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Abstract

Radiation therapy aims to kill cancer cells with a minimum of normal tissue toxicity. Dying cancer cells have been proposed
to be a source of tumor antigens and may release endogenous immune adjuvants into the tumor environment. For these
reasons, radiation therapy may be an effective modality to initiate new anti-tumor adaptive immune responses that can
target residual disease and distant metastases. However, tumors engender an environment dominated by M2 differentiated
tumor macrophages that support tumor invasion, metastases and escape from immune control. In this study, we
demonstrate that following radiation therapy of tumors in mice, there is an influx of tumor macrophages that ultimately
polarize towards immune suppression. We demonstrate using in vitro models that this polarization is mediated by
transcriptional regulation by NFkB p50, and that in mice lacking NFkB p50, radiation therapy is more effective. We propose
that despite the opportunity for increased antigen-specific adaptive immune responses, the intrinsic processes of repair
following radiation therapy may limit the ability to control residual disease.
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Introduction

There exists an array of cytotoxic therapies that can dramat-

ically reduce the tumor to only a few cells with clonogenic

potential. Unfortunately for cancer patients, tumors can recur

from these small pockets of residual disease. The emergence of

metastases from residual microscopic disease is a major source of

mortality in cancer patients. In animal models of cancer therapy, it

is becoming clear that immune responses play a role in the success

of cytotoxic therapies [1,2,3], and that the outcome following

cytotoxic therapies can be improved by enhancing adaptive

immune responses [1,3,4]. By causing the death of cancer cells,

radiation therapy has been proposed to provide both tumor

antigen and endogenous immune adjuvants to initiate de novo

tumor-specific immune responses.

The majority of cytotoxic cancer therapies result in cancer cell

death through the induction of apoptosis. If the phagocytic

capacity of tumor macrophages is overwhelmed, apoptotic cells

can progress to secondary necrosis and result in induction of pro-

inflammatory cytokines from macrophages [5]. Catastrophic death

of cancer cells can result in release of endogenous immune

adjuvants that can alter immune responses, such as heat shock

proteins, calreticulin and HMGB1 [2,6]. In addition, a range of

studies have demonstrated that it may be possible to select

a cytotoxic agent that promotes immunogenic, non-apoptotic cell

death, or redirects the mechanism of cell death [2,7]. Studies

demonstrate that expression of TLR4, a key receptor for

immunological adjuvants, is critical both for vaccination with

tumor cells killed via radiation or chemotherapy, and the efficacy

of cytotoxic therapy in vivo [8]. These data fit a model where

adjuvants released from dying cancer cells may play a role in

establishing functional anti-tumor immune responses.

Despite the potential immunogenicity of endogenous adjuvants,

the outcome of adjuvant release is heavily influenced by the

differentiation of cells in the environment. Alternative (M2)

activation of macrophages results in a distinct response to adjuvant

compared to classically activated (M1) macrophages. M1 macro-

phages respond to adjuvant with secretion of pro-inflammatory

cytokines such as TNFa, whereas M2 macrophages respond to

adjuvant with secretion of anti-inflammatory cytokines such as IL-

10 [9]. Exposure to apoptotic cells cause macrophages to secrete

a range of anti-inflammatory cytokines, including IL-10 and TGF-

b [5,7,10]. Thus, radiation-induced death of cancer cells may

result in M2 activation via the effect of apoptotic cells, such that

any subsequent release of adjuvants from cancer cells undergoing

secondary necrosis will cause immune suppression. The suppres-

sive response of M2 macrophages is a key feature of inflammatory

resolution, which serves to repair inflammatory destruction

following control of infections by laying down supportive matrix,

establishing vascular structures, and terminating adaptive immune

responses [11,12]. Importantly, these functions are commonly

observed in tumor macrophages, which drive angiogenesis and

adaptive immune suppression in the tumor [13,14,15,16].
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For these reasons it is critical to understand the tumor

environment during cytotoxic therapies to optimize the contribu-

tion of immune cells to cancer control. We demonstrate that

established tumors display a limited response to radiation therapy

and that treatment is followed by a significant influx of M2-

differentiated macrophages into the tumor stroma. We demon-

strate that NFkB p50 provides a transcriptional mechanism for

polarization of macrophages cells in the presence of irradiated

cancer cells. We demonstrate that in vivo radiation therapy is more

effective in mice defective in M2 polarization though deletion of

NFkB p50. We propose that the polarization of tumor macro-

phages is a limitation for adaptive immune control of residual

disease and may be a target to enhance the efficacy of cytotoxic

therapies.

