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Abstract

Background: Despite of intense research in early cancer detection, there is a lack of biomarkers for the reliable detection of
malignant tumors, including non-small cell lung cancer (NSCLC). DNA methylation changes are common and relatively
stable in various types of cancers, and may be used as diagnostic or prognostic biomarkers.

Methods: We performed DNA methylation profiling of samples from 48 patients with stage I NSCLC and 18 matching
cancer-free lung samples using microarrays that cover the promoter regions of more than 14,500 genes. We correlated DNA
methylation changes with gene expression levels and performed survival analysis.

Results: We observed hypermethylation of 496 CpGs in 379 genes and hypomethylation of 373 CpGs in 335 genes in
NSCLC. Compared to adenocarcinoma samples, squamous cell carcinoma samples had 263 CpGs in 223 hypermethylated
genes and 513 CpGs in 436 hypomethylated genes. 378 of 869 (43.5%) CpG sites discriminating the NSCLC and control
samples showed an inverse correlation between CpG site methylation and gene expression levels. As a result of a survival
analysis, we found 10 CpGs in 10 genes, in which the methylation level differs in different survival groups.

Conclusions: We have identified a set of genes with altered methylation in NSCLC and found that a minority of them
showed an inverse correlation with gene expression levels. We also found a set of genes that associated with the survival of
the patients. These newly-identified marker candidates for the molecular screening of NSCLC will need further analysis in
order to determine their clinical utility.
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Introduction

Lung cancer is the leading cause of cancer-related deaths in the

world. Epigenetic events are early and frequent in carcinogenesis

[1,2,3], which makes DNA methylation an attractive biomarker

for cancer. Epigenetic events could also provide a tractable link

between the genome and the environment, with the epigenome

serving as a biochemical record of relevant life events, e.g.

cigarette smoking [4].

Lung cancer is morphologically divided into non-small cell and

small cell lung cancer (NSCLC and SCLC). NSCLC accounts for

about 80% of the lung cancers and is a heterogeneous clinical

entity with major histological subtypes such as squamous cell

carcinoma (SCC), adenocarcinoma (AC) and large cell carcinoma

[5]. A common feature of the different subtypes of NSCLC is the

somewhat slower growth and spread compared to SCLC, enabling

surgical eradication in its early stages. Only a minor fraction of

NSCLC cases are currently diagnosed in clinical stages I to IIb,

where surgical removal is the therapy of choice.

The biomarker-driven approach at preinvasive phases could aid

in diagnosing or ruling out lung cancer. Current markers,

including squamous cell carcinoma antigen, carcinoembryonic

antigen, cytokeratin 19 fragment antigen 21-1 and neuron-specific

enolase were shown to lack satisfactory diagnostic power. In

a recent study, only 37.3% of early-stage lung cancers could be

diagnosed using the combination assays of the above-mentioned

tumor markers [6].
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Our study was aimed at the genome-wide identification of DNA

methylation-based biomarker candidates in early-stage NSCLC.

DNA methylation occurs vastly in the context of cytosine-guanine

dinucleotides (CpGs) [7]. CpG-rich short stretches (CpG islands)

are usually located in the promoter region of genes and are

normally kept in the demethylated state [8]. In cancer, CpG

islands located in the promoter area of tumor suppressor genes and

‘‘house-keeping’’ genes become hypermethylated, which can lead

to decreased expression of these genes. At the same time, the

genome is globally demethylated, which in turn can lead to the

activation of oncogenes [9,10]. Methylation of CpG island shores

– regions with lower CpG density within approximately 2 kb of

CpG islands - is also closely associated with transcriptional

inactivation [11].

Recently, significant progress has been made in the genome-

wide DNA methylation analysis. The methods include bisulfite

conversion of DNA, immunoprecipitation or affinity purification

of methylated DNA followed by microarray analysis or high-

throughput sequencing [12]. It has been shown that in terms of

accuracy, bisulfite-based methods perform slightly better than

enrichment-based methods and do not require a statistical

correction for CpG bias [13].

We have performed a genome-wide DNA methylation study of

stage I NSCLC to obtain an insight into early-stage epigenetic

alterations in lung cancer and identify potential diagnostic or

prognostic biomarkers. In our study we used the HumanMethyla-

tion27 BeadChips (Illumina, Inc) that enable cost-effective

quantitative comparisons across many samples.

