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Abstract

Epstein-Barr virus (EBV) induces an uncoordinated S-phase-like cellular environment coupled with multiple prophase-like
events in cells replicating the virus. The EBV encoded Ser/Thr kinase BGLF4 has been shown to induce premature
chromosome condensation through activation of condensin and topoisomerase II and reorganization of the nuclear lamina
to facilitate the nuclear egress of nucleocapsids in a pathway mimicking Cdk1. However, the observation that RB is
hyperphosphorylated in the presence of BGLF4 raised the possibility that BGLF4 may have a Cdk2-like activity to promote S-
phase progression. Here, we investigated the regulatory effects of BGLF4 on cell cycle progression and found that S-phase
progression and DNA synthesis were interrupted by BGLF4 in mammalian cells. Expression of BGLF4 did not compensate
Cdk1 defects for DNA replication in S. cerevisiae. Using time-lapse microscopy, we found the fate of individual HeLa cells was
determined by the expression level of BGLF4. In addition to slight cell growth retardation, BGLF4 elicits abnormal
chromosomal structure and micronucleus formation in 293 and NCP-TW01 cells. In Saos-2 cells, BGLF4 induced the
hyperphosphorylation of co-transfected RB, while E2F1 was not released from RB-E2F1 complexes. The E2F1 regulated
activities of the cyclin D1 and ZBRK1 promoters were suppressed by BGLF4 in a dose dependent manner. Detection with
phosphoamino acid specific antibodies revealed that, in addition to Ser780, phosphorylation of the DNA damage-
responsive Ser612 on RB was enhanced by BGLF4. Taken together, our study indicates that BGLF4 may directly or indirectly
induce a DNA damage signal that eventually interferes with host DNA synthesis and delays S-phase progression.
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Introduction

Epstein-Barr virus (EBV) is a human herpesvirus which infects

most of the human population worldwide. EBV is the causal agent

of infectious mononucleosis and is highly associated with human

malignant diseases, such as Burkitt’s lymphoma, Hodgkin’s

disease, nasopharyngeal carcinoma (NPC), T cell lymphoma and

gastric carcinoma [1]. EBV becomes latent in long-lived B cells

after primary infection. Following various stimuli, the latent virus

can be reactivated through the expression of two immediate early

transactivators, Zta and Rta, which turn on a cascade of lytic gene

expression and EBV replication [2].

EBV has evolved various strategies to optimize the host cell

environment for viral replication and virion production and

achieve a sophisticated balance between the use of host and viral

machineries during lytic replication. The expression of S-phase

cyclins, cyclin E and cyclin A, is up-regulated and leads to an

increase in the associated S-phase Cdk activity and RB hyperpho-

sphorylation in cells replicating EBV. Inhibition of S-phase Cdk by

chemical Cdk inhibitors blocks the expression of immediate early

and early genes and prevents lytic cycle progression, suggesting

that S-phase Cdk activity is required for efficient initiation of lytic

EBV replication [3]. However, it is worth noting that cellular

DNA replication is blocked at the G1/S boundary upon EBV lytic

cycle induction [4]. It has been speculated that the S-phase-like

environment may provide materials for viral DNA replication and

competition from host DNA replication is blocked by viral factors.

In addition, a DNA damage response (DDR) is elicited during lytic

EBV replication by activation of the ATM checkpoint signaling

pathway, which has been proved to be required for the progression

of virus replication [5]. On the other hand, repetitive reactivation

of EBV was shown to promote genomic instability and tumor

progression in NPC cells, suggesting viral factors may affect cell

growth control or cell cycle progression [6].

EBV BGLF4 is a proline-dependent Ser/Thr protein kinase,

which belongs to the family of conserved herpesvirus protein

kinases (CHPKs). CHPKs are encoded by all herpesviruses and

include UL13 of HSV-1, UL97 of HCMV, BGLF4 of EBV, U69

of human herpesvirus 6 (HHV6) and ORF36 of Kaposi sarcoma-

associated herpesvirus (KSHV) [7,8]. CHPKs are highly con-

served with Cdks in the catalytic domain and were first shown to

phosphorylate target sites of Cdk1 of cellular elongation factor

1delta (EF-1d) [9]. As a result, there is the possibility that CHPKs
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may mimic Cdk1 activity in virus-infected cells at certain stages