Materials and Methods

Animals and Cell Lines
The Raw264.7 monocyte/macrophage cell line [17] and the

4T1 mammary carcinoma cell line [18] were obtained from the

ATCC (Manassas, VA). The Panc02 murine pancreatic adeno-

carcinoma cell line [19], (C57BL/6) was kindly provided by Dr

Woo (Mount Sinai School of Medicine, NY). 6–8 week old

C57BL/6 mice and Balb/c were obtained from Charles River

Laboratories (Wilmington, MA) for use in these experiments.

NFkB12/2 mice were obtained from The Jackson Laboratory

(Bar Harbor, ME). All animal protocols were approved by the

Earle A. Chiles Research Institute IACUC (Animal Welfare

Assurance No. A3913-01).

Antibodies and Reagents
The FACS antibodies CD11b, Gr1 and IA (MHC class II) were

purchased from Ebioscience (San Diego, CA). Ultrapure LPS was

purchased from Invivogen (San Diego, CA). Western blotting

antibodies used include Arginase I (BD biosciences, San Jose, CA),

iNOS (Cayman Chemical Corporation, Ann Arbor, MI), GAPdH,

anti-mouse-HRP, and anti-rabbit-HRP (all Cell Signaling Tech-

nology, Danvers, MA). Rat anti-F4/80 was purchased from AbD

Serotec (Raleigh, NC), rabbit anti-Von Willebrand Factor (VWF)

was purchased from Abcam, and the secondary antibodies were

anti-Rabbit Alexa Fluor 488 and anti-Rat Alexa Fluor 568

(Invitrogen).

Radiation Therapy of Tumors
Tumors were innoculated s.c. in the right leg below the knee at

a dose of 26105 Panc02 or 56104 4T1 cells and allowed to

establish for 14–17 days before initiation of treatment. Three daily

20 Gy treatment fractions were given using an Elekta Synergy

linear accelerator (Atlanta, GA) with 6 MV photons with 1 cm

bolus and incorporating a half beam block to minimize dose to the

torso.

Isolation and Analysis of Cancer Cells and Tumor
Infiltrating Cells

For clonogenic analysis of cancer cells, the tumor was dissected

into approximately 2 mm fragments followed by agitation in

1 mg/mL collagenase (Invitrogen), 100 mg/mL hyaluronidase

(Sigma), and 20 mg/mL DNase (Sigma) in PBS for 1 hr at room

temperature. The digest was filtered through 100 mm nylon mesh

to remove macroscopic debris. Serial dilutions of tumor cells were

seeded to 6-well tissue culture plates in media containing 60 mM 6-

thioguanine and colonies were counted after 7 days. The serial

dilution and the colony number were used to calculate the number

of clonogenic cancer cells in the original tumor. For FACS analysis

of tumor infiltrating immune cells, cells suspensions were stained

with antibodies specific for CD11b, IA (MHC class II) and Gr1 as

previously described [20]. The proportion of each infiltrating cell

type was analyzed on a BD LSRII. FACS sorting of tumor

macrophages was performed as previously described [20] using

a BD FACSAria Cell Sorter to greater than 98% purity. The

morphology of the sorted cell populations was determined by

cytospin followed by DiffQuick staining.

Immunohistology
Tumors were fixed in formalin overnight, cyropreserved by

equilibration in 30% sucrose then flash frozen in OCT. 10 mM

cryosections were cut and every 5th section was H&E stained for

orientation. Neighboring sections were stained with primary

antibodies specific for F4/80 and Von Willebrand Factor (VWF)

and binding detected with Alexa Fluor 488 or Alexa Fluor 568

conjugated secondary antibodies, respectively. Sections were

mounted in the presence of DAPI (Invitrogen, Carlsbad, CA) to

stain nuclear material. Images were acquired using a Zeiss LSM

510-meta confocal microscope at the Oregon Medical Laser

Center.

Gene Expression Microarrays
Total RNA was prepared from FACS sorted CD11b+IA+ cells

using a PrepEase RNA Spin Kit (Affymetrix, Cleveland, OH). The

Affymetrix Microarray Core Facility at Oregon Health and

Sciences University (Portland, OR) prepared DNA probes and

performed Microarray Analysis. Gene expression data has been

uploaded to GEO (Accession number GSE34206). Data was

analyzed using GeneSifter (Geospiza Inc, Seattle, WA).

Western Blotting
Cells were lysed in RIPA buffer and denatured in SDS loading

buffer containing b2-mercaptoethanol, electrophoresed on 10%

SDS-PAGE gels and transferred to nitrocellulose. Blocked blots

were probed overnight at 4uC with primary antibodies followed by

HRP-conjugated secondary antibodies. Binding was detected

using a Pierce SuperSignal Pico Chemiluminescent Substrate

(Thermo Fisher Scientific, Rockford, IL) and exposure to film.

