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Abstract

Several people with Parkinson’s disease have been treated with intrastriatal grafts of fetal dopaminergic neurons. Following
autopsy, 10–22 years after surgery, some of the grafted neurons contained Lewy bodies similar to those observed in the
host brain. Numerous studies have attempted to explain these findings in cell and animal models. In cell culture, a-synuclein
has been found to transfer from one cell to another, via mechanisms that include exosomal transport and endocytosis, and
in certain cases seed aggregation in the recipient cell. In animal models, transfer of a-synuclein from host brain cells to
grafted neurons has been shown, but the reported frequency of the event has been relatively low and little is known about
the underlying mechanisms as well as the fate of the transferred a-synuclein. We now demonstrate frequent transfer of a-
synuclein from a rat brain engineered to overexpress human a-synuclein to grafted dopaminergic neurons. Further, we
show that this model can be used to explore mechanisms underlying cell-to-cell transfer of a-synuclein. Thus, we present
evidence both for the involvement of endocytosis in a-synuclein uptake in vivo, and for seeding of aggregation of
endogenous a-synuclein in the recipient neuron by the transferred a-synuclein. Finally, we show that, at least in a subset of
the studied cells, the transmitted a-synuclein is sensitive to proteinase K. Our new model system could be used to test
compounds that inhibit cell-to-cell transfer of a-synuclein and therefore might retard progression of Parkinson
neuropathology.
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Introduction

People with Parkinson’s disease (PD) exhibit a constellation of

motor and non-motor signs and symptoms including bradykinesia,

resting tremor, rigidity, depression, and anosmia. The accompa-

nying pathological hallmarks of PD are intracellular proteinaceous

deposits termed Lewy bodies and Lewy neurites, which are found

both in peripheral organs and in several central nervous system

structures [1].

Over the past two decades, intrastriatal neural grafting has been

reported to result in long-term relief of some motor symptoms in

PD. The disease process, however, continued in the patients’

brains as evidenced by the surprising presence of Lewy bodies and

neurites in the grafted neurons [2–6]. Currently, it is unclear how

these young neurons acquired such pathologies. One provocative

explanation for the presence of pathology in the grafted neurons is

protein transfer from the host brain to the grafted cells, with

subsequent seeding of aggregates in the recipient cells, in analogy

to mechanisms operating in prion diseases [7].

The main protein component of Lewy pathology is a-synuclein

(asyn), a synaptic protein with the propensity to misfold and

aggregate [8]. The gene encoding asyn, SNCA, is mutated and

duplicated or triplicated in rare familial forms of parkinsonism

[9–14] and single nucleotide polymorphisms in the SNCA

promoter are linked to sporadic PD [15]. Hence, asyn is heavily

implicated in the pathogenesis of PD. Several studies, both in

cultured cells and animal models, have addressed the hypothesis

of intercellular transfer of asyn [16–23]. We recently found that

human asyn (huasyn) transits from cells in the brains of mice

expressing huasyn to naı̈ve neurons grafted into the striatum, in

analogy to the mechanism postulated to take place in the grafted

PD cases [19]. In cultured cells of human and rodent origin,

after its transfer to a recipient cell, asyn appears to seed

aggregates of endogenous asyn proteins [19,23–27]. Recently,

acceleration of huasyn aggregation in the brain of young, pre-

symptomatic transgenic mice, together with earlier onset of

neurological symptoms, have been reported after intracerebral

inoculation of brain tissue from old transgenic mice affected by
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the synucleinopathy [22,28]. Injection of recombinant asyn fibrils

into the brain of young, pre-deposit transgenic mice led to the

same effects [22]. These findings are consistent with a ‘‘prion-

like’’ propagation of asyn [22,28]. Up to this point, however, the

whole sequence of events defining the ‘‘prion-like’’ hypothesis,

meaning the transfer of asyn from a donor cell to a recipient

neuron, followed by the seeding of the aggregation of the

endogenous asyn from the recipient cell around a core of

transferred asyn, has still not been demonstrated in vivo.

Additionally, although endocytosis has been suggested as a

mechanism involved in the uptake of asyn from the extracellular

space [17,19,21,23,29,30], the localization of transferred asyn in

endosomes has not been observed in vivo. In this report, we

engineered nigral neurons to express huasyn by injecting a

recently developed AAV2/6 viral vector encoding huasyn

(AAV2/6-huasyn) into the substantia nigra of rats [31]. After

several weeks, during which time huasyn was produced and

axonally transported from the nigral cell bodies to the dopamine

neuron axon terminals in the striatum [31], we grafted rat

embryonic ventral mesencephalic (VM) neurons into the

striatum. At several time points after grafting, we sacrificed the

rats, processed the brains for immunohistochemistry and

screened for the presence of huasyn in the transplanted neurons.