[7,8]. A number of substrates of Cdk1 were later shown to be

phosphorylated by BGLF4, including p27KIP1, MCM4, conden-

sin, Topo II, lamin A/C. BGLF4 phosphorylates and induces the

degradation of Cdk inhibitor p27KIP upon lytic EBV replication,

contributing to the establishment of an S-phase cellular environ-

ment, which is favorable for viral replication [10]. BGLF4 was

shown to inactivate the MCM4-6-7 complex-associated DNA

helicase through MCM4 phosphorylation and slow down the

growth of HeLa cells, indicating that BGLF4 may have an

inhibitory effect on host DNA replication [11]. Previously, we

found that BGLF4 alone can induce cellular chromosome

condensation through phosphorylation of condensin and activa-

tion of Topoisomerase II (Topo II) [12]. Moreover, BGLF4

participates in the regulation of efficient nuclear egress through

phosphorylation of lamin A/C and disassembly of the nuclear

lamina, mimicking Cdk1 activity at prophase [13]. However,

BGLF4 actually has a broader substrate specificity than Cdk1. In

an EBV-protein array phosphorylation assay, 10 of the 21 BGLF4

substrates were found to be substrates for Cdk1/cyclin B, while 10

of 12 Cdk1/cyclin B substrates were BGLF4 substrates [14]. Our

previous study also pointed out that BGLF4 targets more residues

on lamin A/C than does Cdk1 [13]. Conceivably, because BGLF4

activity is not inhibited by Cdk inhibitor, BGLF4 may be involved

in more cellular regulation than Cdk1 [10,13]. On the other hand,

the Cdk-like function of CHPKs was examined recently by

another group. It was found that beta- and gamma-, but not

alpha-, CHPKs, share Cdk-like activity and phosphorylate RB at

the Cdk4 and Cdk2 targeting residues, Ser780, 807 and Thr821,

and promote bud growth in temperature-sensitive mutant yeasts in

a compensation assay [15]. It was proposed by the authors that

BGLF4 may also possesses Cdk-2 like activity to promote S-phase

progression through RB phosphorylation [15].

In addition to Cdk-like activity, BGLF4 alone is capable of

inducing H2AX phosphorylation in the absence of other viral

proteins or agents inducing DNA damage [16]. More recently,

BGLF4 was shown to phosphorylate and activate TIP60, a histone

acetyltransferase regulating chromatin remodeling and responsive

to DDR [17]. The BGLF4-mediated activation of TIP60 is

required for autophosphorylation of ATM and expression of lytic

genes, suggesting BGLF4 plays an essential role in the upstream

process of DNA damage signaling, to facilitate viral replication.

Here we aimed to clarify the contradictory observations

regarding BGLF4-induced phenomena and to determine the

effects of BGLF4 on cell growth and cell cycle control in

mammalian and yeast systems. The outcome of the BGLF4 kinase

activity on cellular chromosome stability also was monitored. We

show that BGLF4-elicited RB hyperphosphorylation does not lead

to cell cycle progression or the activation of E2F1 responsive

promoters. In addition to Ser780, BGLF4 induces the phosphor-

ylation of RB at Ser612, which is an indication of DDR. In

addition, BGLF4 elicits the formation of micronuclei in NPC-

TW01 derived cell lines, suggesting that BGLF4 induces a DNA

damage signal and causes the phosphorylation of RB at Ser612

that eventually interferes with host DNA synthesis and delays S-

phase progression.

Results

BGLF4 Interferes with Cellular DNA Synthesis and S-
phase Progression

In our previous studies, we found that BGLF4 induces

prophase-like events, including unscheduled chromosome con-

densation and disassembly of nuclear lamina, independent of the

cell cycle stage [12,13]. In addition, BGLF4 was found to repress

the activity of DNA helicase MCM4-6-7, implying that expression

of BGLF4 does not favor cellular DNA synthesis [11]. In contrast,

a recent study reported that EBV BGLF4 and its homologues in

beta and gamma-herpesviruses elicit RB hyperphosphorylation

and promote bud growth of a temperature-sensitive mutant yeast

cdc28-13, suggesting BGLF4 has the potential to advance S-phase

progression [15]. Here, we aimed to clarify the paradoxical effects

of BGLF4 on cell growth and cell cycle progression.

The DNA content of cells with BGLF4 expression was first

analyzed in HeLa cells transiently transfected with GFP, GFP-

BGLF4 or GFP-K102I (kinase dead mutant) plasmid. To ensure

the levels of ectopically expressed BGLF4 in HeLa cells were

comparable to cells replicating the virus, we compared the

expression levels in BGLF4-expressing HeLa cells to those in

various reactivated EBV positive cell lines, including NA, which is

an EBV converted NPC-TW01 cell line [18], EVER8, which is a

cell line of 293 background with tetracycline inducible Rta and

Akata strain EBV [13], 293-Maxi, which is a 293 derivative cell

line harboring the EBV bacmid Maxi [19] and B22, which is a

tetracycline inducible BGLF4 expressing cell line. BGLF4 is

expressed at a similar level in these cell lines (Figure S1). Then

GFP-positive cells were selected by FACS. Consistent with our

previous studies, the S-phase cell population of gated GFP-

BGLF4-expressing cells increased by approximately 10%

(Figure 1A, left panels) [12]. We wondered whether differential

expression levels of BGLF4 may lead to different extents of

chromosome condensation. Therefore, the DNA contents of cells

with various BGLF4 expression levels were analyzed by FACS

according to the intensity of GFP fluorescence. Cells with high

GFP-BGLF4 expression levels had a salient increase (about 20%)

of S-phase DNA content, compared to those cells expressing GFP

or GFP-K102I (Figure 1A, middle panels). On the contrary, the S-

phase population of cells with low BGLF4 expression levels was

not obviously different from those expressing GFP or GFP-K102I

(Figure 1A, right panels), suggesting that cells with high BGLF4

expression levels accumulate in S-phase, while cells can proliferate

with moderate BGLF4 expression.

BGLF4 Interferes with Nascent Cellular DNA Synthesis
and Cell Cycle Progression

About 40% of cells with high BGLF4 expression levels

accumulate at S-phase (Figure 1A), which seems to be conflict

with the fact that BGLF4-mediated suppression of MCM4-

MCM6-MCM7 DNA helicase activity inhibits cellular DNA

replication. To monitor the effect of BGLF4 on DNA synthesis,

HeLa cells transfected with BGLF4 or K102I or vector plasmids

were subjected to a thymidine incorporation assay to measure

nascent DNA synthesis during 4 to 24 h post transfection

(Figure 1B). There was a BGLF4 dose-dependent decrease of

[14C] thymidine incorporation in transfected cells, suggesting that

cellular DNA replication was repressed by BGLF4 expression,

especially cells with high BGLF4 expression.

