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Abstract

Background: Cortactin is a key regulator of the actin cytoskeleton and is involved in pathogen-host cell interactions.
Numerous pathogens exploit the phagocytic process and actin cytoskeleton to infect host cells. Coxiella burnetii, the
etiologic agent of Q fever, is internalized by host cells through a molecular mechanism that is poorly understood.

Methodology/Principal Finding: Here we analyzed the role of different cortactin motifs in the internalization of C. burnetii
by non-phagocytic cells. C. burnetii internalization into Hela cells was significantly reduced when the cells expressed GFP-
cortactin W525K, which carries a mutation in the SH3 domain that renders the protein unable to bind targets such as N-
WASP. However, internalization was unaffected when the cells expressed the W22A mutant, which has a mutation in the N-
terminal acidic region that destroys the protein’s ability to bind and activate Arp2/3. We also determined whether the
phosphorylation status of cortactin is important for internalization. Expression of GFP-cortactin 3F, which lacks
phosphorylatable tyrosines, significantly increased internalization of C. burnetii, while expression of GFP-cortactin 3D, a
phosphotyrosine mimic, did not affect it. In contrast, expression of GFP-cortactin 2A, which lacks phosphorylatable serines,
inhibited C. burnetii internalization, while expression of GFP-cortactin SD, a phosphoserine mimic, did not affect it.
Interestingly, inhibitors of Src kinase and the MEK-ERK kinase pathway blocked internalization. In fact, both kinases reached
maximal activity at 15 min of C. burnetii infection, after which activity decreased to basal levels. Despite the decrease in
kinase activity, cortactin phosphorylation at Tyr421 reached a peak at 1 h of infection.

Conclusions/Significance: Our results suggest that the SH3 domain of cortactin is implicated in C. burnetii entry into Hela
cells. Furthermore, cortactin phosphorylation at serine and dephosphorylation at tyrosine favor C. burnetii internalization.
We present evidence that ERK and Src kinases play a role early in infection by this pathogen.
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Introduction

Phagocytosis is the process that cells have developed for the
engulfment of particulate material such as apoptotic cells, cell
debris and, also, inert particles. Furthermore, phagocytosis
represents a crucial event that triggers host defense mechanisms
against invading pathogens. Nevertheless, several pathogens have
acquired different strategies to alter these mechanisms to survive
and multiply within host cell, causing infectious diseases [1,2]. The
phagocytic process is initiated by a recognition step in which
ligands on the particle surface bind receptors on the membrane of
host cells [3]. The ligand-receptor interaction leads to actin
cytoskeleton and membrane rearrangements that permit, first,
particle engulfment and, later, particle sequestration into a
phagosome which precedes phagosome maturation into a
phagolysosome [4,5].
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Dynamic remodeling of the actin cytoskeleton is not only
intimately involved in phagocytosis [6] but also in other essential
cellular processes, including cell adhesion and motility [7], vesicle
transport [8,9], apoptosis [10] and endocytosis [11], all of which
require dynamic remodeling of the actin cytoskeleton. There are
numerous actin-associated proteins and several upstream signaling
molecules that work in a coordinated way to control with exquisite
precision the spatial and temporal assembly of actin structures,
which can rapidly change in response to internal and external
signals [12,13]. Proteins of the Arp2/3 complex that function as
nucleators of branched actin filaments are activated by interaction
with members of the Wiskott-Aldrich syndrome protein (WASP)
family and cortactin [14,15]. Initial activation of WASP depends
on its interaction with Rho family GTPases [9]. These multicom-
ponent complexes of Arp2/3-WASP-cortactin are involved in
cellular processes such as cell motility [16], endocytosis [17] and
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phagocytosis [18,19]. Interestingly, some pathogens can regulate
the host actin cytoskeleton during infection [20,21].

Cortactin is a key regulator of the actin cytoskeleton, and it
plays a crucial role in tumor cell invasion [22], ruffles and
lamellipodium formation during integrin-mediated cell adhesion
[23,24] and podosome formation [25]. Cortactin is also an
important component of the endocytic machinery [26]. It has
emerged as a common target of pathogen-host cell interactions.
For example, cortactin has been implicated in the adhesion of
Escherichia coli [27] and in invasion by Shigella, Neisseria, Chlamydia,
Staphylococcus and Listeria. The phosphorylation status of cortactin
has been proposed to differentially regulate the invasion of many
microbial pathogens. Cortactin is also involved in actin-based
motility of many pathogens during their intracellular trafficking
[28].