In this model, we detected frequent occurrence of transfer of

asyn from host brain neurons to transplanted tyrosine hydrox-

ylase (TH)-positive neurons. Additionally, we found that trans-

ferred huasyn co-localized with a marker for early endosomes in

the grafted neurons. Moreover, we showed that, within the

recipient cell, the small immunoreactive dot representing

transferred huasyn was surrounded by a larger area of rodent

asyn-positive signal, suggesting, for the first time, in vivo seeding

capacity of intercellularly transferred huasyn. Finally, we report

that, at least in the subset of cells we examined, the transmitted

huasyn is sensitive to a proteinase K (PK) treatment, in contrast

to the aggregated asyn proteins that we observed to accumulate

in the cell bodies and dystrophic neurites of AAV2/6-huasyn

infected neurons. Taken together, our results could pave the way

for future studies to screen for drugs that reduce or block asyn

transfer in whole animals.

Results

Neural Grafts Survive in Human a-synuclein-expressing
Rat Brain

In order to study asyn transfer in vivo and explore possible

transfer mechanisms, we utilized rodent model of huasyn

overexpression, that was recently extensively described in a

parallel study [31]. We injected AAV2/6-huasyn into the right

substantia nigra of female Sprague-Dawley rats in order to

overexpress huasyn in the nigrostriatal dopaminergic neurons.

Three or six weeks after virus injection, we performed bilateral

intrastriatal transplantation of embryonic day 14 VM in the viral-

vector transduced rats (Figure 1A). One (n = 6), two (n = 8), or four

(n = 12) weeks later, we killed the rats, fixed and sectioned their

brains prior to immunostaining.

We first confirmed that the transplanted neurons had survived

and were located bilaterally in the center of the striatum of each

rat. We observed dense huasyn immunoreactivity in the cell

bodies of the right substantia nigra (Figure 1B) and in the

nigrostriatal axon terminals in the striatum (Figure 1C). The areas

devoid of huasyn signal (Figure 1C, asterisks) contained the grafted

neurons derived from fetal cells not expressing huasyn. In another

series of sections from each rat, we performed double immuno-

fluorescence for TH and huasyn, in order to visualize the

individual TH-positive neurons within the huasyn-positive host

tissue (Figure 1D). As dopaminergic neuron cell bodies are

normally not found in the striatum, all TH-expressing somata we

identified in the striatum were grafted neurons. The number of

surviving TH-expressing neurons has previously been reported to

be unchanged in intrastriatal grafts, one to four weeks after the

surgery procedure [32–34]. Thus, when we sampled our animals

for stereology-based counting of the total number of TH-positive

cells within the graft, we randomly selected six out of the

12 animals transplanted three weeks after viral injection and six

out of the 14 animals grafted six weeks after AAV2/6 transduc-

tion, without taking in account the survival time after transplan-

tation. We found a total number of surviving grafted dopaminergic

cells of 24386296 and we did not detect any effect of the severity

of the synucleinopathy at the time of grafting on the survival of

transplanted dopamine neurons (Figure S1, 25806440 and

22966428 for the rats transplanted three and six weeks after

viral injections, respectively). Huasyn-positive axon terminals

derived from the host nigrostriatal neurons surrounded the grafts

(Figure 1D). A few of huasyn-positive axons traversed the host/

graft border and reached the periphery of the implants.

a-Synuclein Transfers from Host Brain to Grafted Neurons
We studied 26 rat brains that displayed the expected huasyn-

immunoreactivity and had appropriately located TH-positive

grafts in the center of the striatum. Using an epifluorescence

microscope, we observed several hundred TH-immunoreactive

grafted neurons in which small puncta of huasyn immunoreac-

tivity appeared to be located. As expected, we never detected

huasyn signal in any TH-positive neurons in the transplant

injected into the left striatum, which is consistent with the fact that

we had transduced host neurons with AAV2/6-huasyn in the

nigrostriatal pathway only on the right side. We performed

confocal microscopy on at least 20 (Figure S2) randomly selected

TH-immunoreactive neurons per rat and collected three-dimen-

sional reconstructions of each of these cells. In some cases,

huasyn-positive puncta were located inside the TH-positive cells.

For other grafted TH-expressing cells, we found the huasyn to be

located exclusively immediately adjacent, as would be the case if

the observed huasyn immunoreactivity were inside a terminal of

the host nigrostriatal pathway. Finally, in several cases we also

found such huasyn-immunoreactive profiles immediately outside

neurons displaying clear intracellular huasyn immunoreactivity.

Thus, the grafted neurons we scored as positive for huasyn

transfer clearly displayed intracellular huasyn signal. Figure 2A-D

shows images obtained from rats of the 3 week/2 week, 3 week/

4 week, 6 week/2 week and 6 week/4 week groups, illustrating

representative TH-positive neurons (green) containing intracellu-

lar huasyn puncta (red). Next, we quantified the frequency of

grafted TH-positive neurons exhibiting huasyn transfer in each

group by calculating the percentage of TH-positive neurons that

displayed one or more intracellular huasyn puncta (Figure 2E,

S2). We found that the proportion of grafted cells displaying

huasyn uptake depends significantly on the time after transplan-

tation (2 way ANOVA, main effect of time after grafting, F = 8.93,

p,0.05) and on the duration of time between virus injection and

grafting (2 way ANOVA, main effect of the time between AAV2/

6-huasyn injection and transplantation, F = 4.85, p,0.05).