To elucidate whether BGLF4 blocks or only delays the S-phase

progression, we checked the number of cells that can enter G2/M.

To this end, HeLa cells expressing GFP, GFP-BGLF4 or GFP-

K102I were treated with the microtubule assembly interfering

agent nocodazole (Noc) for 20 h at 24 h post transfection to arrest

cell cycle progression at the G2/M boundary (Figure 1C). Total

cells with protein expression as indicated were subjected to FACS

analysis. More than 50% of HeLa cells with GFP or GFP-K102I

expression reached 4 N DNA content after nocodazole treatment

at 44 h post transfection. On the contrary, most of the GFP-

BGLF4-expressing cells accumulated in G1 or S phase, indicating
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that these cells cannot bypass G1/S transition or complete S-phase

to reach the G2/M boundary in the presence of BGLF4

expression. Thus, the increase of the cell population with DNA

contents between 2N and 4N in Figure 1A could be an outcome of

the BGLF4-induced repressive effect on DNA synthesis. The

increased G1 population observed in Figure 1C may be due to the

additional 20 h of BGLF4 expression, suggesting BGLF4 also

interferes with G1/S transition. We suggest the suppression of

G1/S transition could be due to the blocking of MCM-helicase

activity, which is required for the initiation of DNA replication,

whereas the retardation of S phase progression may be caused by

BGLF4-induced premature chromosome condensation.

BGLF4 Cannot Compensate for Cdk Activity for S Phase
Progression in Temperature-sensitive Mutant Yeasts

Both BGLF4 and its homolog HCMV UL97 have been

reported recently to promote the budding of the temperature-

sensitive (ts) yeast cdc28-13 under asynchronous culture conditions

at the non-permissive temperature [15]. To determine whether

BGLF4 displays S-phase like Cdk activity in yeast, we monitored

the function of BGLF4 in the yeast system. The yeast cell cycle is

controlled by a single Cdk with various cyclin partners. Yeast Cdk

promotes bud emergence, spindle pole body duplication, DNA

replication, spindle formation and cell division [20]. Its homo-

logues in prokaryotic and mammalian cells have been identified

and proved to compensate the kinase activity in the ts mutant yeast

strain cdc28-4. Cdc28-4 is arrested at G2/M phase and shows

budded morphology at the non-permissive temperature [21]. The

other Cdk1 ts strain, cdc28-13, is appropriate for a budding assay

because it is arrested at G1 in a non-budded form at the non-

permissive temperature [21]. To determine further whether

BGLF4 can compensate for the Cdk defect in S. cerevisiae cdc28-

4, human Cdc2, BGLF4- or K102I-transformed cdc28-4 were

spotted onto YPD plates and cultured at the permissive (23 or

30uC) or non-permissive (38uC) temperature for 2 days. In contrast

to Cdc2-expressing yeasts, BGLF4- and K102I- expressing yeasts

did not grow at the non-permissive temperature, indicating that

BGLF4 could not provide the Cdc28 activity for cell cycle

progression in budding yeasts (Figure 2A and 2B). Similarly, UL97

could not compensate yeast Cdc28 activity in the compensation

assay (data not shown). Therefore we wondered whether BGLF4

Figure 1. BGLF4 induces the accumulation of the S-phase cell population and represses [14C]-thymidine incorporation into HeLa
cells. (A) Asynchronous HeLa cells were seeded and transfected with GFP-BGLF4, GFP-K102I expressing plasmids or control GFP vector. At 24 h post
transfection, cells were harvested and stained with propidium iodide. The cell cycle profile was analyzed by FACS according to the GFP intensities (left
panels). Cells with high GFP expression (middle panels) were further subgrouped from GFP low cells (right panels). The statistics of cell cycle profiles
of GFP expressing cells were plotted. Cells with high GFP-BGLF4 expression showed significant accumulation in S-phase (middle panel). An asterisk (*)
indicates a statistically significant difference from vector control cells (P,0.05). Two independent experiments were performed and one of the results
is shown. (B) At 4 h post transfection, HeLa cells were labeled with [14C]-thymidine for newly synthesized DNA. At 20 h post transfection, [14C]-
thymidine was measured using a liquid scintillation counter. An asterisk (*) indicates a statistically significant difference from vector control cells
(P,0.05). Reproducible data were observed in at least three independent experiments. (C) The M-phase synchronous protocol for GFP-BGLF4 or GFP-
K102I expressing cells is indicated. HeLa cells were seeded and transfected with GFP-BGLF4, GFP-K102I or GFP vector expressing plasmids. At 24 h
post transfection, cells were treated with 200 ng/ml Nocodazole (Noc). After 20 h of Noc treatment, cells were harvested and stained with propidium
iodide. Cell cycle profiles of whole cell populations were analyzed by FACS. Two independent experiments were performed.
doi:10.1371/journal.pone.0039217.g001
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and UL97 may exhibit only partial Cdk1 activity to promote the

advances of bud emergence, as reported, but not DNA replication

in yeast. Indeed, bud growth is not absolutely coordinated with the

initiation of DNA replication [22]. To determine more precisely

whether BGLF4 can promote G1/S transition, we carried out the

yeast budding assay in cdc28-13 cells treated with hydroxyurea

(HU), which can block the DNA synthesis, ensuring that most of

the cells are in G1 phase. Compared to Cdc2- or UL97-expressing

yeast cells, bud growth of BGLF4-transformed yeast cells did not

burgeon after the release of non-permissive temperature (38uC)

