychologist and a

neuropsychiatrist. In addition, all participants were evaluated on

the day of MRI scanning for depression (Beck Depression

Inventory [10]), anxiety (Beck Anxiety Inventory [11]), mindful-

ness (Mindfulness Attention Awareness Scale [12]), and self-

compassion (Self-Compassion Scale [13]). There was a significant

difference in anxiety levels between the groups, with greater

anxiety reported by non-meditators. However, neither group

exhibited clinically relevant anxiety (Table S1).

Interviews were conducted a posteriori to assess diet and exercise

habits. As the interviews took place after the MRI scan, only 13

regular meditators and 15 non-meditators could be contacted.

There was no statistically significant difference in diet (vegan, lacto

vegetarians, ovo-lacto vegetarians, meat eaters) between the

groups (p-value = 0.583, Fisher’s Exact Test). There was also no

significant difference in exercise habits (proportion undertaking

physical activity at least once a week) between the groups (p-

value = 1.000, Fisher’s Exact Test). Furthermore, the groups were

similar in the categories of physical activity undertaken by

participants (aerobic, anaerobic, stretching, or more than one

category of activity; p-value = 0.373, Fisher’s Exact Test). See

Table S2 for more detailed information on these possible

confounders.

MRI Acquisition
A high resolution MR image was acquired for each participant using

a Siemens 3.0T Magnetom Tim Trio System, We used a MPRAGE

T1-weighted sequence (matrix 16161 mm voxel, TR = 2500 ms,

TE = 3.45 ms, FOV = 265 mm, inversion time = 1100, flip angle 7

degrees).

Structural Image Processing
The T1 weighted structural images of all participants were

processed using automated cortical and subcortical segmentation

(aseg.volume.stats and bilateral aparc.volume.stats files, see

Information S1) within the recon-all pipeline of the Freesurfer

package (http://surfer.nmr.mgh.harvard.edu). This procedure

includes cortical surface modelling, spherical coordinate transfor-

mation, nonlinear curvature registration, and automated segmen-

tation of cortical and subcortical structures. The estimated volume

of each segmented region obtained using this routine was then

used as the input to the classifiers. Further details about recon-all

pipeline can be found at [14,15,16]. Note: Freesurfer software

labels the basal putamen as ‘vessel’, since it is an area with

prominent vascular space.

Classification
The pattern recognition method used in this study was the

linear two-classes (regular meditators/non-meditators) Support

Vector Machine (SVM). To implement this method, we used

e1071 package (which provides an interface to the libSVM library

[17], www.csie.ntu.edu.tw/̃cjlin/libsvm/) within the open source

R environment (www.r-project.org). Detailed information about

SVM implementation can be found in previous publications [3].

In brief, the basic idea when using pattern recognition analyses

is to try to predict the class of an observation (e.g. controls vs

patients) based on selected predictor variables (e.g. image features).

The two-classes SVM method used in this study is a supervised

machine learning approach. This means that the method ‘‘learns’’

to discriminate between two classes based on correctly categorised

training data (accurate class and predictor variables from example

data). When these classification rules are sufficiently ‘‘learnt’’ then

SVM is able to generate class predictions for novel observations

(test data). SVM has been used in conjunction with neuroimaging

to discriminate patients from controls [18,19,20] and also to

differentiate distinct brain states based on functional MRI [21,22].

In the majority of these studies, the predictor variables were

specific measures at each voxel of the brain (e.g. gray-matter

coefficients, normalized fMRI signal, etc.) and the classes were the

disease (present or absent) or experimental condition (e.g.: Task A

or Task B in fMRI studies). One of the appealing properties of

pattern recognition methods compared to conventional t-tests is

that the former is able to generate predictions (and thus assess the

amount of predictive information contained within a set of

variables), and not only evaluate whether a variable is statistically

different between groups.

The current study evaluated whether the information contained

in structural (T1 weighted) images was capable of predicting or

discriminating between regular meditators and non-meditators.

The volumes of each segmented region (121 areas, expressed in

cubic millimeters) were used as the variables (features) for group

prediction. The names of these predictor variables can be found in

Supplementary Information. A feature selection step was included

during classification analysis to reduce the influence of irrelevant

variables, and also highlight the brain regions containing the most

discriminant information. In this way, feature selection can be

used as a brain mapping tool.

One of the main dangers when performing classification

analysis is double dipping and overfitting, which may lead to

unreliable estimates of classifier’s accuracy. These problems can be

even worse when a feature selection step is included. In order to

avoid these problems, the classifier’s accuracy was estimated based

on a first-level leave-one-subject-out procedure and the feature

selection was carried out in a second-level nested-leave-one-subject

out procedure. This second process was required to guarantee that

Identification of Subjects under Mental Training
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the information from the specific test subject removed at first-level

leave-one-out analysis was only used to estimate prediction

accuracy and was not contained within the SVM training data.

The feature selection, classification, and accuracy estimation were

performed via the following steps:

Step 1) Leave one subject out of the sample (first-level leave-

one-out);

Step 2) Remove the effects of gender and age from each

feature (predictor variable) of the training data by

using a multiple linear regression analysis. The

corrected training data are the residuals of this

regression;

Step 3) Normalize each feature of the corrected training data

to have mean zero and variance one. This data is

referred as the normalized training data;

Step 4) Leave-one-out implementation:

Step 4.1) Leave another subject out of the normalized

training data (second-level leave-one-out);

Step 4.1.a) Train the linear SVM using the respective

normalized training data and its label vector

(which specifies the groups).