Cortactin possesses an N-terminal acidic domain (NTA) and F-
actin-binding repeats that activate the Arp2/3 complex to initiate
actin polymerization [29]. Cortactin also has a proline-serine-
threonine-rich region (PST) that contains tyrosine residues critical
for cortactin function. The C-terminal SH3 domain of cortactin
binds various proteins, such as N-WASP proteins [30,31]. The
Verprolin Cofilin Acidic domain (VCA) of WASP members can
also activate the Arp2/3 complex [32]. Theoretically N-WASP,
cortactin and the Arp2/3 complex can form ternary complexes
[32]. Cortactin is phosphorylated by tyrosine kinases (Src, Fer, Syk
and Abl) and serine/threonine kinases (ERK and Pak) in response
to a wide range of stimuli that induce cytoskeletal rearrangement,
including growth factor stimulation, cell adhesion and hyperos-
motic stress [33].

Coxiella burnetiz, the causative agent of human Q fever, is an
obligate intracellular bacterium found in a wide range of hosts,
including livestock and humans. The primary route of infection in
humans is inhalation of contaminated aerosols [34,35]. Infected
animals shed C. burnetiz in their milk, urine and feces, and the
bacteria are dispersed together with amniotic fluids and the
placenta during birthing. These bacteria can survive for long
periods in the environment, since they are highly resistant to heat,
desiccation and common disinfectants.

C. burnetii inhabits mainly monocytes/macrophages but can
infect a wide variety of cultured cell lines w vitro [36]. This
bacterium resides in an acidic parasitophorous vacuole (PV) with
late endosome-lysosome characteristics [37-39]. The PV also
interacts with the autophagic pathway, acquiring autophagosomal
features [37,38,40]. Interestingly, we have shown that PV
biogenesis is regulated by actin and Rho family GTPases [41].

In this report we describe the involvement of cortactin in
C. burneti internalization into HelLa cells, a non-professional
phagocyte cell line. We investigated the role of the Arp2/3-
activating DDW motif in the N-terminal acidic region and of the
SH3 domain at the C-terminus of cortactin during C. bumetii
internalization. We observed that overexpression of cortactin
mutated in the SH3 domain inhibits uptake of the bacterium,
suggesting that the SH3 domain is important for internalization.
We also analyzed the role of cortactin phosphorylation in
internalization. By overexpressing cortactin mutants that are
non-phosphorylatable and that mimic phosphorylation, we show
that cortactin favors C. bumetii internalization in a tyrosine
dephosphorylation- and/or serine phosphorylation-dependent
manner. Furthermore, pharmacological inhibition of Src and
ERK kinases reduce C. bumetii uptake. Our results indicate that
phosphorylation status of cortactin affect internalization of
C. burnetit.
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Methods

Materials

Dulbecco’s Modified Eagle’s Medium (D-MEM), fetal bovine
serum (FBS), penicillin and streptomycin were obtained from
Gibco BRL/Life Technologies (Buenos Aires, Argentina). Vectors
encoding a fusion of green fluorescent protein (GFP) with cortactin
WT (full-length cortactin) or GFP-cortactin 3F (cortactin mutated
in the three tyrosine-phosphorylation sites recognized by Src) were
kindly provided by S. Bourdoulous (Département de Biologie
Cellulaire, Institut Cochin, Université Paris, Paris, France). Rabbit
polyclonal anti-Coxiella antibody against Nine Mile phase II, clone
4 (RSA439) was generously provided by Dr. Robert Heinzen
(Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT,
USA). Secondary antibodies were purchased from Jackson
ImmunoResearch Laboratories, Inc. (West Grove, PA, USA).
Rabbit monoclonal anti-phosphocortactin (Tyr421) antibody was
purchased from Abcam (MA, USA), mouse monoclonal anti-actin
Ab-5 antibody was purchased from BD (Buenos Aires, Argentina),
rabbit anti-phosphoSrc (Tyr416) (Cell Signaling Inc., MA, USA)
and anti-Src antibodies were generously provided by Arlinet
Kierbel (Montevideo Pasteur Institute, Montevideo, Uruguay),
and mouse monoclonal anti-phosphoERK1/2 (Tyr204) and rabbit
polyclonal anti-ERK antibodies were purchased from Santa Cruz
Biotechnology (California, USA). The inhibitors PD98059 and
SU6656 were from Invitrogen (Buenos Aires, Argentina) and
CalBiochem (Darmstadt, Germany), respectively. Protease inhib-
itor cocktail was from Sigma (Buenos Aires, Argentina).

Cell Culture

HeLa cells were grown in DMEM supplemented with 10%
heat-inactivated FBS, 2.2 g/1 sodium bicarbonate, 2 mM gluta-
mine and 0.1% penicillin/streptomycin at 37°C under 5% CO,.