Preparation of Bone Marrow Macrophages
Bone marrow cells isolated from long-bones of mice were

cultured for a total of 7 days in complete media containing 40 ng/

ml MCSF (Ebioscience), with additional growth media provided

after 3 days of culture. Adherent cells were harvested and

macrophage differentiation confirmed by flow cytometry for

CD11b, F4/80, Gr1 and IA.

Cancer Cell-macrophage Co-cultures
Panc02 or 4T1 cells were irradiated with a 10 Gy dose using

a cesium source, and 16104 cancer cells were co-cultured with

16104 Raw264.7 cells or 26104 primary bone marrow macro-

phages in replicate wells of 96-well u-bottomed plates for 24 hours

before treatment with 100 ng/ml LPS. Supernatants were

collected after a further 48 hours and tested for cytokine levels

by ELISA using matched antibody pairs specific for TNF and IL-

10 (R&D Systems, Minneapolis, MN) against a standard curve of

recombinant cytokine.

Statistics
Kaplan and Meier survival curves were compared using a log-

rank test. The gene expression phenotypes in each group were

compared using analysis of variance (ANOVA). The difference in

Tumor Macrophages Limit Radiation Therapy
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cytokine levels between specific groups was compared using

Student’s T-test.

Results

To investigate the tumor immune environment following

radiation therapy, we developed a model of in vivo radiation

therapy in immunocompetent mice. C57BL/6 mice challenged

s.c. in the leg with Panc02 pancreatic adenocarcinoma were

allowed to establish for 14 days. Mice were then treated with

20 Gy 63 focal radiation to the leg over 3 days. Treatment of the

mouse with the leg extended encompassed the tumor, but the half

beam block ensured rapid dose drop-off and the treatment field

did not include the tumor draining subiliac lymph node. In this

model, radiation therapy had a statistically significant, but limited

effect on the growth of the tumor and on the survival of tumor-

bearing mice. To investigate the efficacy of radiation therapy on

cancer cells, tumors were harvested from mice bearing Panc02

tumors 1 day or 7 days following the final dose of radiation and

cancer cell viability determined by clonogenic assay (Figure 1A).

There was a significant decrease in the clonogenic capacity of the

cancer cells 1 day following the final radiation dose that was

sustained at seven days, while the untreated tumors continued to

grow. These data suggest that the eventual tumor progression

results from an aggressive outgrowth of these residual viable

cancer cells within the post-radiation environment. Macrophages

are a significant component of the tumor environment, and have

an important role in the response to dying cells [5,7,10] and in

directing the repair of damaged tissues [11,12]. To examine the

consequence of radiation-induced cancer cell death on tumor

macrophages, we harvested tumors from mice bearing Panc02

tumors 1 day or 7 days following the final dose of radiation and

performed flow cytometry on tumor-infiltrating cells. The pro-

portion of CD11b+ cells is significantly increased in tumors 1 day

following the final radiation dose (Figure 1B) and further increased

at 7 days following radiation. This increase in CD11b+ cells

represents infiltration of multiple myeloid populations into the

tumor. To assess macrophage infiltration, Panc02 tumors were

harvested 7 days following the last dose of radiation and sections

were stained for F4/80+ macrophages. F4/80+ macrophages were

found in the stromal area of the untreated tumor and pre-

dominantly clustered around vascular structures (Figure 1C),

though patchy areas of increased macrophage infiltration were

visible when examining the entire untreated tumor (Figure S1).

Following radiation there is an expansion in the stromal area

readily detectible in the H&E staining (Figure 1C, image i-ii),

associated with an increase in F4/80+ macrophages throughout

the stroma (Figure 1C, image iii-iv). Analysis of the entire tumor

demonstrates that this macrophage infiltration occurs throughout

the treated tumor (Figure S1). These data demonstrate that there is

a significant increase in macrophages in the tumor in response to

radiation therapy and that these macrophages infiltrate into tumor

stroma.