Results

CpG Methylation Analysis
Overall, we detected 496 CpGs in 379 genes hypermethylated

and 373 CpGs in 336 genes hypomethylated in NSCLC (Figure

S1, Table S1). A heatmap of the 100 most differently methylated

genes in NSCLC compared to control samples is shown in

Figure 1.

Compared to AC samples, SCC samples had 263 CpGs in 223

hypermethylated genes and 513 CpGs in 436 hypomethylated

genes (Figure S2, Table S2).

Two DNA samples (IDs 33 and 107) were processed in

duplicate as an internal control of the assay’s reproducibility.

Pearson’s correlation coefficient for both duplicates was 0.998.

Methylation levels determined by the Infinium assay were

validated using Sanger sequencing of bisulfite-converted DNA

for 11 CpGs (six CpGs from NSCLC versus control samples

analysis and five CpGs from survival analysis). The mean

correlation between two methods was 83% (range 48.9%;

97.4%) (Figure S3).

The CpG sites analyzed by HumanMethylation27 assay are

located within 1.5 kb upstream to 1 kb downstream of the TSS of

their respective genes. We found a significant difference in the

location of hypermethylated vs. hypomethylated CpGs relative to

the closest TSS (p= 0.0001, Welch Two Sample t-test). Hyper-

methylated CpGs were preferentially located at TSSs, 39

downstream of the TSS or in CpG islands. In contrast,

hypomethylated CpGs were frequently found 59 upstream of the

respective TSSs or in CpG island shores [11] (Table 1, Figure 2).

Different CpGs of HSPA12B, PABPC5 and TP73 were either

hyper- or hypomethylated in NSCLC. In the TP73 gene, the

hypermethylated CpG site in the tumor sample was located

upstream of the TSS of the full-length mRNA isoform.

Hypomethylated TP73 CpGs were located close to the TSSs of

the shorter isoforms. Hypermethylated CpGs of the HSPA12B and

PABPC5 were located in their 59 CpG islands, whereas

hypomethylated CpGs were located upstream, outside the CpG

islands.

Gene Expression Microarray Validation by qRT-PCR
Gene expression array setup and results are reported in the

recent paper [14]. 10 genes and eight sample pairs were used to

validate microarray results, using qRT-PCR technology. All the

genes showed the same direction of over- or underexpression in

the lung cancer samples, using both technologies (Figure 3). Seven

genes showed a significant correlation between the expression fold-

changes determined by qRT-PCR and microarray (p,0.05, R

.0.7) (Figure S4).

Methylation related to Gene Expression Changes
Using Pearson’s correlation analysis, we were able to determine

the expected inverse correlation between the differential methyl-

ation levels and gene expression values for 378 (43.5%) of the 869

differentially methylated CpGs between NSCLC and control

samples. In different histological groups we were able to find 337

of 780 CpGs (43.2%), the methylation levels of which were

inversely correlated to the gene expression levels.

We performed a qPCR analysis of the different TP73 isoforms

to test whether differential methylation next to the TSSs of

different isoforms affects their expression level. The qPCR analysis

did not reveal a statistically significant difference (p-value 0.36,

paired t-test) between the expression levels of the two isoforms in

our tumor samples.

Ingenuity Pathway Analysis
We performed in silico functional and interaction analyses of the

differentially methylated genes using Ingenuity Pathway Analysis

(IPA) software (Ingenuity Systems, Redwood City, CA), and found

78 network eligible genes and 451 Functions/Pathways eligible

genes. By including the known direct and indirect interactions, the

most prominently represented gene network was related to tumor

necrosis factor (TNF, Figure S5). Most of the genes (n = 22) in the

network were hypomethylated, but some genes (n = 7) were also

hypermethylated.

DNA Methylation related to Smoking Behavior
Based on tobacco smoking pack-years data, we asked whether

smoking affects the DNA methylation patterns in a tumor. One

patient who lacked smoking data was excluded. Linear regression

analysis was performed using the Bioconductor Limma package.

Analysis within tumor samples did not show any differentially

methylated genes related to the extent of tobacco smoking.