Propagation of Phase Il Coxiella burnetii

Clone 4 phase II Nine Mile strain of C. burnetii bacteria were
provided by Ted Hackstadt (Rocky Mountain Laboratories,
NIAID, NIH, Hamilton, MT, USA) and handled in a biosafety
level II facility. Non-confluent Vero cells were cultured in T25
flasks at 37°C under 5% COj in DMEM medium supplemented
with 5% FBS, 0.22 g/1 sodium bicarbonate and 20 mM Hepes,
pH 7 (MfbH). Cultures were infected with C. burnetui phase II
suspensions for 6 days at 37°C under 5% CO,. After freezing at
—70°C, the flasks were thawed, and the cells scraped and passed
20 times through a 27-gauge needle connected to a syringe. Cell
lysates were centrifuged at 800xg for 10 min at 4°C. The
supernatants were centrifuged at 24,000 xg for 30 min at 4°C, and
pellets containing C. bumetii were resuspended in phosphate-
buffered saline (PBS; 10 mM sodium phosphate, 0.9% NaCl),
aliquoted and frozen at —70°C.

Infection of Hela Cells with Coxiella burnetii

Cells (5x10%) were seeded on sterile glass coverslips placed in
24-well plates and grown overnight in MfbH medium. For
infection, a 5-pl aliquot of C. burnetit suspension was added per well
(Multiplicity of infection: ~20). Cells were incubated for different
lengths of time at 37°C under 5% COsy.

Quantification of Internalized Bacteria by Indirect
Immunofluorescence

To determine the number of internalized bacteria a double
cycle antibody staining protocol was used [42]. Briefly, HeLa cells
were fixed with 2% paraformaldehyde in PBS for 10 min at 37°C,
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Figure 1. The SH3 domain of cortactin is important for C. burnetii internalization. (A) Hela cells were transfected with pGFP-cortactin WT,
GFP-cortactin W22A, a mutant that does not interact with Arp 2/3, or GFP-W525K, a mutant unable to bind and activate targets such as N-WASP.
Transfected cells were infected for 4 h with C. burnetii. Cells were fixed and processed for immunofluorescence with a specific anti-C. burnetii
antibody (see Methods). Cells were analyzed by confocal microscopy. In the merged images (panels d, h, | and p), extracellular C. burnetii are shown in
green and red pseudocolors while intracellular C. burnetii are shown in red pseudocolor. Bars, 10 um. (B) Quantification of C. burnetii internalized by
transfected Hela cells. Results are expressed as means =+ SE of at least three independent experiments. *, P<<0.05. (%), percentage of total number of

bacteria.
doi:10.1371/journal.pone.0039348.g001

washed with PBS and blocked with 50 mM NH,4CI in PBS. After
washing, cells were incubated with rabbit antibody against C.
bumetii (1:1000) and donkey anti-rabbit secondary antibody
conjugated with Cy3 (1:600) in PBS containing 0.5% BSA
(nonpermeabilizing conditions to label extracellular bacteria).
After washing, cells were incubated with the same rabbit antibody
against (. bumetu (1:1000) and a donkey anti-rabbit secondary
antibody conjugated with Cy5 (1:600) in PBS containing 0.5%
BSA and 0.05% saponin (permeabilizing conditions to label total
bacteria: intracellular and extracellular bacteria). Coverslips were
mounted with Mowiol and examined by confocal microscopy. The
intracellular bacteria are expressed as a percentage of the total
number of bacteria per cell.

Cell Transfection

Cells were transfected for 6 h with 2 ug/ml pGFP empty vector
or pGFP plasmids expressing fusions of GFP with wild-type
cortactin (WT) or one of the following mutants: single point
mutants, W22A and W525K; double mutants, S405/418D (SD)
and S405/418A (2A); and triple mutants, Y421/466/482D (3D)
and Y421/466/482F (3F). Cell transfection was carried out using
LipofectamineTM 2000 (Invitrogen, Buenos Aires, Argentina),
according to the manufacturer’s instructions. After 6 h of
transfection, the cells were washed and incubated for 18 h in
MifbH medium at 37°C under 5% COs.