To investigate changes in the phenotype of tumor macrophages

following radiation therapy, we FACS sorted tumor macrophages

from Panc02 tumors (Figure 2). We have previously shown that we

can distinguish mature tumor macrophages from immature

myeloid and MDSC populations by expression of Gr1 and IA

(MHC class II) [20]. To isolate these sub-populations, we first

gated CD11b+ cells in the untreated or irradiated tumors

(Figure 2A, image i), then sorted the CD11b+IA+ macrophage

population and the CD11b+Gr1hi MDSC population (Figure 2A,

image ii). Cytospins of the sorted populations demonstrates that

the CD11b+Gr1hi MDSC predominantly have a granulocyte

morphology and the CD11b+IA+ cells have a macrophage

morphology in both the untreated (Figure 2A, image iii) and

irradiated tumors (Figure 2A, image iv). RNA was purified from

CD11b+IA+ macrophages from untreated or irradiated tumors 1

day or 7 days following radiation therapy and Gene Expression

Microarray analysis was performed. The gene expression pattern

confirmed the isolated macrophage phenotype; there was abun-

dant expression of CD14, F4/80, and low or absent expression of

B cell, T cell and endothelial markers (Figure 2B). As has

previously been described for tissue macrophages [21], tumor

macrophages express CD11c [21,22]. Following radiation therapy

expression of CD11c does not change, indicating that there is no

change in potential contaminating dendritic cells (CD11c+ higher

expression) or neutrophils (CD11c+ lower expression) and no

dramatic changes in inflammatory stimuli in the tumor [23].

Clustering analysis identified 4 major patterns of gene expression.

Pattern 1 represented genes that were essentially unchanged

between time points, and included the majority of genes. Pattern 2

represented genes that were downregulated at both time points

following radiation, pattern 3 represented genes that were

upregulated immediately following radiation, but declined on

day 7, and pattern 4 represented genes that were upregulated at

day 7. These genes are summarized in Figure S2. Analysis of

regulated genes (Patterns 2–4) by ontology identified predictable

patterns in the regulated genes. Downregulated (pattern 2) genes

included those that were related to proliferation and to cell division

(Figure S2), and this links closely with genes that were upregulated

within a day of radiation (pattern 3), where genes involved in the

response to DNA damage, stress and cell death are highly

represented. Genes upregulated late involved a range of immune

and inflammatory response genes. Since the DNA damage and

anti-proliferative effects of radiation therapy were predicted, we

examined more closely those genes that would not be predicted to

be involved in the direct response to radiation. Following radiation

macrophages downregulate a number of genes involved in

extracellular matrix development, including sparc, a number of

collagen genes (col1a1, col1a2, col3a1, col6a1) and biglycan (bgn)

(Figure S2, image i), suggesting that macrophage support of stroma

may be transiently suspended following radiation therapy.

Amongst those genes transiently upregulated following radiation,

macrophages upregulate ccl2 and ccl7 (Figure S2, image ii), each of

which have been associated with recruitment of macrophages to

infectious and wound sites via the receptor CCR2 [24,25]. At this

day 1 post-radiation time point, there is possible evidence of a pro-

inflammatory macrophage response, as indicated by upregulation

of cd80, tnfsf9 (41BBL) and tnf, though expression of these genes

declines by day 7 post-radiation. Interestingly, at the day 1 time-

point, there is upregulation of mertk and gas6, key genes mediating

macrophage phagocytosis of dying cells [26]. By 7 days following

radiation, we see upregulation of ccr2 (Figure S2, image iii), which

may represent chemotaxis in response to earlier upregulation of

ccl2 and ccl7. In addition, at this time point macrophages

upregulate tlr2 and tlr4, potentially indicating heightened re-

sponsiveness to endogenous adjuvants released by dying cells. It is

of note that ccr2, tlr2 and tlr4, along with cd43, are the genes

causing a high Z-score for the tumor necrosis factor biosynthetic

process ontologies at day 7 following radiation (Figure S2, image

iii). These changes suggest that significant inflammatory changes

in tumor macrophages occur following radiation therapy that may

influence the tumor environment.

Despite these fluctuations in gene expression, the tumor

macrophages maintain or increase a polarized M2 phenotype,

shown by their expression of M1 and M2 macrophage markers

(Figure 2C) as defined by Murray and Wynn [22]. Importantly,

Tumor Macrophages Limit Radiation Therapy
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the tumor macrophages do not express the M1 marker iNos and

express substantial levels of the M2 marker arginase I, which

significantly increases following radiation therapy (Figure 2C) and

has been shown to inhibit T cell function [16,27]. To validate the

microarray data, we FACS sorted CD11b+IA+ and CD11b+Gr1hi

populations from Panc02 tumors 7 days following radiation

therapy, or from tumors left untreated, and prepared protein

lysates from purified cells. Western blotting of these lysates

demonstrated increased expression of arginase I in macrophages

following radiation therapy, and undetectable expression of iNOS

(Figure 2C, image ii). To confirm the lack of iNOS expression in

tumor macrophages, we sorted CD11b+IA+ and CD11b+Gr1hi

populations from 4T1 tumors and western blotted these lysates

alongside lysates of Raw264.7 macrophages cultured alone or with

irradiated 4T1 cells (Figure S3). In these experiments, CD11b+IA+

tumor macrophages, but not CD11b+Gr1hi tumor neutrophils

express arginase I and neither population expresses detectible

iNOS. Importantly, Raw264.7 macrophages decrease their iNOS

expression and increase Arginase I expression, indicating a shift

from M1 to M2 phenotype. These data indicate while there may

be an initial shift towards pro-inflammatory macrophage activa-

tion as indicated by TNFa and CD80 upregulation, macrophages

within the tumor retain M2 differentiation and that by day 7

following radiation the pro-inflammatory window has resolved.