Importantly, the time between virus injection and grafting and

the time after transplantation, or survival time, interact to

influence the percentage of cells exhibiting huasyn signal (2 way

ANOVA, interaction effect, F = 3.81, p,0.05). Furthermore, a

duration of three weeks between viral injection and transplanta-

tion combined with four weeks of survival time results in a high
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percentage of cells displaying transferred huasyn (22.762.23%).

These results indicate that the time elapsed after grafting and the

stage of the synucleinopathy, which becomes more severe with

time after virus injection [31], both influence the likelihood that

we observe transferred huasyn.

Transferred a-synuclein Colocalizes with Endosomal
Marker

Previous in vitro studies have suggested that endocytosis is

involved in the uptake of asyn from the extracellular space [19,23–

27]. The transferred huasyn dots were very heterogeneous in

Figure 1. AAV2/6-huasyn- and transplantation-based rat model for prion-like propagation of a-synuclein. (A) Experimental protocol.
Rats were injected in the right substantia nigra with AAV2/6-huasyn. Three or six weeks later, these rats were transplanted with wild-type rat
embryonic day 14 ventral mesencephalic tissue bilaterally in the striatum. Finally, the animals were sacrificed one, two or four weeks after grafting. (B,
left) Coronal section at the level of the interpeduncular fossa of a rat ten weeks after AAV2/6 injection. Asterisk marks the injection site. (B, right) High
magnification view of the left panel (dashed box) demonstrating expression of huasyn in the cell bodies of the SNc. (C) Coronal section at the level of
the gyrus diagonalis of a rat transplanted with VM tissue six weeks after AAV2/6-huasyn injection and sacrificed four weeks after grafting. The
immunohistochemical analysis with antibodies directed against huasyn shows the overexpression of this protein in the axon terminals of the right
striatum. The center of the bilateral grafts is marked with an asterisk. On the right, the graft is clearly located in the area devoid of signal. (D) Adjacent
section from the same animal, subjected to double immunofluorescence with antibodies directed against TH (green) and huasyn (red). The TH-
positive cell bodies of the transplanted neurons are easily distinguished from the surrounding huasyn-positive host tissue. Here again the asterisk is
located in the center of the graft. Abbreviations: CA, cerebral aquaduct; cc, corpus callosum; Cx, cortex; E, embryonic day; LV, lateral ventricle; ML,
medial lemniscus; St, striatum; SNc, substantia nigra pars compacta; VM, ventral mesencephalon; VTA, ventral tegmental area. The scale bars for
panels B (left), C, and D represent 500 mm, while the scale bar for panel B (right) represents 100 mm.
doi:10.1371/journal.pone.0039465.g001
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terms of size and intracellular localization. Only a few TH-positive

grafted neurons showed a huasyn intracellular signal compatible

with endocytic localization. This is why we developed a rigorous

stripping protocol, leading to complete removal of antibodies

bound to the sections during an earlier round of staining. This

method allowed us to return to the specific transferred huasyn dots

identified in our first round of screening and examine if they co-

localized with endosomal markers, rather than performing a

Figure 2. The propagation of human a-synuclein from host tissue to transplanted dopaminergic neurons is a disease stage- and
time-dependent process. (A-D) Confocal three-dimensional reconstructions of grafted TH-positive neurons (green) displaying intracellular puncta
of transferred huasyn (red), which are marked by the white cross. Reconstructed orthogonal projections are presented as viewed in the x-z (bottom)
and y-z (right) planes. These cells were detected in rats transplanted either three (A, B) or six (C, D) weeks after AAV2/6-huasyn injection and sacrificed
two (A, C) or four (B, D) weeks after grafting. (E) Quantification of the percentage of transplanted TH-expressing cells that show intracellular puncta of
huasyn in each experimental group. Each bar represents the number of transferred huasyn-positive cells compared to the total TH-positive cells
counted in each group. We randomly sampled more than 20 TH-positive cells per rat, in three to seven rats per group. Scale bars equal 6 mm.
doi:10.1371/journal.pone.0039465.g002
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‘‘blind’’ triple staining with antibodies directed against TH, huayn

and endosomal marker on a new section. Before applying this

technique routinely, we confirmed that no fluorescence signal from

the first round of staining remained on the stripped sections.

Moreover, we determined that the stripping procedure did not

damage the huasyn antigens, so that we were still able to detect the

transferred huasyn dots in the second round of staining (Figure

S3). We then triple-stained the sections with TH, huasyn, and

EEA1 antisera using different fluorochromes to detect each

antibody. In Figure 3A we present a TH-positive cell containing

a huasyn-immunoreactive punctum with an intracellular, juxta-

membrane localization, which led us to suspect that it might have

been recently taken up. Indeed, upon stripping and restaining, we

found that the early endosome marker EEA1 co-localized with the

transferred huasyn-immunopositive punctum in the TH-positive

cell (Figure 3B–F), suggesting endocytic localization for huasyn

taken up in vivo.