Western Blotting

Hela cells were cultured on 60-mm dishes and infected as
described above for different lengths of time. After the indicated
infection periods, cells were washed with PBS, scraped into ice-
cold lysis buffer (50 mM Tris-HCI, pH 7.2, 1% Triton X-100,
0.5% deoxycholate, 0.1% SDS, 50 mM NaCl, 10 mM MgCl,,
2 mM NagVO,, 10 mM NaF, 0.5 mg/ml DTT, 2 mM EDTA)
supplemented with a protease inhibitor cocktail and kept on ice for
20 min. Lysates were clarified by centrifugation at 2000 xg for
15 min at 4°C. Clarified lysates were transferred to clean tubes,
mixed with Laemmli buffer and boiled for 5 min. The samples
were resolved by SDS-PAGE and the proteins transferred to
nitrocellulose membranes using standard procedures. Membranes
were blocked for 2 h at 4°C in Tween-Tris-buffered saline (TTBS;
0.1% Tween 20, 100 mM Tris/HCI, 0.9% NaCl) supplemented
with 5% BSA, then incubated overnight at 4°C with the
appropriate primary antibodies. The membranes were washed
three times with TTBS, then, incubated for 2 h at room
temperature with appropriate peroxidase-conjugated secondary
antibodies. Membranes were washed again with TTBS and
developed using the ECL Western blotting system (GE Health-
care) according to the supplier’s recommendations. Blotting with
anti-GAPDH or anti-actin antibody was carried out to provide
loading controls. Band densitometry was carried out using Image]J
software (NIH, USA).

Fluorescence Microscopy
HeLa cells were analyzed by confocal microscopy using an
FV1000 Olympus Confocal Microscope and FV 10-ASW 1.7
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Software (Olympus, Japan). Images were processed using Image]
software.

Statistical Analysis
Results were analyzed by the ANOVA test in conjunction with
Tuckey and Dunnett tests.

Results

The SH3 Domain of Cortactin is Important for C. burnetii
Internalization

Cortactin is an F-actin regulatory protein that plays an
important function in various cellular processes such as cell
adhesion, motility and endocytosis. However, its role in phagocy-
tosis has been poorly characterized. Interestingly, cortactin is
recruited to the contact sites made by several pathogens with the
host plasma membrane during infection [28].

In its N-terminal acidic region (NTA), cortactin contains a
short motif called DDW that binds and activates the Arp2/3
complex [29]. This motif is followed by 6.5 tandem repeats of a
37-residue sequence responsible for F-actin binding. It has a Src
homology 3 (SH3) domain at the C-terminus that mediates the
interaction with various proteins, including the Arp2/3-stimu-
lating Wiscott-Aldrich protein N-WASP [43]. These interactions
link actin remodeling to several specific processes. Mutations in
cortactin that abrogate Arp2/3 activation (W22A) or SH3
domain binding function (W525K) have been described [44,45].
To analyze the role of the different cortactin motifs in C. burnetit
internalization, we tested two cortactin mutants: W22A
(20DDW22 motif mutated to 20DDA22), an NTA mutant that
has lost its ability to bind and activate Arp2/3 [29]; and
W525K, an SH3 mutant that is unable to bind certain targets
such as N-WASP [30]. HeLa cells were transfected with
plasmids encoding GFP-cortactin WT, GFP-cortactin W22A
or GFP-cortactin W525K, infected with C. burnetii at 37°C for
4 h, processed for indirect immunofluorescence and analyzed by
fluorescence microscopy (see Methods). We decided to allow 4 h
for C. bumetii internalization in order to detect the intracellular
bacteria with sufficient resolution.

To quantify C. bumetii internalization by immunofluorescence
we used the conventional double cycle antibody staining
protocol for discriminate between extra- and intracellular
bacteria (see Methods). In the Fig. 1A (panels d, h, 1 and p),
extracellular bacteria present double staining (green and red
pseudocolors) while intracellular ones present single staining (red
pseudocolor). The intracellular bacteria are expressed as a
percentage of the total number of bacteria per cell (Fig 1B and
1A, panels ¢, g, k and o). As shown in Fig. 1B, in cells
expressing GIP-cortactin W525K, C. bumetii internalization was
significantly lower than that observed in cells expressing GFP
alone. In contrast, expression of the W22A mutant did not
affect C. bumneti internalization. These results suggest that the
SH3 domain of cortactin is critical for C. bumetii entry into
HeLa cells.
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Figure 2. Cortactin mutants not phosphorylatable by Src and
ERK stimulated and inhibited C. burnetii internalization,
respectively. Hela cells were transfected with pGFP, pGFP-cortactin
WT (wild type) or plasmids encoding GFP fusions with one of the
following cortactin mutants: (A) pGFP-cortactin 3F, a Src non-
phosphorylatable mutant; (B) pGFP-cortactin 3D, which mimics
cortactin phosphorylated by Src; or (C) pGFP-cortactin 2A, an ERK
non-phosphorylatable mutant, or pGFP-cortactin SD, which mimics
cortactin phosphorylated by ERK. Transfected cells were infected for 4 h
with C. burnetii, fixed and processed for indirect immunofluorescence to
determine intracellular C. burnetii (see Methods). Cells were analyzed by
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confocal microscopy. Results are expressed as means = SE of at least
three independent experiments. *, P<<0.05; **, P<<0.01; ***, P<<0.001.
(%), percentage of total number of bacteria.
doi:10.1371/journal.pone.0039348.9g002