(Figure 2C and 2D). We then analyzed the DNA content of cdc28-

13 cells with different kinases by FACS after HU treatment

(Figure 2E). After the treatment, over 80% of cdc28-13 cells were in

a non-budded form and arrested at the G1/S boundary. Although

HA-UL97 was immunoprecipitated by HA antibody less effec-

tively, leading to the kinase activity of UL97 being relatively

weaker in the IP-kinase reaction (Figure S2), the expression levels

of HA-BGLF4, HA-UL97 and HA-Cdc2 were similar in cdc28-13

cells (Figure 2D). Taken together, the data imply that BGLF4 has

kinase activity in yeast but cannot compensate for cdc28 activity

for cell growth, promoting yeast budding and S-phase progression.

Considering the previous study [15], we believe that the result here

is more conclusive because the yeast cells were synchronized

before the analysis. The data also are consistent with our

observation that BGLF4 activity resembles Cdk-1 activity rather

than Cdk-2 activity in mammalian cells.

Expression Level of BGLF4 is the Key Factor to Determine
Cell Fates

To elucidate the perturbation of cell cycle progression by

BGLF4 in the individual cell, we established a GFP-H2B-HeLa

cell line stably expressing GFP-H2B to monitor the BGLF4-

induced events in living cells. H2B is a component of core histone

octamers, which are packaged around the double stranded DNA

into the basic subunits of eukaryotic chromosomes. The chromo-

somes of living cells can be visualized through GFP-H2B

observation with fluorescence microscopy [23]. We found

DsRed-BGLF4, but not DsRed-K102I or DsRed, induced

chromosome condensation in GFP-H2B-HeLa cells at 24 h post

transfection. In addition, GFP-H2B signals colocalized with the

Hoechst 33258-stained DNA, suggesting that this is a good

indicator of the chromosome pattern in living cells (Figure 3A).

To identify the fate of individual cells with BGLF4 expression,

DsRed vector control or DsRed-BGLF4 expressing plasmid was

transfected into GFP-H2B-HeLa cells. Six hours post transfection,

fields of view were selected randomly and imaged using time-

lapsed fluorescence microscopy for 24 h to determine whether the

cells could grow and divide normally after recombinant protein

expression. As expected, cells transfected with DsRed vector could

complete mitosis (Figure 3B). On the contrary, chromosomes in

cells with high BGLF4 expression levels condensed severely,

aggregated and eventually became puckered (Figure 3D), while

chromosomes in cells with low BGLF4 expression showed a

punctuate or loose condensation pattern and could segregate into

two daughter cells (Figure 3C). Only cells expressing low levels of

BGLF4 completed cytokinesis (32 out of 103 BGLF4 expressing

cells). According to the appearance of condensed chromosomes up

to the separation of two daughter cells, the cells with low BGLF4

expression spent a longer period of time in mitosis (about 80 min)

than control cells (about 60 min) while completing cytokinesis,

suggesting the G2/M checkpoint could be activated. Taken

together, we propose that BGLF4 expression levels are critical in

determining cell fates.

Expression of BGLF4 in 293 T-REx and TW01 T-REx BGLF4
Inducible Cells Leads to Growth Retardation

To observe the long-term effects of BGLF4 on cell growth,

BGLF4 inducible cells were established in a 293 tetracycline-

regulated expression system (293 T-REx). In the following studies,

clone V4 carrying vector, clones B9, B10, B17, B19, B20 and B22

carrying BGLF4, or clone K9 carrying K102I were selected to

determine their protein expression levels as detected by immuno-

blotting and indirect immunofluorescence assays (Figure S3A and

S3C). BGLF4 could be detected at 3 h post induction (hpi) and

persisted for at least 120 hpi in B22 cells (Figure S3B). The

premature chromosome condensation phenomenon induced by

BGLF4 was observed at 6 hpi, accompanied by its nuclear

distribution (Figure S3D), indicating that BGLF4 is biologically

functional in this model. BGLF4 expression levels in B22 cells were

also compared to reactivated EBV positive cells to verify

comparable levels of BGLF4 expression in this system (Figure S1).

To determine whether BGLF4 affects cell proliferation, V4, B22

and K9 cells were induced with doxycycline (Dox, 100 ng/ml) and

assessed for cell proliferation by MTT assay every 24 h until 120

hpi. Compared to V4 and K9 cells, B22 cells exhibited cell growth

retardation following Dox induction (Figure 4A). At 120 hpi, the

percentage of cell proliferation reduced to about 30% (P,0.01) in

B22 cells (the conversion equation is described in materials and

methods). This phenomenon also could be observed in the other

293 T-REx BGLF4 inducible cell lines, B9 and B20, after Dox

induction (Figure S3E). In the case of these two cell lines, the cell

proliferation was reduced to about 30% and 35%, respectively. To

explore further whether BGLF4 can affect the growth of NPC

cells, the tetracycline-regulated expression system also was

established in NPC-TW01 cells. VIT7 carrying vector, KIT2

and KIT21 carrying BGLF4 were selected according to the

protein expression levels detected by immunoblotting and

immunofluorescence assays (Figure S4A and S4C). Similar to

B22, BGLF4 could be detected at 3 h post induction, and persisted

for at least 120 hpi in KIT2 (Figure S4B). Also, the cell growth was

examined in the NPC-TW01 cell background. Both KIT2 and

KIT21 grew slower than VIT7 cells (Figure 4B). The cell

proliferation rate decreased to about 24% and 19% respectively.