Transferred a-synuclein Seeds Aggregation in vivo
We found several TH-positive cells containing intracellular

huasyn dot located further away from the outer membrane and of

bigger size, clearly different from the smaller huasyn puncta with

juxtamembrane localization we described above. Interestingly, we

observed that the cytoplasm immediately surrounding these

puncta often exhibited low levels of TH staining (Figure 4A and

G). For these sections, we stripped the two bound antibodies and

reprobed with three antibodies directed against TH, huasyn, and

total asyn, as the large size of these huasyn accumulations led us to

suspect that they could be able of seeding activity. Indeed,

analogous to previous findings in cell culture models of asyn

uptake [19,23–27], we found a core of huasyn surrounded by a

larger area of total asyn-immunoreactivity (Figure 4B–E, H-K, N-

Q). Analysis with image processing software provided a three-

dimensional reconstruction, which further supported the embed-

ding of a nucleus of transferred huasyn within a shell of total a-

syn-positive signal (Figure 4F, L, R). This result argues for a

specific interaction between huasyn and rat asyn and suggests a

seeding activity of transferred huasyn on rat asyn proteins within

the recipient grafted neuron.

Transferred a-synuclein is PK-sensitive and Non-
phosphorylated

In order to characterize biochemically the huasyn protein that

had transferred from the brain of AAV2/6-huasyn injected rats to

the grafted dopaminergic neurons, we assessed its aggregation and

phosphorylation state.

First, we optimized a PK treatment protocol. After testing

several conditions, we found that exposing the sections to 10 mg/

mL PK for 10 minutes at room temperature resulted in digestion

of most of the huasyn in the striatal axonal terminals of the

nigral neurons infected with AAV2/6-huasyn (Figure 5E, F). By

contrast, the aggregated forms of huasyn found both in abnormal

swellings (or varicosities) of dystrophic neurites in the striatum

(Figure 5F) and in cell bodies in the substantia nigra (Figure 5I, J)

remained and were stained with the antibody directed against

huasyn. Then, we applied the exact same PK conditions to

stripped sections that we previously had found to show grafted

TH-positive neurons containing intracellular puncta immunore-

active for huasyn. After re-staining with antibodies against TH

and huasyn, we found that the huasyn immunoreactive dots

were no longer visible inside the 6 grafted neurons we examined

(Figure 5A, B). As a control we treated other sections with PBS

Figure 3. Endocytosis is involved in human a-synuclein intercellular transfer. (A) Confocal three-dimensional reconstruction showing the
intracellular location of a transferred huasyn punctum (red) within a TH-positive transplanted neuron (green) from the 3 week/4 week group. (B-D)
Triple staining with antibodies raised against TH (B, blue), EEA1 (C, green) and huasyn (D, red) shows the colocalization of this transmitted huasyn
punctum with EEA1 (arrowheads). Panel E is a merged picture of (B), (C), and (D). The insets in (B), (C), (D) and (E) are higher magnifications of the
huasyn- and EEA1-positive punctum. (F) High magnification three-dimensional reconstruction of the huasyn- (red) and EEA1-positive (green)
punctum. Scale bars represent 6 mm.
doi:10.1371/journal.pone.0039465.g003
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instead of PK. As predicted, we found that the PBS treatment

did not affect the immunoreactivity of the transmitted huasyn

(Figure 5C, D). Taken together we showed that the transmitted

huasyn we observed in 6 cells was sensitive to PK treatment,

indicating that non-aggregated forms of huasyn can transfer

between cells in vivo.

We also assessed the phosphorylation state of the transferred

huasyn. As expected, we found that antibodies specifically directed

Figure 4. Transferred human a-synuclein seeds the aggregation of rat a-synuclein in the recipient cell. (A, G, M) Confocal three-
dimensional reconstructions of three transplanted TH-expressing (green) cells positive for huasyn (red) transfer. Panel A shows a TH-positive cell from
the 6 week/4 week group, panel G displays a TH-expressing cell from the 6 week/2 week group and panel M corresponds to a TH-expressing cell from
the 3 week/4 week group. (B-E, H-K, N-Q) Triple staining with antibodies directed against TH (B, H, N, blue), huasyn (C, I, O, red) and both huasyn and
rodent asyn (Tasyn, D, J, P, green) shows the larger area stained with the total asyn antibody compared to the huasyn signal alone (arrowheads). The
E, K and Q panels are merged pictures of (B), (C), and (D); (H), (I) and (J); and (N), (O) and (P), respectively. (F, L, R) Three-dimensional reconstructions
with opaque rendering showing the core of huasyn in light grey whereas the total asyn is in dark grey. This view underlines the embedding of
huasyn nucleus within a shell of total asyn signal. The orientation is indicated by the coordinate system with the x axis in green, y axis in red and z
axis in blue. Scale bars represent 5 mm.
doi:10.1371/journal.pone.0039465.g004
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against a-syn phosphorylated on serine 129 recognize the huasyn

that accumulates in TH-positive varicosities in the striatum (Figure

S4A-D) and cell bodies in the substantia nigra (Figure S4E-H) of

AAV2/6-huasyn transduced neurons. However, we did not detect

any colocalization between the transmitted huasyn with a-syn

phosphorylated on serine 129 within TH-expressing transplanted

neurons.