The tumor environment 7 days following radiation may be more

suppressive to adaptive immune responses due to the increased

number of M2 macrophages with increased expression of arginase

I.

These data imply that it is these M2-differentiated macrophages

that will be exposed to any immunological adjuvants that are

released from dying cancer cells following radiation therapy. To

evaluate the response of tumor macrophages to adjuvants, we

Figure 1. Radiation therapy of tumors. a) C57BL/6 mice were challenged with 26105 Panc02 s.c. in the right leg and mice received 3 daily doses
of 20 Gy focal radiation to the leg beginning on day 14 (RT) or were left untreated (NT). i-ii) 1 day or iii-iv) 7 days following the final radiation dose,
tumors were harvested, digested and clonogenic assays performed. b) One and seven days following the final radiation dose, tumors were harvested
and tumor-infiltrating cells determined by FACS analysis. Graphs show the mean and standard error of tumor infiltrating CD11b+ cells in Panc02
tumors, and include data from two replicate experiments. c) Panc02 tumors were harvested for histology 7 days following the final radiation dose.
Images show representative regions of neighboring sections from tumors receiving NT (i & iii) or RT (ii & iv) that were i-ii) H&E stained or iii-iv)
underwent immunofluorescence staining with antibodies specific for VWF and F4/80, and detected with antibodies conjugated to AF488 (Green) and
AF568 (Red), respectively. Nuclear material was counterstained with DAPI (Blue) and sections were imaged by confocal microscopy.
doi:10.1371/journal.pone.0039295.g001
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FACS sorted CD11b+IA+ tumor macrophages from untreated

4T1 or Panc02 tumors and measured their cytokine response to

LPS stimulation. Stimulation of purified CD11b+IA+ cells with

LPS causes secretion of IL-10, but not TNFa (Figure 3A). To

investigate whether newly recruited macrophages would be

polarized in the tumor environment following radiation therapy,

we incubated bone marrow-derived macrophages alone, with live

4T1 cancer cells or with irradiated 4T1 cancer cells for 24 hours

before stimulation with LPS. Co-culture with irradiated cancer

cells increased IL-10 secretion following LPS stimulation

(Figure 3B, image i). Similarly, Raw264.7 monocyte/macrophages

are only polarized to produce IL-10 following co-culture with

Figure 2. Gene expressionmicroarray of tumor macrophages following radiation. a) Panc02 tumors were harvested 1 and 7 days following
the final radiation dose and i) gated CD11b+ cells were FACS sorted according to expression of ii) Gr1 and IA. Sorted populations of CD11b+Gr1hi and
CD11b+IA+ cells from iii) NT or iv) RT tumors were tested for morphology by cytopsin and Diff-Quik staining. RNA was prepared from sorted
CD11b+IA+ cells and Affymetrix gene expression microarray analysis was performed. Gene expression profiles were analyzed for the expression of b)
lineage markers and c) M1 and M2-associated markers. d) CD11b+Gr1hi and CD11b+Gr1lo cells were sorted as in a) and lysates prepared from sorted
cells for western blotting. The image represents 3 western blots cropped and positioned above each other to show detection of Arginase I, iNos and
GAPDH. Gene array analysis uses RNA collected from purified macrophages isolated in 2 replicate experiments. Each gene list is sorted by gene
expression level and includes an individual key showing the gene intensity scale for that group.
doi:10.1371/journal.pone.0039295.g002
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irradiated cancer cells (Figure 3B, image ii). These data

demonstrate that tumor-associated macrophages are polarized

towards an M2 phenotype, and that dying cancer cells generated

by radiation therapy may cause M2 polarization of newly

recruited macrophages.

Endogenous T cell responses play a significant role in tumor

control by radiation therapy, but are generally insufficient to cure

tumors in the absence of additional immunotherapy [1,3,4]. A

number of investigators have characterized a transient improve-

ment in the immune environment of the tumor following radiation

therapy [28,29]; however, our data suggests that tumor macro-

phages will work against adaptive immune cells by release

immunosuppressive cytokines in response to endogenous adju-

vants. For these reasons we hypothesized that preventing

macrophages from becoming M2 and suppressing adaptive

immunity would improve the efficacy of radiation therapy.