Nevertheless, in both the 293 and TW01 cell background, cells

expressing BGLF4 can still grow continuously. Considering the

effect of BGLF4 on inducing prophase-like chromosome conden-

sation, it is possible that some cells may proliferate with damaged

DNA.

BGLF4 Elicits Genomic Instability in 293 and NPC-TW01
Cells

Micronuclei (MN) represent unincorporated chromosomal

fragments lost during sister chromatid segregation in mitosis and

are a common indicator for evaluating genomic instability [24].

Repetitive reactivations of EBV have been considered recently to

promote MN formation and tumor progression in NPC cells [6].

In addition, premature chromosome condensation induced by

calyculin A, which is a Ser/Thr phosphatase types 1 and 2A

inhibitor, was found prone to chromosomal breaks at common

fragile sites [25]. Therefore, we suggest BGLF4-expressing cells

may proliferate with damaged DNA and genomic instability. To

this end, we observed the chromosome pattern of DsRed-BGLF4-

transfected GFP-H2B-HeLa cells at 48 h post transfection and

found the formation of framework-shaped chromosome structure

(Figure 5A), implying that cells suffering BGLF4-induced chro-

mosome condensation might undergo further chromosomal

alterations. Since we did not observe similar patterns at 72 h post

EBV BGLF4 Kinase Retards S-Phase Progression
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transfection, it is possible that those cells with dramatic chromo-

some abnormalities may die eventually.

Subsequently, micronucleus (MN) formation was examined in

293 T-REx B22, K9 and V4 cells after Dox induction for 72 h.

After induction, BGLF4 enhanced MN formation in 293 T-REx

B22 (Figure 5B), implying that persistent expression of BGLF4

elicits genomic instability. Compared to vector control cells and

K9 cells, the MN formation also was increased in non-induced

B22 cells. We suspected that there might be a very small amount of

BGLF4 expressed in B22 cells before induction (Figure S3A),

leading to the increase of MN. Notably, the MN occurrence in

BGLF4 expressing NPC-TW01 cells (13.03%) was much more

obvious than that in control cells (5.97%, P,0.01) (Figure 5C). In

addition to MN, donut-shaped, new moon-shaped, horse’s hoof-

shaped and other irregular chromosome patterns (37.08%) were

observed in KIT2 cells after Dox induction for 72 h, while the

Figure 2. BGLF4 cannot compensate for the kinase activity of Cdk1 for DNA replication in S. cerevisiae. (A) Five-fold serial dilutions of
cdc28-4 mutant yeasts containing pVT-U101 vector, BGLF4, K102I, or HA-Cdc2 expressing plasmids were spotted onto YPD plates and incubated at
23uC, 30uC or 37uC for 2 days to observe colony growth. (B) The protein expression levels of BGLF4, K102I and Cdc2 in (A) were detected by
immunoblotting. The blot was detected with anti-BGLF4 and anti-HA antibody. (C) Saturated cdc28-13 cells carrying indicated plasmids were treated
with 0.2 M hydroxyurea (HU) at 23uC for 3 h to synchronize transformed yeast cells at an early stage of S-phase. The synchronized cells were released
into fresh YPD medium and incubated at the restrictive temperature for 4 h. The percentages of budded cells were determined at the time of
temperature shift and 4 h later. The asterisk (*) indicates a statistically significant difference from vector control cells (P,0.01). (D) Total cell extracts of
cdc28-13 transformed with pVTU vector, HA-BGLF4, HA-UL97 or HA-Cdc2 were harvested before and after HU release and subjected to
immunoblotting with HA antibody. (E) Asynchro, synchronized or released cdc28-13 cells containing the plasmids indicated were fixed and stained
with propidium iodide to analyze DNA contents by FACS.
doi:10.1371/journal.pone.0039217.g002
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percentage of abnormal chromosomes observed in VIT7 cells was

only one-third (13.99%) of that in KIT2 cells (data not shown). We

examined two other BGLF4 inducible clones (KIT20 and KIT21).

MN formation and abnormal chromosomal structure also can be

observed at 60 hpi (data not shown). Taken together, these results

suggest that BGLF4 elicits genomic instability more severely in

NPC cells than in 293 cells.

The G1/S Transition Regulator RB is
Hyperphosphorylated but the RB-E2F1 Complex is not
Disrupted in the Presence of BGLF4

Our data above indicate that BGLF4 does not promote S-phase

progression. We noticed that in a previous study, only RB

phosphorylation, but not the downstream E2F1 transactivation

activity, was monitored in the presence of BGLF4 [15]. Therefore,

we decided to clarify the RB phosphorylation pattern and its

downstream signaling in cells expressing BGLF4. RB is known for

its essential role in sequestering E2F1through a distinct pocket

domain, resulting in inhibition of E2F transcription activity

[26,27]. RB is sequentially phosphorylated by cyclin-Cdks in a

cell cycle dependent manner [28,29]. The hyperphosphorylated

form of RB dissociates the RB-E2F1 complex, allowing E2F1

downstream genes required for DNA synthesis and G1/S

transition to be transcribed [30]. There are 16 Cdk-consensus

sites within RB. Ser780 has been shown to be a critical residue for

the subsequent hyperphosphorylation of multiple sites at the C-

terminus and disruption the RB-E2F1 complex [31,32]. Ser608

and Ser612 within the spacer domain are also required for the

disruption of the interaction at G1/S transition [32].