In brief, our results suggest that at least some of the huasyn

forms that transfer to transplanted dopaminergic neurons are not

aggregated or phosphorylated. In contrast, we found that a

significant portion of the huasyn that accumulates within

dystrophic neurites and nigral neuronal cell bodies following

infection by AAV2/6-huasyn, is contained in PK-resistant

aggregates that include asyn phosphorylated on serine 129.

Discussion

In this report, we show intercellular transfer of huasyn from

host brain cells to naı̈ve neurons grafted into rat striatum three or

six weeks after AAV2/6-huasyn virus transduction into the

substantia nigra, in accordance with a recent report from

Kordower et al describing a similar AAV2/6-huasyn model. In

the study from Kordower and coworkers, rats subjected to AAV2/

6-GFP transduction were used as negative controls and transfer of

GFP from the host brain to grafted neurons was never observed

[35]. In our study we extend these findings by varying the time

between virus injection, neural grafting, and sacrifice, thus

modeling the different stages of human synucleinopathy from

mild to severe. Three weeks after AAV2/6-huasyn virus injection

Figure 5. Transferred human a-synuclein is proteinase-K sensitive. (A-D) Confocal three-dimensional reconstructions of two TH-positive
neurons (green) transplanted in rats from the 3 week/4 week group. (A) and (C) show the intracellular localization of a transferred huasyn punctum
(red) within these neurons. (B) and (D) depict the same neurons as (A) and (C); however, the antibodies were stripped from (A) and (C), and the
sections were then treated with PK (B) or PBS (control, D), then re-stained. Whereas the huasyn dot is still present in the cell treated with PBS
(compare D to C), the transferred huasyn has been dissolved by the PK treatment (compare B to A). The white cross marks the transferred huasyn
punctum (A, C, D) or its localization prior to the PK treatment (B). (E-H) and (I-L) show confocal planes of coronal sections from, respectively, the
striatum and the subtantia nigra of rats of the 3 week/4 week group, stained with antibodies directed against huasyn. (F), (H), (J) and (L) correspond
to the same areas as (E), (G), (I) and (K), respectively; however, the antibodies were stripped from (E), (G), (I) and (K), and the sections were then treated
with PK (F, J) or PBS (control, H, L) and re-stained. The arrowheads indicate landmarks that have been used to match the areas of interest before and
after treatment. Note the apparent attenuation of signal in total area stained after PK treatment (compare F to E and J to I) and the very high similarity
between the staining before and after PBS control treatment (compare H to G and L to K). The sections in (A-B), (E-F), (I-J) on one side and (C-D), (G-H)
and (K-L) on the other side have been processed simultaneously, in the exact same conditions. Abbreviations: PK, proteinase K; St, striatum; SN,
subtantia nigra. Scale bars represent 5 mm (A-D) or 50 mm (E-L).
doi:10.1371/journal.pone.0039465.g005
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into the rat striatum, the animals have been described to be in a

‘‘presymptomatic’’ stage and display normal performance in the

motor test and no or limited nigral neuron loss [31]. Six weeks

post-viral transduction corresponds to an early symptomatic stage

with degeneration of 50% of the nigral neurons [31]. Finally, at

eight weeks post-viral transduction (a time point only reached by

the rats grafted six weeks after transduction), the motor deficits are

fully developed and up to 70% of the nigral dopaminergic neurons

are lost [31]. Of relevance to the aforementioned neural

transplantation studies and subsequent autopsies conducted in

humans, we examined the effect of both the disease severity at the

time of grafting and the survival time after transplantation on the

likelihood of observing grafted cells that had taken up huasyn

(Figure 2). It has previously been suggested that the presence of

Lewy bodies in grafted neurons is a time-dependent process, with

the percentage of neurons displaying Lewy bodies being higher in

older grafts than in younger transplants [2,6]. Furthermore, a

minimum duration between grafting and death around one

decade appears to be necessary in order to support the presence

of Lewy bodies in grafted neurons [2]. Our study supports these

claims as we show a time-dependent increase in the percentage of

TH-positive neurons exhibiting intracellular huasyn puncta

(Figure 2). At the final time point in the group grafted at a later

stage of synucleinopathy, the percentage of neurons exhibiting

huasyn puncta decreases. This result could be due to death of

some of the grafted neurons that have taken up huasyn.