A Non-tyrosinephosphorylatable Cortactin Mutant

Stimulates C. burnetii Internalization

Post-translational modifications such as phosphorylation at
tyrosine and serine residues at PST region of cortactin regulate
its cellular function. Src kinases and other Tyr kinases phosphor-
ylate human cortactin predominantly at three sites i vitro, Tyr421,
Tyr470 and Tyr486 (corresponding to Tyr421, Tyr466 and
Tyr482 in murine cortactin), while ERK and PAK phosphorylate
Ser405/Ser418 and Serl13, respectively [23,26,30,46-48]. In
addition to that, c-Met and Fer kinases can phosphorylate
cortactin on tyrosine residues [47,49]. The combined mutation
of Tyr421, Tyr466, and Tyr482 abolishes tyrosine phosphoryla-
tion of cortactin in cells under various conditions [46,49]. Thus,
these Src phosphorylation sites have been the focus of functional
characterization. At the same time, several mass spectrometry-
phosphoproteomic studies have identified additional phosphory-
lated tyrosine residues [50,51]. A number of individual phospho-
tyrosine sites have been reported independently in different cell
types and in response to diverse stimuli, but their regulation and
function remain to be investigated. A validated tool to study the
role of phosphorylation is to use non-phosphorylatable and
phospho-mimetic mutants. To determine whether tyrosine phos-
phorylation plays a role in internalization, HelLa cells were
transfected with a plasmid encoding GFP-cortactin =3I
(Y421,466,482F), which encodes a cortactin that cannot be
phosphorylated by Src on tyrosines. Transfected HeLa cells were
infected with C. burnetii at 37°C for 4 h, processed for indirect
immunofluorescence and analyzed by fluorescence microscopy. As
shown in Fig. 2A, the levels of C. bumetii internalization were
similar in cells expressing either GFP (control) or GFP-cortactin
WT, but significantly higher in cells expressing GFP-cortactin 3F.
In contrast, when HelLa cells were transfected with a plasmid
encoding pGFP-cortactin 3D (Y421,466,482D), which mimics
cortactin phosphorylated by Src, internalization of C. bumetii was
similar to that in cells expressing GFP-cortactin WT (Fig. 2B).
These results suggest that C. bumetii internalization is favored when
cortactin is dephosphorylated.

A Non-serinephosphorylatable Cortactin Mutant Inhibits
C. burnetii Internalization

Since the cellular function of cortactin is also regulated by
phosphorylation of its serine residues, we studied whether serine
phosphorylation is important for €. burnetiz internalization. HeLa
cells were transfected with pGFP, pGFP-cortactin WT, pGFP-
cortactin 2A or pGIFP-cortactin SD. Cortactin 2A (S405,418A)
cannot be phosphorylated by ERK, while cortactin SD
(S405,418D) mimics the effects of ERK phosphorylation. As
shown in Fig. 2C, expression of the ERK-phosphorylation mimic
of cortactin led to internalization similar to that in cells expressing
GFP or cortactin WT. Interestingly, the cortactin mutant not
phosphorylatable by ERK inhibited internalization, indicating
that cortactin phosphorylation on serine residues is important for
internalization. These results suggest that serine phosphorylation
of cortactin regulates internalization of C. burnetit during infection.

Src and ERK Kinases are Involved in C. burnetii

Internalization
Given that dynamic phosphorylation of tyrosine and serine
residues in cortactin is involved in C. burnetii uptake and that
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Figure 3. Src and ERK kinases are involved in C burnetii
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doi:10.1371/journal.pone.0039348.9003
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cortactin is a substrate of kinases of the Src and ERK families, we
analyzed directly whether these kinases are involved in C. burnetit
internalization. HeLa cells were treated during infection with Src
kinase inhibitor SU6656 or with PD98059, an inhibitor of MEK
kinases which are upstream activators of ERK kinases [52,53].
Fig. 3A shows extracellular bacteria (panels a, ¢ and e) and total
bacteria (panels b, d and f) in untreated or inhibitor-treated cells.
Quantification of internalized bacteria is shown in Fig. 3B. Both
inhibitors significantly blocked internalization. Similar inhibition
of the C. bumetii uptake was observed during infection of a
macrophage cell line treated with the MEK kinase inhibitor (Fig.
S1A and B). These results suggest that kinases of the Src and ERK
families are involved in C. bumetii internalization.