Nevertheless, RB is alternatively phosphorylated with different

patterns under different signaling situations. Ser612 is phosphor-

ylated by Chk1/2 in response to DNA damage, leading to a

complex stabilization between RB and E2F1 [33]. As a result,

phosphorylation of RB at different sites by various kinases may

result in different functions. Hyperphosphorylated forms of RB

were observed in EBV-positive cells. Both the phosphorylation on

Ser612 and Ser780 increased after EBV reactivation [4]. In

addition, RB was shown to be hyperphosphorylated in response to

the ectopic expression of BGLF4 and other CHPKs, including

HCMV UL97 [15].We wondered the BGLF4-induced RB

hyperphosphorylation could be a response to DNA damage

singling but not for DNA replication. To this end, we first

examined the RB phosphorylation pattern in EBV-positive Akata

(Figure 6A) and NA cells (data not shown) upon reactivation.

Consistent with the previous observation [4], the increase of

phosphorylation of total RB and Ser780 was not so obvious, while

phosphorylation on Ser612 was elevated during lytic virus

Figure 3. The BGLF4 expression level is the key factor that determines cell fates. (A) Slide-cultured GFP-H2B-HeLa cells were transfected
with DsRed-BGLF4, DsRed-K102I and DsRed-monomer. At 24 h post transfection, cells were fixed with 4% paraformaldehyde, stained for DNA using
Hoechst 33258 and examined using fluorescence microscopy. (B)(C)(D) GFP-H2B-HeLa cells were seeded and transfected with (B) DsRed-monomer
vector or (C)(D) Ds-Red-BGLF4. At 6 h post transfection, fields of view were selected randomly and filmed using an Axiovert 200 M inverted
fluorescence microscope every 10 min.
doi:10.1371/journal.pone.0039217.g003
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replication, accompanied by the expression of BGLF4 in Akata

cells (Figure 6A).

To investigate the effects of BGLF4 on hyperphosphorylation of

RB, RB-deficient Saos-2 cells were transfected with plasmids

expressing BGLF4, K102I, or vector along with an RB expressing

plasmid. HMCV UL97 was added to the experiment as a

comparison for RB hyperphosphorylation [15,34]. In contrast to

K102I or vector transfected cells, cells expressing BGLF4, as well

as UL97, showed a band-shift hyperphosphorylated RB (Figure 6B)

and increased phosphorylation on Ser780, as reported previously

[15]. To elucidate the effect of RB phosphorylation on the stability

of the RB-E2F1 complex, an immunoprecipitation assay was

performed with anti-RB antibody and the immunocomplexes were

detected with anti-RB and anti-E2F1 antibodies. Throughout

several repeated experiments, weak but consistent results were

observed that the amount of E2F1 co-precipitated with anti-RB

antibody in the presence of BGLF4 expression was not obviously

different (Figure 6C). We assumed the RB phosphorylation pattern

observed here does not contribute to cell cycle progression. To

support this hypothesis, the promoter activity of the E2F1

downstream gene cyclin D1 (p-CCND-luc, which contains a

3.3 kb promoter region of cyclin D1) was examined in a reporter

assay (Figure 6D). Cyclin D1 promoter activity was enhanced by

E2F1 alone and suppressed when RB was co-transfected with

E2F1. Upon ectopic BGLF4 expression, the RB-inhibited cyclin

D1 promoter activity was suppressed further. Furthermore,

BGLF4 had a dose-dependent effect on the down-regulation of

cyclin D1 promoter activity and the hyperphosphorylation of RB

(Figure 6D), suggesting that expression of BGLF4 does not favor

cell cycle progression. This observation implies that, in addition to

Figure 4. Expression of BGLF4 results in slight cell growth retardation. (A) 293 T-REx BGLF4 inducible B22, K102I kinase dead K9 and vector
control V4 cells were seeded into 96-well plates in triplicate and incubated in 100 ng/ml Dox containing medium to induce the expression of BGLF4
or K102I. At 24, 48, 72, 96 and 120 h post induction (hpi), MTT assays were performed and the optical densities (OD) were determined by
spectrophotometry at 550 nm. Three independent experiments were conducted and one representative result is shown. (B) NPC-TW01 T-REx BGLF4
inducible KIT2, KIT21 cells and vector control VIT7 cells were induced with 50 ng/ml Dox and subjected to an MTT assay as described in (A).
doi:10.1371/journal.pone.0039217.g004
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Ser780, at which phosphorylation is required for E2F1 dissociation

from RB, BGLF4 may also induce phosphorylation at other

residues, to affect RB-downstream signaling.

We then elucidated whether BGLF4-elicited RB phosphoryla-

tion is a downstream effect of DDR. We generated RB Ser612 and

Ser780 phosphorylation mutants and used phospho-specific

antibodies to determine whether BGLF4 enhances the phosphor-

ylation on RB Ser612 (Figure 6E). Although the phosphorylation

on Ser780 was more obvious than that on Ser612 of wild-type RB

(lanes 1 and 2), we noticed that the BGLF4-induced RB band shift

was reduced in S612A but not in S780A (lanes 3 and 4, lanes 5

and 6), implying that Ser612 may be a major target of BGLF4. It is

worthy of note that BGLF4 also led to RB phosphorylation on

Ser612, even though Chk2 was not obviously activated under this

condition, suggesting that BGLF4 has the potential to phosphor-

ylate RB directly at Ser612. We then examined the promoter

activity of ZBRK1, a transcription factor negatively regulated by

the RB-E2F1 complex at the transcription level upon DDR [35].