Comparing the limited number of non-smokers (n = 3, 6.4%) with

smokers (n = 44, 93.6%) we found four differentially methylated

CpG-sites in three genes (p,0.05, FDR adjusted), which are all

hypomethylated in smokers group: CXorf38, MTHFD2 and TLL2.

Altered Methylation and Long-term Survival
We performed two types of survival analyses to find potential

prognostic methylation markers. The patients with only up to one

month survival after surgery (n = 2) were excluded to avoid any

potential confounding influence of postoperative complications.

Firstly, we performed a Kaplan-Meier survival analysis on each

of the CpG sites by dividing the Beta values into low, medium and

high methylation groups. We only report results where all groups

were larger than five patients. As a result, we found 10 CpGs in 10

genes, with methylation level differences in different survival

groups (Figure 4). Patients with a medium methylation level of
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UGT1A7, GPR171, P2RY12, FLJ35784 and C20orf185 had better

survival than patients with high-level methylation. Patients with

a medium methylation level of CLEC11A and GRIK3 had better

survival compared to low-level methylation. Patients with a low

methylation level of CYP1A1 and INGX had better survival than

those with medium-level methylation. Patients with a high

methylation level for PIK3R5 had better survival than those with

medium-level methylation.

Secondly, we performed the differential methylation analysis by

combining Cox proportional hazard analysis and Wilcoxon rank-

sum test. We found 18 CpGs in 15 genes in patients with 1 to 24

months survival (n = 12) vs. patients with 60 months and longer

survival (n = 15), p,0.05, and the methylation difference cut-off

applied. From the differentially methylated genes, DXS9879E

(LAGE3), RTEL1 and MTM1 were hypermethylated, and

SCUBE3, SYT2, KCNC3, KCNC4, GRIK3, CRB1, SOCS2, ACTA1,

Figure 1. Differential DNA methylation between NSCLC and normal lung samples. DNA methylation levels are shown for the top 100 CpG
sites with the highest delta Beta values (FDR corrected) of DNA methylation between cancer tissue and normal lung tissue. Methylation Beta-values
are represented as row Z-scores. A heatmap was generated using unsupervised 2D hierarchical cluster analysis. Red indicates high methylation and
blue indicates low methylation relative to the row mean.
doi:10.1371/journal.pone.0039813.g001
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Figure 2. CpGs’ distance from TSS.We measured CpGs’ distance from the transcription start site (TSS). a) Distance from TSS of all the CpGs on the
methylation array. b) Distance from TSS of hypermethylated CpGs (dotted line) and distance from TSS of hypomethylated CpGs (continuous line). On
the x-axis, the distance from TSS is measured in bp-s, and on the y-axis N represents the number of CpGs.
doi:10.1371/journal.pone.0039813.g002

Table 1. Distance of differentially methylated CpGs to the nearby transcription start sites (TSS, FDR corrected p,0.05, mean
difference in methylation level in NSCLC vs tumor-free lung at least 13.6%).

Hypermethylated CpGs Hypomethylated CpGs

Distance to TSS (median; 1st quartile; 3rd quartile) 20.0; 2215; 229 263; 2469.2; 132.5

Located inside CpG island 86% (429) 23% (86)

Located outside CpG island 14% (67) 77% (287)

Distance to TSS of hyper- vs hypomethylated CpGs differed by p= 0.0001 (Welch Two Sample t-test).
doi:10.1371/journal.pone.0039813.t001
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ZNF660, MDFI, ALDH1A3 and SRD5A2 were hypomethylated in

the group with poor survival (Figure S6).

Discussion

We have performed a genome-wide DNA methylation study in

48 stage I NSCLC patients and 18 macroscopically cancer-free

control samples by using cluster analysis to search for genes that

distinguish between the cancerous and normal lung tissue and

compared these genes’ methylation levels with their expression

levels. In addition, we performed in silico functional and interaction

analysis of differently methylated genes using IPA software. Linear

regression was used to find genes related to smoking, and Kaplan-

Meier survival analysis was performed to identify the differential

methylation of genes related to patient survival.