Classically, pro-inflammatory TNFa gene expression in response

to TLR ligation occurs via signal transduction incorporating

NFkB heterodimers. To investigate whether NFkB p50 was

involved in redirection of the macrophage response, we prepared

bone marrow macrophages from wild-type mice or from NFkB1

knockout mice that are deleted for the p105 precursor protein of

NFkB p50. We demonstrate that in the presence of irradiated 4T1

cells, bone marrow macrophages from wild-type mice secrete IL-

10 in response to LPS stimulation, while NFkB1 knockout mice

secrete TNFa (Figure 4). As seen in purified tumor macrophages

(Figure 3A) cytokine production following co-culture is dependent

on LPS stimulation, indicating that dying cells provide a differen-

tiation signal with macrophage polarization becoming evident

following stimulation. These data demonstrate macrophage de-

viation to IL-10 production requires the transcriptional activity of

NFkB p50.

To determine the consequence of redirected macrophage

polarization in vivo, we established Panc02 tumors in wild-type or

NFkB1 knockout mice and treated these mice with radiation

therapy. Despite radiation therapy, all tumors eventually recur in

wild-type mice (Figure 5A). However, in NFkB1 knockout mice,

tumors are controlled by radiation. Survival in mice bearing

Figure 3. Cytokine responses of tumor macrophages. a) CD11b+IA+ cells were sorted from i) 4T1 tumors or ii) from Panc02 tumors and treated
in vitro with 100 ng/ml LPS, or left untreated (NT). 24 hours later supernatants were collected and ELISA tested for secretion of IL-10 and TNFa. b) i)
Bone marrow-derived macrophages were incubated alone or with untreated or irradiated 4T1 cancer cells for 24 hours before stimulation with
100 ng/ml LPS. Supernatants were collected and ELISA tested for secretion of IL-10 and TNFa after a further 48 hours. ii) Raw264.7 macrophages were
incubated alone or with an equal number of untreated or irradiated 4T1 cancer cells (10 or 20 Gy) for 24 hours, then treated with 100 ng/ml LPS and
supernatants collected and ELISA tested for secretion of IL-10 after a further 48 hours. Graphs are representative of multiple replicate experiments.
doi:10.1371/journal.pone.0039295.g003

Tumor Macrophages Limit Radiation Therapy
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untreated tumors is not different between wild-type or NFkB1

knockout mice, but is significantly different following radiation

therapy (wtNT vs. wtRT p,0.001; wtNT vs. NFkB12/2NT NS;

NFkB12/2NT vs. NFkB12/2RT p,0.005; wtRT vs. NFkB12/

2RT p,0.001) (Figure 5B). To determine whether tumor

treatment resulted in endogenous immune protection, surviving

mice were rechallenged with Panc02 or irrelevant 3LL tumors.

Both Panc02 and 3LL grew in naı̈ve NFkB12/2 mice. NFkB12/2

mice that were cleared of their primary tumor by radiation therapy

were protected against rechallenge with Panc02 tumors, but

remained susceptible to 3LL tumors (Figure 5C). These data

demonstrate that mice bearing Panc02 tumors that were cleared by

radiation therapy also developed an endogenous tumor antigen-

specific response and long-term protective immunity to the primary

tumor. Together, these data support the hypothesis that tumor

macrophage polarization limits the efficacy of radiation therapy,

and demonstrate that expression of NFkB1 limits the efficacy of

radiation therapy in vivo.

Discussion

These data demonstrate that tumors can recur despite

significant reductions in the clonogenic potential of cancer cells

following hypofractionated radiation therapy (Figure 1). Treat-

ment failure is associated with an influx of macrophages into the

tumor site (Figure 1) that exhibit an immune suppressive and M2

phenotype by 7 days post radiation treatment (Figure 2). We

demonstrate that adjuvant causes M2 polarized macrophages in

the tumor to secrete the immune suppressive cytokine IL-10

(Figure 3), and that that polarization of macrophages by dying

cancer cells occurs through a transcriptional switch via regulation

of NFkB p50 (Figure 4). The consequence is that radiation therapy

is more effective in mice deficient in NFkB p50 (Figure 5). These

data demonstrate that the established tumor environment is not

optimal for adaptive immunity, and that while cytotoxic therapy

may release tumor antigens and endogenous adjuvants, the

consequence may be further antigen-specific immune suppression

at the tumor site. It is important to note that while the untreated

tumor has M2 differentiated macrophages, immediately following

radiation therapy there may be a transient upregulation of M1

signals that resolves as the tumor transitions to repair. However,

while the macrophages recruited to the tumor following radiation

therapy would not be expected to be pre-polarized to either M1 or

M2 phenotypes, they enter an environment already populated

with M2 macrophages and on entry the newly recruited

macrophages are able to interact with dying cells. That the

expression of M2 markers is sustained or increases following

radiation therapy suggests that the irradiated tumor environment

drives M2 differentiation of these newly recruited cells. The result

is M2 differentiation of both new and existing tumor macrophages.