ZBRK1 promoter activity was slightly down-regulated when RB

and E2F1 were co-expressed in Saos-2 cells (Figure 6F). In the

presence of BGLF4, the ZBRK1 promoter activity was suppressed

further in a dose dependent manner (Figure 6F), implying that

BGLF4-elicited RB hyperphosphorylation is in response to DNA

damage signaling but not for cell cycle progression.

Discussion

BGLF4 is a member of the conserved herpes protein kinases

(CHPKs), which are known to mimic cellular Cdk activities but are

not restrained by Cdk inhibitors [10,12]. BGLF4 induces multiple

mitotic-like events [12,13], induces RB hyperphosphorylation [15]

and elicits DDR [17] in a cell cycle-independent manner. These

changes triggered by BGLF4 appear to be contradictory in terms

of cell cycle control. Here we have shown BGLF4 interferes with

DNA replication and S-phase progression, restraining cells from

entering G2/M phase. Observation of individual BGLF4 express-

ing cells using time-lapse microscopy supports this finding. Once

BGLF4 induces highly condensed chromosomal structures, cells

cannot complete the cell cycle. Nevertheless, cells with moderate

BGLF4 expression still went through cytokinesis with a time delay.

To avoid the influence of endogenous Cdk activity, we used a

temperature-sensitive yeast system to determine whether BGLF4

promotes S-phase progression. BGLF4 could not promote bud

growth or S-phase progression of the cdc28-13 strain synchronized

Figure 5. Expression of BGLF4 elicits abnormal chromosomal structure and micronuclei formation in various cell types. (A) Slide-
cultured HeLa cells with stable GFP-H2B expression were transfected with DsRed-BGLF4, DsRed-K102I or pDsRed-monomer. At 48 h or 72 h post
transfection, cells were fixed, stained for DNA with Hoechst 33258 and examined using fluorescence microscopy. (B) Slide-cultured 293 T-REx B22, K9,
and V4 cells were treated with 100 ng/ml doxycycline (Dox). At 72 h post induction (hpi), cells were fixed with 4% paraformaldehyde and stained for
DNA with Hoechst 33258. Micronucleus (MN) formation was observed using fluorescence microscopy. Detection of MN formation (MN%) was
calculated as the percentage of cells containing micronuclei, derived from the analysis of 1,000 cells. Bars represent mean values in MN%
(duplicates6SD). One of the two independent experiments conducted is shown. (C) Slide-cultured NPC-TW01 T-REx KIT2 and VIT7 cells were
incubated with 50 ng/ml Dox for 72 h. Cells were fixed with 4% paraformaldehyde and examined using fluorescence microscopy. Detection of MN
formation (MN%) was calculated as the percentage of cells containing micronuclei, derived from the analysis of 1,200-1,600 cells. An asterisk (*)
indicates a statistically significant difference from vector control cells (P,0.01). One of the two independent experiments conducted is shown.
doi:10.1371/journal.pone.0039217.g005
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at the G1 phase. These findings suggest that BGLF4 behaves more

like Cdk1 than Cdk2. On investigating the G1/S transition

regulator, RB, we found that, although RB was hyperpho-

sphorylated in the presence of BGLF4, the RB-E2F1 complex did

not dissociate. The reporter assays further demonstrate that

BGLF4 induced a dose-dependent suppression of E2F1 down-

stream cyclin D1 and ZBRK1 promoter activities.

Recently, it was shown in the fission yeast model that the cell

cycle can be driven by oscillation of a minimal Cdk control

network lacking canonical regulation such as CAK (Cdk activating

kinase) and Cdk inhibitors [36]. It was proposed that the Cdk

oscillator acts as the primary organizer of the cell cycle by setting

two thresholds of Cdk activity to define independent cell cycle

phases. Notably, G1/S and G2/M transitions are associated with

low and high Cdk activities, respectively. This model supports our

data regarding BGLF4 mediated S-phase disturbance, because

BGLF4 resembles constitutive Cdk activities throughout the cell

cycle.