C. burnetii Induces Phosphorylation of Cortactin on
Tyr421 During Infection

Several pathogens have been found to modify the phosphory-
lation status of cortactin during their interaction with host cells
[28]. To determine whether C. bumetii causes cortactin phosphor-
ylation during infection, we examined the phosphorylation status
of Tyr421 after different infection periods. HeLa cells were
infected with C. burnetit for different periods of time, and clarified
lysates were analyzed by SDS-PAGE and Western blotting using
an antibody that specifically recognizes cortactin phosphorylated
on Tyr421. Fig. 4A shows that the maximal level of phospho-
Tyr421 cortactin was observed at 1 h of infection with live
bacteria. Similar cortactin phosphorylation levels were observed
during infection of a phagocytic cell (Fig. S2B). In contrast, the
level of this form of phosphorylated cortactin did not change
significantly when the infection was carried out with heat-killed C.
bumetii (Fig. 4B). These results suggest that C. bumetii induces
phosphorylation of cortactin on Tyr421 early during infection.

Src and ERK Kinases are Activated During C. burnetii
Infection

Considering that cortactin is phosphorylated on tyrosine
residues and that it is a substrate of Src kinase, we reasoned that
this enzyme may be activated during C. burnetii infection. To
investigate this possibility, clarified lysates of Hela cells infected
with C. burnetii were analyzed by SDS-PAGE and Western blotting
using an antibody that specifically recognizes phospho-Src
(pTyr416), the activated form of the kinase. Fig. 5 shows the
levels of activated Src and total Src. Src was activated early during
infection, within 15 min, after which the level of activated enzyme
decreased to basal levels. This result suggests that Src kinase is
activated early during C. burnetii-host cell interaction.

Cortactin can also be regulated by phosphorylation of serine
residues and ERK is one kinase involved in this reaction. To
investigate whether ERK is activated during C. burneti infection,
lysates of infected HeLa cells were analyzed by SDS-PAGE and
Western blotting using an antibody that specifically recognizes
phosphorylated ERK. As shown in Fig. 6, ERK was activated at
15 min of infection. Similarly, the phosphorylation in ERK was
observed during infection of a phagocytic cell (Fig. S2A). This
result suggests that ERK, similar to Src kinase, is activated early
during C. burneti-host cell interaction.

Discussion

Bacterial pathogens manipulate the host cell cytoskeleton to
avoid phagocytosis, to invade and/or to become mobile in the host
cell cytoplasm. They often interact with actin filaments by
modulating the activity of different actin-interacting effectors in
the host. One such effector is cortactin, an actin-binding protein
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Hela cells incubated in the absence of C. burnetii. Data were analyzed
with ImageJ software. The ratio between phosphorylated and total Src
levels is shown. Results are expressed as means * SE of at least three
independent experiments. *, P<<0.05. (RU), relative units.
doi:10.1371/journal.pone.0039348.9005

that plays a crucial role in the regulation of actin dynamics.
Cortactin has been implicated in the infection process of several
microbial pathogens [28].

The present study contributes to understanding the role of
cortactin in bacterial pathogenesis. We provide evidence that the
SH3 domain and serine phosphorylation of cortactin are involved
in signal transduction pathways that support the internalization of
avirulent C. bumnetti into non-phagocytic cells, whereas tyrosine
phosphorylation of cortactin suppresses this internalization. We
also show that Src and ERK kinases are activated during the initial
stages of C. bumetti infection.

Cortactin stimulates actin polymerization by binding, via its N-
terminal domain, the Arp2/3 complex, or by binding, through its
C-terminal SH3 domain, N-WASP, a well-known activator of
Arp2/3 [28,30]. We report here that expression in HeLa cells of
the cortactin mutant W525K, which carries a mutation in the C-
terminal SH3 domain, significantly inhibited C. bumnetiz internal-
ization (Fig. 1), suggesting an important role for this domain in
bacterial entry. We hypothesize that avirulent C. bumetii requires
minor modification of the actin cytoskeleton at the plasma
membrane to be internalized, so we propose that SH3 domain-
mediated recruitment of N-WASP (and then Arp2/3) is sufficient
to stimulate actin assembly and bacterial uptake. Our results are
similar to those observed in the formation of the pedestal-like
structure during FE. coli infection. Indeed, expression of the
cortactin mutant W525K significantly reduced the number of
pedestals induced by enteropathogenic Escherichia coli (EPEC) or
enterohemorrhagic F. coli (EHEC) in HeLa cells [27,54]. In
addition, cell motility can be regulated by cortactin through its C-
terminal SH3 domain independently of the presence of the N-
terminal portion which is consistent with the ability of the SH3
domain on its own to stimulate N-WASP and actin polymerization
wn vitro [30]. Cortactin cleavage by calpain has also been shown to
be important for cell migration [55]. Cells expressing a calpain-
resistant cortactin  showed reduced migration and increased
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Figure 6. Tyrosine phosphorylation of ERK kinase during C
burnetii infection. Lysates of Hela cells infected with C. burnetii for
different lengths of time were analyzed by SDS-PAGE and Western blot
using anti-phospho-ERK (P-ERK) and anti-ERK antibodies. 0 min: control
Hela cells incubated in the absence of C. burnetii. Data were analyzed
with ImagelJ software. The ratio between phosphorylated and total ERK
levels is shown. Results are expressed as means = SE of at least two
independent experiments. *, P<<0.05. (RU), relative units.
doi:10.1371/journal.pone.0039348.9g006