As a result, we detected 496 CpGs in 379 hypermethylated

genes and 373 CpGs in 336 genes that were hypomethylated in

NSCLC. A perfect separation of the control lung tissue samples

from NSCLC samples was not obtained, as one normal lung

sample clustered together with the cancer samples and six cancer

samples (one in replicate) showed methylation patterns somewhat

resembling the tumor-free lung tissue. Since we used non-dissected

Figure 3. The concordance between microarray and qRT-PCR measurements. On the y-axis is shown average log2fold-change determined
by Illumina array and qRT-PCR (8 sample pairs). Error bars indicate standard error of the mean (SEM).
doi:10.1371/journal.pone.0039813.g003

Figure 4. Survival curves of 10 differentially methylated CpG sites. We performed a survival test on each of the CpG sites. The methylation
values are divided into 3 groups: low (0–0.25), medium (0.25–0.75) and high (0.75–1). As a result we found 10 CpG sites whose methylation level
differs in different survival groups. The x-axis shows survival in years and the y-axis shows overall survival.
doi:10.1371/journal.pone.0039813.g004
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tumor samples, this finding may be at least partially caused by the

confounding effect of non-neoplastic tissue present in these

samples. Pathological examination of the NSCLC samples with

DNA methylation profiles similar to the normal lung samples

revealed either low tumor content (10 to 30%) or a very

heterogeneous composition of tumor cells in the samples. These

co-clustering cancer samples and cancer-free lung samples were

therefore excluded from further analyses.

Our first goal was to identify the genes involved in early events

in tumor-specific methylation. As a result, our screening un-

covered some well-known methylation markers, some of which

have tumor suppressor activity: CDKN2A, MGMT, GATA4,

HOXA7, HOXA9, RUNX3, SFRP1. Most of the identified genes

are novel methylation markers for NSCLC, although some of

these have been described as methylated in other cancers.

LGALS12 is a candidate tumor suppressor that is able to arrest

the cell cycle and inhibit the proliferation of several cancer cell

lines [15]. In breast cancer, LGALS12 has been found down-

regulated in the malignant tissue [16].

The second goal of our study was to correlate the methylation

level changes with the gene expression data. Using Pearson’s

analysis, we were able to find the expected inverse correlation

between the methylation levels and gene expression values for 378

of 869 CpG sites (43.5%). The highest inverse correlation values

between hypermethylated CpGs and expression values were found

for the AGER (20.78), EPOR (20.65) and AQP1 (20.63) genes.

The mean distance of TSS of inversely correlated genes was

265 bp (range 21498; 917 bp) compared to 2158 bp (range -

1474; 818 bp) of positively correlated CpGs (p-value 0.02, students

t-test). The range of CpGs is probably affected by the fact that

Illumina’s Infinium HumanMethylation27 microarray covers

CpGs that are located predominantly in the vicinity of promoter

regions and not in the gene body or 39UTR. Aquaporin 1 (AQP1)

has been reported to be hypermethylated and downregulated in

NSCLC [17]. AGER, which encodes a receptor of the immuno-

globulin superfamily, has been reported to be downregulated in

NSCLC [18]. The highest inverse correlation values for

hypomethylated CpG sites and expression values were found for

MB (20.63), ADA (20.60) and MAGEA6 (20.60) genes. Myoglo-

bin (MB) is associated with tumor progression and helps to

overcome hypoxia in cancer cells [19]. Hypermethylation and/or

the downregulation of some of the genes identified in our study

(e.g. ALDH1A2, HOXA5, MT1E, SOX17) have been reported in

other cancers [20,21,22,23], but not yet in lung cancer. It is

hypothesised that RASSF1 acts as a tumor suppressor in lung

cancer progression [24]. Among the hypomethylated and

upregulated genes, the most frequently reported gene was

SERPINB5 (Maspin). Overexpression of SERPINB5 has been

associated with cancer progression and a poor prognosis in lung

cancer [25].

We can assume that genes with an inverse correlation have

a higher likelihood of being regulated by methylation. However,

many genes probably become methylated randomly during

carcinogenesis, and this does not necessarily have a steady state

effect on gene expression levels.

In the case of different histology groups, we were able to find an

inverse correlation between the differentially methylated CpG sites

and gene expression values for 337 of 780 CpG sites (43.2%). The

highest inverse correlation values were for ACOX2 (20.75), ARSE

(20.70) and SLC39A4 (20.68), which have not been associated

with NSCLC histological subtypes before. Of the inversely

correlated genes, it has been reported that PIGR, MUC1 and

FOLR1 are downregulated in SCC compared to AC [26,27,28],

which is consistent with our results.