Alternatively, neurons that have taken up huasyn are able to

degrade the imported protein and the recruitment of new neurons

taking up huasyn simply decreases with time due to the

degeneration of striatal dopamine terminals and thus the decrease

of the huasyn input. Indeed, we recently reported, in rats injected

with the AAV2/6-huasyn virus under the exact same conditions, a

reduction of the TH-expressing striatal fiber density to 69%

(compared to staining in contralateral non-injected side) after three

weeks, which was maintained after five weeks and further

decreased to 42% after eight weeks [31].

The involvement of endocytosis in the uptake of asyn into many

cell types has been demonstrated in cell culture [17,19,21,23,29,30].

Most of these studies have utilized strategies to inhibit endocytosis to

reach their conclusions. In neurons grafted in vivo, we now show a

particular endocytic compartment where transmitted asyn can be

found (Figure 3). Interestingly, we did not observe this endocytic

localization in every TH-expressing cell that displayed transferred

huasyn, which suggests that the other localizations (as seen in

Figure 2) show huasyn that has already escaped from a vesicle.

aSyn aggregates are seen in several neuron and glial types in

synucleinopathies [36–40]. Moreover, the capacity of glial cells to

take up asyn has been recently demonstrated in vitro [41] and in vivo

[21]. Thus, it will be important to explore mechanisms of asyn

uptake not only into dopaminergic neurons, but also into other

types of cells. Interestingly, Kordower and colleagues recently

demonstrated uptake of huasyn into both grafted TH-positive and

non-TH positive cells in the study mentioned above [35].

In our study, we show a core of intracellular huasyn surrounded

by endogenous rat asyn (Figure 4), suggesting for the first time that

asyn, which has transferred between cells, can act as a seed

attracting endogenous asyn produced by the rat neuron. These

findings are consistent with results from different in vitro cell models

[19,23–27] and for the first time extend this observation into an in

vivo setting. However, it remains unclear how asyn gains access

from the endocytic compartment or directly from the extracellular

space to the cytoplasm of cells in order to permissively template

endogenous asyn. Further studies are needed to clarify this

important step in the process.

Finally, we report that at least some of the asyn that has

transferred from host brain cells to transplanted neurons is

sensitive to a PK digestion protocol that does not destroy asyn

aggregates formed in neurons transduced by the viral vector. This

suggests that asyn can transfer between cells in a non-aggregated

form and that once in the recipient cell, it does not necessarily

form aggregates. In the rare cases where we observed that

transferred huasyn attracted endogenous rat asyn (e.g. Figure 4), it

is conceivable that the resulting asyn assemblies would be more

resistant to PK. However, in this study we did not have the

opportunity to systematically examine if such cells lose their asyn

immunoreactivity following PK digestion. In the future it will be

crucial to identify which asyn specie(s) transfer(s) the most

efficiently between neurons and under what conditions the

transferred asyn will act as a seed for aggregation in the new

host neuron. Understanding these events will be essential in

developing disease-modifying therapeutics which interfere with the

spreading of synucleinopathy during PD progression.

Materials and Methods

Animals
Sprague-Dawley female rats (225 g) were purchased from

Charles River Laboratories. The rats were housed two or three

per cage under a 12-hour light/12-hour dark cycle with ad libitum

access to food and water. The housing of the animals and all

procedures were carried out in accordance with international

guidelines and were approved by the Malmö-Lund Ethical

Committee for Animal Research (Permit Number: M162-10).

Vector Preparation and Injection
We utilized an AAV2/6 vector in which the expression of the

human wild-type asyn transgene was driven by the synapsin 1

promoter and enhanced using a woodchuck hepatitis virus post-

transcriptional regulatory element. Vector production was per-

formed as previously described [31,42]. Briefly, a transfer plasmid

carrying AAV2 Inverted Terminal Repeats encoding human wild-

type asyn downstream to the synapsin 1 promoter was generated

and transfected into human embryonic kidney 293 cells using the

calcium-phosphate method, and included the packaging plasmid

pDP6 encoding the AAV6 capsid proteins [43,44]. The cells were

lysed with buffer (50 mM Tris, 150 mM NaCl, pH 8.4) and by

performing freeze-thaw cycles in dry ice/ethanol bath. The crude

lysates were purified first by ultracentrifugation (1.5 hours at 350

0006g at 18uC) in a discontinuous iodixanol gradient, and the

virus-containing fractions were purified with ion-exchange chro-

matography using FPLC. Genome copy titer was determined

using real-time quantitative PCR. The genome copy titer used in

the injections was 7.061012 genome copies/mL.