membrane protrusion. This phenotype was reverted by expression
of a calpain-resistant cortactin with the W525K mutation, which
suggests that the SH3 domain of cortactin is required for the
stimulation of membrane protrusions.

N-WASP activation depends on the phosphorylation status of
serine and tyrosine residues in the C-terminal domain of cortactin
[30]. Expression of a non-serine-phosphorylatable cortactin
mutant impairs pedestal formation in cells infected with EPEC
or EHEC [54]. These results suggest that ERK phosphorylation of
cortactin contributes to pedestal formation. In HeLa cells
expressing the same cortactin mutant we observed significant
inhibition of bacterial uptake (Fig. 2). Thus, similarly to pedestal
formation induced by E. coli, entry of C. bumetii into HeLa cells
requires serine phosphorylation of cortactin. Our conclusion is also
supported by the observations that ERKI1/2 kinases were
transiently activated early during HeLa cell infection and then
later deactivated (Fig. 6), and that HeLa cell treated with the
inhibitor of MEK-dependent ERKI1/2 activation showed a
reduction in C. burneti internalization (Fig. 3).

In our experimental model, expression of a non-tyrosine-
phosphorylatable cortactin mutant increased C. burneti internali-
zation (Fig. 2). However, pedestal formation induced by EPEC
was reduced in Hela cells expressing the same mutant [54,56].
Moreover, we observed cortactin phosphorylation on Tyr421 at
1 h of infection with C. burnetit, after which the phosphorylation
returned to basal levels (Fig. 4). Similar kinetics of tyrosine
phosphorylation-dephosphorylation were observed in HeLa cells
infected with pre-activated EHEC [57]. In vitro experiments have
shown that cortactin phosphorylated by Src does not interact with
and activate N-WASP, which leads to inhibition of pedestal
formation [30,57]. Based on these results, we can speculate that
during C. burneti infection of HeLa cells, cortactin must be
dephosphorylated on its tyrosine residues in order to interact with
N-WASP, leading to actin remodeling and bacterial internaliza-
tion. At the same time, tyrosine dephosphorylation of cortactin
Increases its actin-crosslinking activity in vitro [58]. Therefore,
cortactin dephosphorylated on its tyrosine residues may cross-link
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small actin filaments, forming a discrete actin meshwork close to
the bacterial attachment site, which then allows C. bumnetu
internalization.

Cortactin can be tyrosine-phosphorylated not only by Src
kinases but also by Abl kinases [59]. Abl kinases can be activated
by autophosphorylation and by phosphorylation by Src family
kinases [60,61]. We observed that Src kinase was activated at
15 min of infection and then the levels of activated enzyme
decreased to basal levels (Fig. 5), while cortactin was phosphor-
ylated on Tyr421 at 1 h of infection. We also observed that the
pharmacological Src inhibitor decreased C. burnetit internalization
(Fig. 3). While these observations may be due to the direct action
of Src kinase on cortactin, they may also be due to the action of
Abl kinase, activated by Src. Internalization of Chlamydia trachomatis
also involves cortactin, and this protein is phosphorylated at 1 h of
infection by Abl kinases but not Src [62]. Shigella entry into host
cells also requires activation of Abl kinases [63]. Therefore we
speculate that during C. bumetii infection, Abl kinases are activated
to phosphorylate cortactin. On the other hand, the strong effect of
the chemical inhibition of Src kinase could indicate that other Src
substrates apart from cortactin might participate in C. burnetii
entry.