Radiation alone rarely results in tumor-specific immunity capable

of destroying untargeted tumors – the elusive abscopal effect.

However, immunotherapy in combination with radiation therapy

have shown abscopal activity in animal models [4]. It is possible

that well-timed T cell targeted immune interventions can over-

come the negative environment, for example by increased

infiltration of the tumor by T cells that produce inflammatory

cytokines [20]. The experiments described here suggest that

alternative therapeutic interventions targeting macrophage differ-

entiation will be complimentary and can be exploited to optimize

adaptive immune control of residual disease.

These data have implications for the integration of radiation

therapy and immunotherapies in the clinic. While many

immunotherapies are effective in animal models, their success

commonly depends on treatment very early in tumor develop-

ment. In transplantable tumor models it takes at least 10 days to

establish a suppressive environment made up of suppressive

macrophages and regulatory T cells [30,31]. Potent immunother-

apeutic antibodies are no longer effective if tumors have time to

establish their immune suppressive environment beyond 10 days

[20,32,33]. This scenario is relevant for treatment of cancer

patients since tumors accumulate an array of immune regulatory

features as part of their evolution into clinically relevant

malignancies. Despite the increased immune suppression that we

describe following radiation, there may be a transient window of

classical inflammation in the tumor before inflammatory resolu-

tion is established and the tumor is repaired. Over the course of

radiation, patients have been shown to develop tumor antigen-

specific immune responses that were not detectable before

treatment [34]. In addition, in animal models, radiation therapy

is less effective if endogenous CD8 T cell responses are eliminated

[1,3]. Radiation has been shown to render the tumor site

transiently more attractive to effector T cells [28,29] and the

combination of radiation with multiple infusions of tumor-specific

effector T cells can combine to alter the wound repair phenotype

of the tumor providing an extended mechanism of tumor control

[35]. Thus, in the face of an established, suppressive tumor it may

Figure 4. NFkB in macrophage polarization. a) Macrophages were derived from the bone marrow of wild-type (wt) or NFkB12/2 mice and
incubated alone or with 10 Gy irradiated 4T1 cancer cells for 24 hours, then treated with 100 ng/ml LPS and ELISA tested for secretion of i) TNFa and
ii) IL-10 after a further 48 hours.
doi:10.1371/journal.pone.0039295.g004
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be necessary to use multiple aggressive therapies for effective

immune control of residual disease.

The specific roles of the classical M1 cytokine TNFa as opposed

to the M2 cytokine IL-10 response is not clear; each cytokine may

simply be an indicator of broader macrophage differentiation.

However, TNFa has been shown to inhibit tumor angiogenesis

[36], synergize with radiation therapy [37], and a spike in serum

TNFa was associated with one documented case of abscopal

tumor regression [38]. By contrast, IL-10 feeds back on

macrophages to increase alternative macrophage differentiation

[39], and the progressive induction of IL-10 in tumor infiltrating

cells during tumor growth has been shown to suppress anti-tumor

adaptive immune responses [40]. IL-10 can be effectively blocked

with specific antibodies to the cytokine and to the IL-10 receptor,

and blockade of IL-10 has been shown to result in more effective

immune control of tumors [41].

The experiments described here identify tumor macrophages as

potential therapeutic targets to increase immune control of

residual disease following radiation therapy. In animal models,

local control by radiation therapy has been improved by

preventing macrophage influx following radiation by total body

irradiation [42] or by antibodies specific to Mac-1 [43]. Rather

than depleting macrophages, it has also been proposed that

interfering with the polarization of tumor macrophages is

a potential therapeutic strategy [44]. While this study focuses on

the contribution of macrophage polarization to tumor control by

radiation therapy, the ubiquity of NFkB in transcriptional

regulation means that other cell types may play a role in the

outcome of the in vivo radiation therapy experiments. Ongoing

work in the laboratory aims to identify he contribution of other

cells, such as T cells and endothelial cells in NFkB1 deficient mice.