We performed all surgical procedures under general anesthesia

using a 20:1 mixture of fentanylcitrate (Fentanyl) and medetomi-

din hypochloride (Dormitor) (Apoteksbolaget, Sweden) injected

intraperitoneally. Rats were placed in a stereotaxic frame

(Stoelting) and vector solutions were injected using a 10 mL

Hamilton syringe fitted with a glass capillary (outer diameter of

100–200 mm). 3 mL of the AAV2/6-huasyn vector solution were

infused at a rate of 0.2 mL/min and the needle was left in place for

an additional 3 min period before it was slowly retracted at a rate

of 1 mm per minute. We injected AAV2/6-huasyn vector

unilaterally on the right side, above the substantia nigra, at the

following coordinates (flat skull position, coordinates relative to

bregma and dural surface): antero-posterior: 25.3 mm, medio-

lateral: 21.7 mm, dorso-ventral: 27.2 mm.
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Grafting Procedure
We dissected the ventral mesencephalon (VM) from embryonic

day 14 rats in cold HBSS-Ca2+/Mg2+ (Invitrogen) as previously

described [45]. We incubated the VM pieces in HBSS-Ca2+/Mg2+

containing 0.1% trypsin and 0.05% DNase for 15 minutes at

37uC. After rinsing, the VM tissues were mechanically dissociated

into a cell suspension containing a mixture of single cells and small

aggregates. The number of viable cells was estimated based on

Trypan blue (Sigma-Aldrich) exclusion and found to be over 95%.

After centrifugation (1806g, 10 minutes, 4uC), the supernatant

was removed and the volume was adjusted to give a suspension

equivalent to two VMs/animal in HBSS-Ca2+/Mg2+. The cells

were stored on ice during the transplantation procedure. Either

three or six weeks after injection of the AAV2/6-huasyn vector,

each rat received bilateral intrastriatal transplants (3 mL, equiva-

lent to about one VM in each striatum) using a Hamilton syringe

(coordinates, AP: 0.5 mm; ML: +/23.5 mm; DV: 25.0,

24.5 mm relative to bregma and dural surface).

Immunohistochemistry and Microscopy
One, two, or four weeks after grafting, we anesthetized the rats

with sodium pentobarbitone and perfused them transcardially

with 0.9% saline followed by 4% paraformaldehyde (PFA) in

phosphate buffer. We removed the brains and post-fixed them in

PFA for 24 hours before placing them in 20% sucrose until

sectioning. We cut 40 mm thick free-floating sections on a

freezing microtome and immunostained them with primary

antibodies against TH (raised in rabbit, 1:1000; PelFreeze or

raised in sheep, 1:1000; Abcam) and/or specific antisera to

huasyn (raised in mouse, 1:2000; Abcam), to total asyn (raised in

rabbit, 1:500; Chemicon), to asyn phosphorylated on serine 129

(raised in rabbit, 1:2000; Abcam), to early endosome antigen 1

(EEA1; raised in rabbit, 1:500; Abcam). For detection of

antibodies directed against TH or huasyn with the chromogen

3,39-diaminobenzidine (DAB), we incubated the sections in,

respectively, biotinylated goat anti-rabbit or horse anti-mouse

serum (1:200; Vector Laboratories) and then processed them for

a standard peroxidase-based method (Vectastain ABC kit and

DAB kit; Vector Laboratories). For immunofluorescence staining,

either Cy2-, Cy3-, Cy5-conjugated antisera (Jackson Immunor-

esearch Laboratories) or AlexaFluor 488-, AlexaFluor 555-,

AlexaFluor647-conjugated antisera (Molecular Probes) were used.

After staining, we mounted the sections onto gelatin-coated slides

with polyvinyl alcohol medium (Sigma). We analyzed the sections

either with a conventional epifluorescence microscope (Eclipse

80i microscope; Nikon) or with a confocal microscope (Leica

TCS SL model,equipped with GreNe and HeNe lasers or Zeiss

LSM 510, equipped with Ar and HeNe lasers).

Stereological Counting
We quantified the survival of transplanted TH-positive

neurons using Visiopharm Integrator System software (Visio-

pharm A/S, Horsholm, Denmark) and an Olympus BX50

microscope. We included every eight section of striatum

containing grafted cells. Identical quantification parameters were

used in all sampling: objective 40x, fraction = 100%, counting

frame size x = 200 mm and y = 150 mm. Parameters were chosen

to minimize the coefficient of error to ,0.10. The total number

of grafted cells were calculated using the fractionator formula

N = Q * 1/hsf * 1/asf * 1/ssf, where N is the total number of

TH-positive cells, Q is the sum of the cells counted, hsf is the

height sampling fraction, asf is the area sampling fraction, and ssf

is the slice sampling fraction.

Antibody Stripping and Restaining
In order to reprobe previously immunostained sections with

different antibodies, we removed the coverslips from the mounted

sections by shaking the slides in phosphate-buffered saline

overnight at room temperature. Next, we confirmed the absence

of mounting media from the sections. Then, we applied a mild

antibody stripping solution (Re-blot Plus; Millipore) to the

mounted sections for 15 minutes, at 4uC, with gentle shaking, in

order to clear the antibodies bound to the sections during the first

staining. At the end of this period we stopped the reaction with

several washes in phosphate-buffered saline (PBS). We confirmed

the complete removal of signal by examining the sections on both

the epifluorescence and confocal microscopes. Finally, the sections

were gently removed from the slides mechanically, after they were

loosened by PBS washes, and the staining process on free-floating

sections was repeated as indicated above.