Analysis using IPA software revealed that the dominant

functions of the differentially methylated genes were cell-to-cell

signaling and interaction, DNA replication and repair, cellular

growth and proliferation, cell death, cancer, inflammatory re-

sponse, etc. A number of gene functions, such as cell growth,

proliferation and cell death, are directly involved in cancer

progression, but the immune system also plays an important role

in fighting cancerous cells. It is also widely known that deficiencies

in pathways of DNA repair and damage control are responsible for

most or even all human cancers. After including the known

indirect relations, the most prominent gene network revealed was

related to TNF (Figure S5). TNF has a dual role in tumor biology.

It is a cytokine with well-known anticancer properties, but may

also promote cancer development and progression [29]. Hypo-

methylated genes in the TNF network were cytokines (CCL3,

CCL4, CCL7, CCL8, CCL22, IL21, IL17A, EBI3) that can either

stimulate or inhibit tumor growth and progression. The TNF

network also includes the well-known potent antiapoptotic gene

BCL2, which was also mostly hypomethylated in our NSCLC

samples. ALDH1A3 (aldehyde dehydrogenase 1 family, member

A3) indirectly regulated by TNF plays a role in the detoxification of

aldehydes generated by alcohol metabolism and lipid peroxida-

tion. Hypomethylation of this gene was related to a worse

prognosis in our study cohort (Figure S6).

We found that TP73 had three differentially methylated CpGs,

two of which were hypomethylated in the tumor tissues and

located near the TSS of its shorter isoforms. The hypermethylated

CpG was located upstream of the TSS of the full-length mRNA

isoform. We measured the expression of different isoforms using

qPCR analysis, but did not find any statistically significant

differences (p-value 0.36, paired t-test) in the tumor samples,

although the long isoform was expressed at a slightly lower level

than the short isoform. We performed a Kaplan-Meier survival

test for CpG sites, for which we divided their methylation values

into 3 groups: low (0–0.25), medium (0.25–0.75) and high (0.75–1).

As a result, we found 10 CpGs in 10 genes whose methylation

level differs in different survival groups (Figure 4). UGT1A7 is an

enzyme involved in the metabolism of (pre)carcinogens present in

tobacco smoke. Precarcinogens and their metabolites are consid-

ered to play an important role in the carcinogenesis of the tobacco

smoke-related cancers [30]. It has been shown that polymorphisms

in the UGT1A7 gene are associated with lung cancer, suggesting

that these polymorphisms reduce enzymatic activity [31]. A high

methylation level could also affect UGT1A7 activity and cause

a poor prognosis for NSCLC patients. CYP1A1 (belonging to

cytochrome P450 superfamily) catalyzes many reactions involved

in drug metabolism, also the conversion of polycyclic aromatic

hydrocarbons into reactive metabolites and detoxifications of

environmental carcinogens. It has been shown that CYP1A1 is

hypermethylated in lung cancer samples compared to normal lung

samples, and this was associated with reduced mRNA levels [32].

In our study, higher methylation levels were associated with poor

survival of lung cancer patients that supports the hypothesis that

CYP1A1 may have protective role in cancer progression. Other

genes found in survival analysis have not been reporter to be

involved in lung cancer patients’ survival.

Using a different type of survival analysis, where the differential

methylation analysis was performed by combining Cox pro-

portional hazard analysis and the Wilcoxon rank-sum test, we

were able to analyze 12 patients with a survival of less than 24

months and 15 patients who survived 60 months or more after

surgery. This analysis of the different survival groups revealed 15

differentially methylated genes. RTEL1, the regulator of telomere

elongation helicase 1, seems to be the most functionally interesting

Methylation Markers of Non-Small Cell Lung Cancer
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one of these. This is an ATP-dependent DNA helicase required to

suppress inappropriate homologous recombination, thereby play-

ing a central role in DNA repair and in the maintenance of

genomic stability. RTEL1 was found to be hypermethylated in our

poor survival group.