The accumulation of NFkB p50 and the formation of

transcriptionally regulatory p50 homodimers appear to play an

important role in the resolution of inflammation. While clearance

of bacterial infections is not altered by the absence of NFkB1,

NFkB p50 deficient mice exhibit excessive and prolonged

inflammation following bacterial clearance [45], and the conse-

quence of inflammatory injuries is more severe in the absence of

NFkB p50 [46]. Saccani et al. demonstrated that macrophages

isolated from tumors have increased expression of NFkB p50, and

accumulate NFkB p50 homodimers in the nucleus [47]. NFkB

p50 homodimers can bind to the same NFkB sites in the TNFa
promoter as conventional NFkB heterodimers, but result in

transcriptional inhibition rather than transcriptional activation

[48]. By contrast, the same complexes promote transcription of IL-

10 [48]. Our data showing that NFkB p50 deficient macrophages

Figure 5. Radiation therapy of tumors in NFkB1 knockout mice. a) Wild-type (wt) or NFkB12/2 C57BL/6 mice were challenged with 26105

Panc02 s.c. in the right leg and mice received 3 daily doses of 20 Gy focal radiation to the leg beginning on day 14 (RT) or were left untreated
(NT).Tumor leg diameter was measured 36per week. b) Survival curves of mice in a replicate experiment treated as in a) where mice were euthanized
at a leg diameter exceeding 12 mm. c) Proportion of tumors growing following s.c. injection of 3LL or Panc02 in NFkB12/2 naı̈ve mice or NFkB12/2

mice that were cured of their primary tumor with radiation therapy (RT).
doi:10.1371/journal.pone.0039295.g005

Tumor Macrophages Limit Radiation Therapy

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e39295



sustain M1 differentiation even in the presence of irradiated

cancer cells is consistent with data from Saccani et al. with M2

tumor macrophages [47], and interestingly also with data from

Porta et al. with tolerized macrophages [49]. It is interesting that

tolerized macrophages closely resemble M2 macrophages

[49,50,51], and it is possible that M1 and M2 differentiation

may be temporally regulated in addition to regulation via

inflammatory mediators and regulatory cytokines [52]. Our data

fits a model where the tumor environment post-cytotoxic therapy

is a site of inflammatory resolution, and we propose that this

process of inflammatory resolution is part of an endogenous

process of repair that can protect the tumor site for eventual

recurrence. In the response to infections or following administra-

tion of sterile irritants, preventing immune resolution results in

increased pathology. Thus, we propose that sustaining M1

differentiation, or creating a non-resolving environment in the

tumor will increase destruction at the inflammatory site. In cancer

therapy, increased destruction at a focused target site could be

considered a benefit.

Supporting Information

Figure S1 Margin to margin overview of tumor histol-
ogy following radiation therapy. C57BL/6 mice were

challenged with 26105 Panc02 s.c. in the right leg and mice

received 3 daily doses of 20 Gy focal radiation to the leg beginning

on day 14 (RT) or were left untreated (NT). Tumors were

harvested for histology 7 days following the final radiation dose.

Images show neighboring sections from tumors receiving NT or

RT that were H&E stained or underwent immunofluorescence

staining with antibodies specific for VWF and F4/80, and detected

with antibodies conjugated to AF488 (Green) and AF568 (Red),

respectively. Nuclear material was counterstained with DAPI

(Blue) and sections were imaged by confocal microscopy. Multiple

digital images were taken from the tumor margin to the opposite

margin and digitally stitched to recreate a margin-to-margin

overview of a representative tumor.

(TIF)

Figure S2 Cluster analysis was performed using Gene-
sifter software to identify four patterns of gene expres-

sion. Gene expression Pattern 1 was little changed between

samples. Within gene expression Pattern i) 2, ii) 3, and iii) 4, only

those genes characterized as present and that demonstrate

significant differences in gene expression (ANOVA) were included

in ontology analysis (top). Groups are sorted by Z-score. Gene lists

within these clusters (bottom) are limited to those showing

significant differences in gene expression (ANOVA) and greater

than 1.5 fold changes in gene expression. Final gene lists are sorted

by peak expression and the top 80 genes are shown (where

sufficient numbers matching these criteria are present), separated

into groups of 20 genes per column with an individual key showing

the gene intensity scale for that group.

(TIF)

Figure S3 Macrophage polarization from iNOS to
Arginase expression by irradiated cancer cells a) Tumor

infiltrating cells from 4T1 tumors were harvested and i) gated

CD11b+ cells were FACS sorted according to expression of Gr1

and IA. Sorted populations of ii) CD11b+Gr1hi and iii)

CD11b+IA+ cells were used to prepare protein lystates. a) Western

blot of protein lysates from sorted tumor myeloid cells (lanes 3 and

4) alongside lysates from Raw264.7 macrophages incubated alone

or with equal numbers of irradiated 4T1 cells (lanes 1 and 2).

Lanes were loaded with equal protein and probed with antibodies

specific for Arginase I, iNOS and GAPdH. The image represents 3

western blots cropped and positioned above each other to show

detection of Arginase I, iNos and GAPDH.

(TIF)
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