Step 4.1.b) Rank the SVM decision function coefficients

(hyperplane coefficients) by their absolute

values. This step will provide a rank vector

describing the relevance of each feature to the

groups’ discrimination;

Step 4.1.c) Feature selection: Remove the most irrele-

vant feature from the normalized training

data;

Step 4.1.d) Train the SVM using the normalized

training data obtained in step 4.1.c;

Figure 1. Classification of regular meditators and non-meditators using support vector machines (SVM). Regions identified by the SVM
as containing discriminative information used to consistently predict the groups (right precentral gyrus, left entorhinal cortex, right pars opercularis
cortex, right basal putamen, and bilateral thalamus). These five regions were selected by SVM in an all leave-one-subject-out iterations, with 94.87%
accuracy. The bottom of the figure depicts the projection values of each subject and the decision boundary.
doi:10.1371/journal.pone.0039832.g001
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Step 4.1.e) Predict the class of the subject left out in step

4.1;

Step 4.1.f) Return to step 4.1.c and repeat until all

features have been removed;

Step 4.2) Return to step 4.1 until all iterations of second-

level leave-one-subject-out have been carried

out;

Step 5) Compute the classification accuracies of the second-

level leave-one-out for different numbers of features.

Obtain the number of features, Q, which maximizes

the second-level leave-one-out accuracy;

Step 6) Train the linear SVM using the normalized training

data obtained in step 3;

Step 7) Obtain the rank vector in the same way as step 4.1.b;

Step 8) Use the rank vector to build a normalized training

data consisting solely of the Q (estimated in step 5)

most discriminant features;

Step 9) Train the linear SVM using the normalized training

data from step 8;

Step 10) Apply the covariate correction and normalization

(based on the parameters from step 2 and 3) to the

features of the subject left out in step 1 (first-level

leave-one-out);

Step 11) Classify the subject left out (first-level) using the test

data from step 10;

Step 12) Return to step 1 until all iterations of first-level leave-

one-subject-out have been carried out;

Step 13) Compute the first-level leave-one-out accuracy;

Finally, the p-value for the significance of the first-level leave-

one-out accuracy was obtained by using the Binomial distribution.

One important point to be mentioned is that the number of

features (see step 5) used by SVM is different for each iteration of

the first-level leave-one-out. The most discriminant features (brain

regions) referred to in the Results and Discussion sections are those

which were selected by SVM across all iterations. However, the

classification results are based on all the discriminant features

found in all leave-one-out iterations.

Results

It was possible to identify whether a participant belonged to the

regular meditator or non-meditator group with 94.87% accuracy

(37 participants from 39, p,0.001, accuracy estimated from first-

level leave-one-subject-out) using SVM analysis of the volumetric

data from several brain regions. The regions containing the most

discriminative information, from 121 areas considered, were: right

Figure 2. Boxplot illustrating the volumetric information of the regions containing the greatest discriminative information, and
ROC curves.
doi:10.1371/journal.pone.0039832.g002
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precentral gyrus, left entorhinal cortex, right pars opercularis

cortex, right basal putamen, and bilateral thalamus (Figure 1).

Boxplots of regional volumes and ROC curves are shown in

Figure 2. None of these areas had the same prediction accuracy

when employed in isolation, with accurate classification only

possible when the spatially distributed areas were used in

combination.

Discussion

Support vector machines seem to be a promising tool for use in

disease studies, but we investigated whether this technique could

classify healthy participants on the basis of their mental training

experience in meditation. Using a combination of neuroimaging

and SVM methods, we have shown for the first time that it is

possible to classify a particular healthy participant into one of two

subgroups, regular meditators and non-meditators, and to identify

those brain regions containing the most discriminative information

for this classification.

Meditation practice was chosen as the subject of this study

because it involves purely mental training, and does not entail the

development of strong physical abilities which could act as a

potential confound. Physical training has been implicated in

changes in brain morphology and function, for example after

sports or musical training [23,24,25]. In addition, meditation

practise has been associated with the development of positive

qualities such as emotional control, attention, and a reduction in

stress [26]. We investigated a mixed group of regular meditators in

order to examine whether practising meditation alters brain

morphology to an extent whereby these persons can be accurately

classified. If possible, this would suggest that neuroimaging

techniques may be able to go beyond helping diagnose brain

pathologies, and become a more refined instrument which allows

‘‘diagnosis and classification’’ of differences in ‘‘normal’’ brains.

The areas which contained the greatest discriminative informa-

tion between regular meditators and non-meditators were sensory

and motor-related regions (Figure 1). This finding is in accordance

with the ability of meditation to encourage awareness of the

sensations entering the brain, selective control over this incoming

sensory-motor information and increased internal observation

during a period of physical stillness [7,8].

The results of this study provide a proof-of-concept, demon-

strating the ability of pattern analysis techniques and neuroimag-

ing data to discriminate differences in healthy brains dependent on

previous experience. Replication of these results in similarly

healthy populations would be necessary to confirm these initial

results and improve their generalizability. It is possible that the

results shown here are influenced by other differences between the

regular meditator and non-meditator groups such as educational

level, mental health, diet and physical activity. However, of the co-

variables recorded, only anxiety levels differed between the groups,

with both groups reporting anxiety far below clinical levels. As

previously stated the areas of most discrimination were in sensory

and motor areas, which makes it unlikely that anxiety had any

influence on the results.

It is interesting to hypothesize that, in the future, brain imaging

techniques could be applied not only to diagnose disease or injury,

but perhaps also to a novel field where persons may be

characterised based on their mental experience. We may wonder

if it could be possible to identify a more compassionate person,

someone who is a natural leader, or even a person who is likely to

behave honestly, and speculate about the possible legal implica-

tions [27]. Such research may generate interesting information

about the effects of mental experience on the brain, but may also

raise serious ethical issues. However, the combination of neuro-

imaging data and SVM methods has the potential to improve

prognostic information about how to better assess the long term

effects of people’s mental attitudes.
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