We show here that during C. bumetii infection, Src is transiently
activated and then inactivated, and cortactin is tyrosine-phos-
phorylated and then dephosphorylated. We detected that C.
burnetit entry induces the tyrosine phosphorylation of cortactin at
early time points, with a maximum peak around 60 min (Fig. 4).
In addition to that, we found that the 3F cortactin mutant with
non-phosphorylatable tyrosines enhances C. bumetii entry at 4 h
after infection (Fig. 2). This seems to indicate that the tyrosine
phosphorylation of cortactin is required at the initial steps while it
would inhibit entry at later time points. These processes are similar
to those observed during infection of gastric epithelial cells by
Helicobacter pylori. 'This pathogen promotes an early but transient
phosphorylation of cortactin. The infected cells become scattered
and elongated, and this phenotype depends on Src phosphoryla-
tion of CagA (a protein secreted by a type IV secretion system),
which mnactivates c-Src and leads to cortactin dephosphorylation
by an unknown mechanism [64]. It is tempting to speculate that C.
bumetii internalization occurs by a mechanism similar to that of H.
plori. To our knowledge, C. bumetiz, H. pylori and EHEC are the
only three pathogens known to induce dephosphorylation of
cortactin during host cell infection. Recently, H. pylor: has been
shown to induce cortactin phosphorylation on serines in a CagA-
independent manner, and this form of cortactin stimulates actin
rearrangement and cell elongation [65]. We show here that
expression of a cortactin mutant lacking phosphorylatable serines
inhibited C. bumetiz internalization, which suggests that serine
phosphorylation of cortactin is necessary for C. burnetu entry.

THP-1 monocytes infected with virulent C. bumetii exhibit
intense membrane protrusions associated with major actin
cytoskeleton reorganization, while infection with avirulent bacteria
induced a few membrane folds without significantly affecting cell
morphology [66]. Although it was not the focus of the present
study, we think that the membrane folds stimulated by avirulent C.
bumetii result from a modest actin cytoskeleton rearrangement that
facilitates bacterial uptake. Meconi and collaborators also showed
that actin cytoskeleton reorganization is associated with tyrosine
phosphorylation of the Src family kinases Hck and Lyn very early
during infection of THP-1 cells with virulent, but not avirulent, C.
bumetii [67]. In the present study, using an anti-phospho-Src
antibody that recognizes several members of the Src family,
including Hck and Lyn, we found that Src was activated early
during infection with avirulent bacteria. Meconi et al. also found,
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using an anti-phosphoTyr monoclonal Ab, that virulent C. burneti,
but not avirulent bacteria, stimulate the tyrosine phosphorylation
of several proteins. Using a similar experimental strategy, we
observed a significant labeling of proteins with masses around
85 kDa at 1 h of HeLa infection with avirulent C. burneti (data not
shown). Cortactin migrates as a doublet of 80 and 85 kDa in SDS-
PAGE [68,69]. We cannot rule out the possibility that the
differences between our results and those of Meconi et al. are due
to the different cell types used.

In conclusion, our results indicate that serine phosphorylation of
cortactin and its SH3 domain are involved in a signal transduction
mechanism that favors C. burnetit uptake, while tyrosine phosphor-
ylation suppresses this uptake. Our results suggest that a complex
series of events occurs during C. bumetii internalization into non-
phagocytic cells. Early after infection, Src and ERK kinases may
phosphorylate unknown substrates, perhaps other kinases such as
Abl that in turn phosphorylate tyrosine residues in cortactin. This
may regulate an early step in internalization. At a later stage,
tyrosine dephosphorylation and serine phosphorylation of cortac-
tin take place, which regulates a later step of internalization. In this
way, tyrosine phosphatases and serine kinases from the host cell
and/or C. bumetti regulate the phosphorylation status of cortactin
to favor C. bumnetti entry into the host cell. Thus, the results
reported here indicate that dynamic phosphorylation of cortactin
1s important for C. bumeti internalization during infection.

Supporting Information

Figure S1 ERK kinase is involved in C. burnetii
internalization. (A) RAW macrophages were incubated for
1 h at room temperature with 0.05% DMSO (control) or 15 uM
PD 98059 (MEK-ERK inhibitor). Then the cells were infected for
2 h with C. burnetu in the presence of the inhibitor. Cells were fixed
and processed for indirect immunofluorescence using a specific
anti-C. burnet antibody (see Methods). Bars, 10 um. (B) Quanti-
fication of C. bumeti internalized by treated RAW macrophages.
Results are expressed as means = SE of three independent
experiments. *** P<<0.01. (%), percentage of the total number of
bacteria.

(TTF)

Figure 82 Tyrosine phosphorylation of cortactin and
ERK proteins during C. burnetii infection. Lysates of RAW
macrophages infected with C. bumetii for different lengths of time
were analyzed by SDS-PAGE and Western blot using antibodies
against phosphoTyr421-cortactin (P-cortactin), phospho-ERK (P-
ERK) or GAPDH. 0 min: control RAW macrophages incubated
in the absence of C. bumetii. Data were analyzed with Image]
software. The ratio between phosphorylated ERK and GAPDH
(A), and phosphorylated cortactin and GAPDH (B) levels are
shown. The results are representative of two independent
experiments. (RU), relative units.

(TIF)
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