Comparing non-smokers (n = 3, 6.4%) with smokers (n = 44,

93.6%), four differentially methylated CpG-sites related to three

genes, hypermethylated in the non-smokers group were found:

CXorf38, MTHFD2 and TLL2. Missing statistically significant

difference in methylation levels between the different levels of

tobacco smoking could indicate a poor reliability of the pack-years’

data obtained. MTHFD2 has been shown to have a higher

expression in smokers, favouring rapid cell growth. [33]. TLL2 is

a zinc-dependent metalloprotease. Expression of metalloprotei-

nases is required for cell transformation, and this correlates with

tumor progression [34].

By comparing genome-wide changes in the DNA methylation of

normal and lung cancer cells, we were able to gain insight into the

complexity of the methylation program required for cells to

become fully malignant. As a result, we found a panel of genes that

distinguish NSCLC cells from adjacent normal lung cells and also

squamous cell carcinoma from adenocarcinoma. The analysis

revealed a set of differentially methylated CpG sites that appear to

regulate gene expression and another set that had affected the

survival of the patients. These newly-identified methylation

markers are candidates for the further molecular screening of

NSCLC. In order to confirm these markers of NSCLC

carcinogenesis, additional studies and validations are needed.

From the results of our work and from previous findings, we can

assume that altered DNA methylation is an early event in NSCLC.

Materials and Methods

Ethics Statement
The Ethics Committee of Human Studies, University of Tartu,

has approved the study and a written consent was obtained from

the study subjects.

Samples
We analyzed Union for International Cancer Control (UICC)

stage I NSCLC samples [35] from 48 patients and macroscopically

cancer-free ‘‘normal’’ lung control samples from 18 patients. All

the specimens had been isolated during lung surgery at Tartu

University Hospital, Estonia. The patients with adenocarcinoma

(n = 6, 12.5%) and its subtype bronchioloalveolar carcinoma

(n = 10, 20.8%) were analyzed as one group (n= 16, 33.3%).

The remaining 32 (66.7%) of the analyzed patients had squamous

cell carcinoma. The age range in the study group was 41–80 years

(mean age in males n= 40, 66.2 years and in females n = 8, 65.5

years) (Table S3). The patients did not undergo any preoperative

chemo- or radiotherapy.

At surgery, tissue specimens of appropriate size (1–2 cm3) were

cut from tumorous and morphologically tumor-free lung tissue.

One half of each sample was fixed in formalin and used for

pathological examination. The other half of each specimen was

snap frozen and stored at 280uC until use. Control samples were

obtained at a site distant from the removed tumor and confirmed

to be tumor-free by the same pathologist.

DNA Extraction and Bisulfite Modification
DNA was extracted from 50 mg of tumor and matching tumor-

free lung tissue with the DneasyH Blood & Tissue kit (Qiagen

GmbH., Hilden, Germany) and with the NucleospinH Tissue kit

(Macherey-Nagel GmbH., Düren, Germany). DNA yield and

purity were determined using the NanoDropH ND1000 spectro-

photometer (Thermo Fisher Scientific Inc., Waltham, MA). From

each sample, 500 ng of genomic DNA was bisulfite modified using

the EZ DNA MethylationTM Kit (Zymo Research, Orange, CA)

according to the manufacturer’s recommendations.

Methylation Validation by Sanger Sequencing
For methylation chip validation 11 genes were chosen, five of

these were genes from survival analysis and the remaining six were

genes that distinguished between cancer and normal tissue

(Primers used in study showed in Table S4). Primers for

bisulfite-treated DNA PCR were designed using MethPrimer

[36]. A 20 ml PCR was carried out in 80 mM Tris-HCl (pH 9,4–

9,5), 20 mM (NH4)2SO4, 0,02% Tween-20 PCR buffer, 3 mM

MgCl2, 1X Betaine, 0.25 mM dNTP mix, 2 units of Hot-start Taq

polymerase, 50 pmol of the forward primer, 50 pmol of the

reverse primer, and 20 ng of bisulfite-treated genomic DNA. PCR

cycling conditions were 95uC 15 min for enzyme activation, 95uC
30 sec, 62uC 45 sec, 72uC 120 sec for 17 cycles, touchdown by

20.5uC for every cycle and 95uC 30 sec, 52uC 30 sec, 72uC
120 sec for 21 cycles. Sequencing was done as a service by the

Core Facility of Estonian Biocenter. We analyzed sequencing

traces with Mutation Surveyor software (Softgenetics, State

College, PA, USA) and R statistical computing software (http://

www.r-project.org/).