Proteinase K Treatment
After a stripping step described above, sections were removed

from the slides and incubated in proteinase K (PK, Invitrogen) at

10 mg/mL in PBS or in PBS alone as a control, at room

temperature for 10 minutes. The sections were then washed in

PBS and re-stained according to the protocol already described in

the ‘‘Immunohistochemistry and microscopy’’ section.

3-D Rendering of the Interaction between Transferred
Huasyn and Endogenous Rat asyn

In order to visualize more clearly that in some instances

huasyn was surrounded by endogenous total asyn in grafted

neurons, we processed selected confocal stacks for 3D-rendering

of the immunofluorescent structures. Prior to 3D-rendering,

boundaries of immunofluorescent structures were emphasized by

thresholding. Briefly, we cropped stacks to 64664 or

1286128 pixels containing the regions of interest (ROI). We

extracted red (huasyn) and green (total asyn) channels,

transformed them to 8-bit greyscale, median filtered (radius 3

pixels), resampled to 2566256 pixels (bicubic smoothing), and

segmented into binary images by thresholding (Adobe CS5,

Photoshop). We then used the resulting stacks of binary images

for 3-D-rendering, using 3-D opacity algorithms (Volocity 6.0,

Improvision).

Statistics
Throughout our paper, the groups of animals are labeled with

‘‘x week/y week’’ where x is the number of weeks between AAV2/

6 injection and grafting and y is the number of weeks between

grafting and perfusion. The group 3 week/1 week contains three

animals, 3 week/2 week contains four animals, 3 week/4 week

contains five animals, 6 week/1 week contains three animals,

6 week/2 week contains four animals and 6 week/4 week contains

seven animals. We report means plus or minus standard error of

the mean. A p value of #0.05 was taken as significant for all

statistical tests, as detailed in the figure legends.

Supporting Information

Figure S1 The severity of the synucleinopathy at the
time of grafting does not affect the survival of dopami-
nergic cells within the graft. Stereology analysis revealed no

difference in the total number of TH-expressing cells in the striatal

graft between animals transplanted at three (n = 6, 25806440) or

six (n = 6, 22966428) weeks post-viral transduction. The error

bars represent SEM.

(TIF)
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Figure S2 Raw data for the quantification of human a-

synuclein transfer in grafted AAV2/6-huasyn injected
rats. This table contains all of the animals analyzed in each time-

related group (delay between AAV2/6-huasyn injection and

grafting, delay between grafting and sacrifice). The columns show

the total number of cells imaged per animal, and among these

cells, the number of cells scored positive for huasyn transfer, i.e.

the number of TH-expressing cells containing a huasyn-positive

punctum.

(TIF)

Figure S3 Controls for the stripping procedure. (A-C)

Confocal planes of a transplanted TH-expressing (green) cell

positive for transferred huasyn (red) punctum (arrowhead). This

cell belongs to a section from an animal from the 3 week/2 week

group, first processed with rabbit antibody directed against TH

and mouse antibody directed against huasyn, detected with the

secondary antibodies Cy2-labeled donkey anti-rabbit and Cy3-

labeled donkey anti-mouse, respectively. (A), (B) and (C) show the

fluorescence signal captured, respectively, on the green, red and

blue channels of the confocal microscope. (D-F) After a stripping

procedure performed according to the protocol described in

Material and Methods, the same section was re-stained with sheep

anti-TH antibody and the same mouse anti-huasyn antibody as

before, then detected with the secondary antibodies Cy5-labeled

donkey anti-sheep and Cy3-labeled donkey anti-mouse, respec-

tively. The same cell as the one depicted in (A-C) was imaged in

the three channels of the confocal microscope (D-F). (D) is the

signal detected in the green channel and shows the absence of

remaining fluorescence from the previous staining. (E) is the signal

in the red channel and shows that after this stripping/re-staining

procedure, the transferred huasyn punctum (arrowhead) can still

be detected. (F) is the signal in the blue channel and demonstrates

that after stripping, the TH can be detected with an antibody

different from the one used in the first staining. Scale bars, 5 mm.

(TIF)

Figure S4 AAV2/6-huasyn injected rats express phos-
phorylated a-synuclein both in the subtantia nigra and
in the striatum. (A-H) Coronal sections from the striatum (A-D)

or the substantia nigra (E-H) of a rat from the 3 week/4 week

group, stained with antibodies directed against a-syn phosphor-

ylated on serine 129 (green, pasyn, A, E), human a-syn (red, B, F)

and TH (blue, C, G). (D) and (H) are the merged pictures of (A),

(B), (C) and (E), (F), (G), respectively. The arrowheads in (A-D)

mark varicosities co-expressing pasyn, huasyn and TH. The insets

in (A-D) and (E-H) show high magnification pictures of,

respectively, a striatal varicosity and nigral dopaminergic neurons

co-expressing the three markers. Abbreviations: St, striatum; SN,

subtantia nigra. The scale bars equal 200 mm.

(TIF)
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