RNA Extraction and Gene Expression Analysis
Detailed description of the RNA extraction and gene expression

analysis process is given in the recent paper [14].

10 genes and eight sample pairs (tumor and adjacent normal

sample) were used to validate the microarray data. For quantita-

tive RT-PCR (qPCR), cDNAs were synthesized from 700 ng of

total RNA using the First Strand cDNA Synthesis kit (Fermentas,

Vilnius, Lithuania) and oligo dT primers according to the

manufacturer’s protocol. Triplicate qPCR reactions were per-

formed in 384-well plates using SYBR Green ROX mix (ABGene,

Epsom, UK or Fermentas, Vilnius, Lithuania) and ABI 7900HT

Sequence Detection System (Applied Biosystems, Foster City, CA).

Data were analyzed using the SDS 2.2.2 (Applied Biosystems) and

R statistical computing software (http://www.r-project.org/).

The geometric mean expression of two reference genes (ESD

and S18RNA) was used as a reference. Expression fold change

between normal and tumor sample were calculated using 2-DDCt

method. Pearson correlation analyses were used to assess the

accordance between fold changes identified by qRT-PCR and

array experiments.

In addition, qRT-PCR was used to determine the TP73

expression level. Primers used for the TP73 qPCR amplifications

are listed in Table S5.

DNA Methylation Analysis
Methylation analysis was performed using InfiniumH Human-

Methylation27 RevB BeadChips (Illumina Inc.). The assay covers

27,578 CpGs in 14,495 genes located predominantly in CpG

islands within proximal promoter regions, between 1.5 kb

upstream and 1 kb downstream of the transcription start sites

(TSS). A CpG island in this assay is defined as a nucleotide

sequence of (1) 200 bp or greater in length, (2) 50% or greater in

GC-percent, and (3) 0.60 or greater in the ratio of observed CpG

sites over expected CpG sites in that region [10]. The

HumanMethylation27 beadchips also cover CpG sites in the

regulatory regions of 1,000 well-known cancer genes, 150

differentially methylated genes in various cancers and 110 miRNA
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genes. The chips were processed according to the manufacturer’s

standard protocols.

We performed cluster analysis of the methylation profiles by

using the Limma program of Bioconductor package in R statistical

computing software (www.bioconductor.org). Prior to analysis we

quantile normalized the methylation data to eliminate systematic

differences between the chips. The analysis was performed using t-

tests with an empirical Bayes’ correction from the Bioconductor

Limma package [37]. The differentially methylated genes were

clustered hierarchically and visualized using a heatmap.

All the methylation differences (differences between the Beta-

values representing the calculated level of methylation from 0 to 1,

alternatively 0% to 100% for each analyzed CpG) were identified

using a false discovery rate (FDR) corrected p,0.05 and $0.136

mean methylation level difference that was previously shown to

detect differences with at least 95% confidence [38]. For Kaplan-

Meier survival analysis, we divided the Beta values into low (0–

0.25), medium (0.25–0.75) and high (0.75–1) methylation group

and performed a log-rank test to assess the difference in survival

between the groups. We corrected these p-values using FDR and

used 0.05 as the significance level.

Methylation Related to Gene Expression Analysis
Within the available data, we calculated Pearson’s correlations

between the CpG site methylation levels and their respective gene

expression levels (Table 2, Table S1 and S2).

We computed the permutation-based p-values by permuting

individuals and recalculating the median gene expression levels

10,000 times. All CpGs and genes represented by both the

methylation and gene expression arrays were included in

permutations. Three genes (AGER, NR0B2, PPP1R14D) yielded

two significant correlations; only the strongest correlations are

shown (Table 2).

Supporting Information

Figure S1 Differential DNA methylation between
NSCLC and normal lung samples. DNA methylation profiles

for 48 NSCLC samples and 18 normal lung samples are shown.

We detected 496 CpGs hyper- and 373 CpGs hypomethylated in

NSCLC. Methylation values (Beta-values) are represented as row

Z-scores for each gene. Heatmap was generated with unsupervised

2D hierarchical cluster analysis. Red indicates high methylation

and blue indicates low methylation relative to the row mean.

(PDF)

Figure S2 Differential DNA methylation between squa-
mous cell carcinoma and adenocarcinoma. DNA methyl-

ation profiles for 16 adenocarcinoma (AC) samples and 32

squamous cell carcinoma (SCC) samples are shown. We detected

263 hypermethylated CpG sites and 513 hypomethylated CpG

sites comparing SCC to AC. Methylation values are represented as

row Z-scores for each gene. Red indicates high methylation and

blue indicates low methylation relative to the row mean.

(PDF)

Figure S3 Scatterplots showing the correlation between
beta values determined by Illumina methylation arrays
and Sanger bisulfite sequencing. Shown are the best-fitting

line, Pearson’s correlation coefficient and p-value of correlation

tests. The mean correlation between two methods was 83% (range

48.9%; 97.4%).

(DOC)

Figure S4 Scatterplots showing the correlation between
Illumina microarray and qRT-PCR measurements. On

the x-axis is quantile-normalized and logarithmic fold change

(log2TU-log2N) on the microarray for eight sample pairs. On the

y-axis is DDCt value for same sample pairs. Shown are the best-

fitting line, Pearson’s correlation coefficient and correlation test p-

value.

(TIFF)

Figure S5 TNF network. The in silico functional and in-

teraction analysis of differently methylated genes was performed

using the Ingenuity Pathway Analysis (IPA) software. The most

prominently represented gene network was related to tumor

necrosis factor. The genes that were hypermethylated in NSCLC

are shown with a red background, and the genes that were

hypomethylated in NSCLC are shown with a green background.

The depicted interactions are mostly indirect.

(TIF)

Figure S6 Boxplots of differentially methylated CpGs in
different survival groups. The 18 CpGs in 15 genes had

statistically different methylation (p-value ,0.05, Beta-value

#0.136) between patients with 1 to 24 months survival (n = 12)

vs patients with 60 months and longer survival (n = 15).

Methylation values are also shown for patients with 25–59 months

survival and for normal lung tissue.

(PDF)

Table S1 Differentially methylated CpGs and genes in
stage I NSCLC compared to cancer-free lung control
samples.Mean Beta represents the methylated signals divided by

the sum of methylated and unmethylated signals for each analyzed

CpG. Beta-diff. was calculated by subtracting the Mean Beta value

of a cancer-free lung from the Mean Beta value of stage I NSCLC

samples.

(XLS)

Table 2. Statistically significant Pearson’s correlations
between differentially methylated CpG sites and gene
expression values across 48 lung cancer samples and the
control samples with available gene expression data.

Symbol Gene ID Pearson R
Permuted p-
value*

AGER 177 20.8095317 0.0143

BRDT 676 20.7664438 0.0477

CALML5 51806 20.7729556 0.0419

ELAVL4 1996 20.8363362 0.0027

GSTT1 2952 20.7698949 0.0450

MAGEC1 9947 20.7886890 0.0278

MB 4151 20.7765738 0.0390

NR0B2 8431 20.8705916 0.0002

P53AIP1 63970 20.7665071 0.0477

PNLDC1 154197 20.8677312 0.0002

PPP1R14D 54866 20.8137714 0.0121

P-values were computed by permuting individuals and recalculating the
median gene expression levels 1,000 times. All CpGs and genes represented by
both methylation and gene expression arrays were included in permutations.
*- Permuted p-value - p-value computed by permuting individuals and
recalculating the median gene expression levels 1,000 times.
doi:10.1371/journal.pone.0039813.t002
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Table S2 Differentially methylated CpGs and genes in
squamous cell carcinoma (SCC) compared to adenocar-
cinoma (AC) samples. Mean Beta represents the methylated

signals divided by the sum of methylated and unmethylated signals

for each analyzed CpG. Beta-diff. was calculated by subtracting

the Mean Beta value of AC from the Mean Beta value of SCC.

(XLS)

Table S3 A detailed overview of the patient cohort
involved in our study.

(DOC)

Table S4 PCR primers used in methylation validation
with Sanger sequencing.

(DOC)

Table S5 Quantitative real-time PCR primers used for
TP73 gene isoform analysis.
(DOC)
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