Uncoordinated RB hyperphosphorylation and cell cycle pro-

gression upon EBV reactivation also was reported in another

study. In this condition, RB was hyperphosphorylated because of

the elevated expression of S-phase cyclins and upregulated S-Cdk

Figure 6. RB is hyperphosphorylated but the RB-E2F1 complex is not disrupted in the presence of BGLF4. (A) EBV-positive Akata cells
were induced by 0.8% anti-human IgG and harvested at the time points indicated. The proteins were resolved by 7.5% SDS-PAGE (for total RB) or 10%
SDS-PAGE (for RB specific phosphorylation, Zta, BGLF4 and GAPDH). Zta and BGLF4 were detected to confirm lytic cycle progression. GAPDH served
as a loading control. (B) Saos-2 cells were transfected with the expressing plasmids indicated. Cells were harvested at 24 h post transfection. The
protein expression levels were resolved by 7.5% SDS-PAGE (for RB) or 10% SDS-PAGE (for BGLF4, HCMV UL97, RB specific phosphorylation and
GAPDH). GAPDH served as a loading control. (C) Saos-2 cells were transfected with the plasmids indicated. Cells were harvested at 24 h post
transfection and cell extracts were subjected to immunoprecipitation assays using anti-RB antibody. The immunocomplexes were separated by 10%
SDS-PAGE. The co-immunoprecipitated proteins RB and E2F1 were detected using specific antibodies. (D) Luciferase reporter assays were performed
in Saos-2 cells by co-transfected with p-CCND1-luc (a 3.3-kb full length cyclin D1 promoter construct) as well as pWP1 (for normalization of
transfection efficiency) and plasmids of effectors as indicated. Luciferase activities were measured at 48 h post transfection. Results are means 6 SD
from three separate transfections. Data are representative of two independent experiments. (E) Saos-2 cells were transfected with the expression
plasmids as indicated. Cells were harvested at 48 h post transfection. The protein expression levels were resolved by 7.5% SDS-PAGE (for RB) or 10%
SDS-PAGE (for BGLF4, Chk2, RB specific phosphorylation and b-actin). b-actin served as a loading control. (F) Luciferase reporter assays were
performed in Saos-2 cells by co-transfection of p-ZBRK1-luc (containing ZBRK1 promoter fragment -624 to +47 bp) as well as pWP1 (for normalization
of transfection efficiency), and plasmids of effectors as indicated in the figure. Luciferase activities were measured at 48 h post transfection. Results
are means 6 SD from two separate transfections. Data are representative of two independent experiments.
doi:10.1371/journal.pone.0039217.g006
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activity but host DNA replication and cell cycle progression were

blocked [4]. It is interesting to note that phosphorylation of RB on

Ser612 increased more dramatically than on Ser780, following

EBV reactivation. The phosphorylation on Ser780 even decreases

slightly at 72 hpi [4]. Here, we also demonstrate similar RB

phosphorylation patterns in EBV positive Akata (Figure 6A) and

NA (data not shown) cells after lytic cycle reactivation. Overall, a

hypothetical model is proposed to illustrate the effects of BGLF4

on RB phosphorylation and cell cycle progression in cells

replicating the virus (Figure 7). BGLF4 is expressed with an

early-late kinetic pattern, its expression starting at an early stage of

replication and increasing after viral DNA replication. We suggest

that at the early stage, low concentrations of BGLF4 do not affect

the host cell cycle but are sufficient to enhance the transactivation

activity of Zta and the synergistic activation of BMRF1 and Zta on

the BHLF1 promoter within the lytic origin of replication (oriLyt)

[37]. Along with the progression of viral DNA replication, BGLF4

expression reaches the maximal level and induces premature

chromosome condensation and arrest of cellular DNA synthesis. A

subset of cells may proliferate with abnormal DNA structure.

Phosphorylation of RB on Ser612 but not Ser780 was more

obvious at a later stage of the lytic cycle, suggesting it as a

downstream effect of EBV-elicited DDR in the cells (Figure 6 A).

Alternatively, BGLF4 may activate TIP60 histone acetyltransfer-

ase and induce the ATM-mediated DDR pathway, leading to the

phosphorylation of RB on Ser612 [17]. Because Chk2 was not

significantly activated in Saos-2 cells in our experiments, it is very

likely that Ser612Pro613 of RB can be phosphorylated directly by

BGLF4. This conclusion is supported by the observation that the

increase of RB Ser612 phosphorylation at a later stage of the lytic

cycle (48 h post induction) is correlated with higher BGLF4

expression. Because the DNA damage pathway is necessary for

efficient EBV replication, we proposed that BGLF4-induced RB

phosphorylation is favorable for lytic cycle progression, while

cellular DNA synthesis is blocked.

Uncontrolled and constitutive Cdk activities may contribute to

unscheduled proliferation, as well as genomic instability (GIN) and

chromosomal instability (CIN), because switch-off of Cdk1-like

activity is required for correct sister chromatid separation,

chromosome decondensation, nuclear envelope reformation and

cytokinesis [38,39]. Therefore, deregulation of Cdk1 activity and

the consequent deregulated function of Cdk1 substrates may

contribute to abnormal genome organization [39]. In this study,

we used BGLF4-inducible 293 and NPC-TW01 cells to observe

the long-term effects of BGLF4 on chromosome structures. In

addition to MN formation, BGLF4 elicits abnormal chromosome

structure, particularly in NPC-TW01 cells. Several aspects of

BGLF4 function may contribute to genomic instability. In our

previous studies, BGLF4 was shown to induce some mitosis-like

events, including premature chromosome condensation, through

topoisomerase II (Topo II) activation and nuclear lamina

disassembly through lamin A/C phosphorylation. Under physio-

logical conditions, these events are tightly controlled in a cell-cycle

dependent manner and occur only in M-phase. Topo II is a

ubiquitous enzyme regulating DNA topology through a transient

double-stranded break. As a result, Topo II functions like a

‘‘double-edged sword’’, being essential for cells but potentially

genotoxic at a high level of protein expression. With abnormally

high levels of Topo II, double-stranded breaks may become

permanent, leading to chromosomal translocation and other DNA

aberrations [40]. Indeed, increased levels of Topo II are associated

with mixed lineage leukemia (MLL) [41,42] and breast cancer

[43]. On the other hand, lamin A/C is the component of nuclear

lamina, constituting a supporting meshwork to maintain nuclear

structure. The integrity of lamina is crucial to nuclear stiffness and

the spherical shape of nuclei [44]. BGLF4 phosphorylates lamin A

at amino acids 22, 390, 392, 652 and 657, leading to the

disassembly and reorganization of the nuclear lamina [13]. As a

result, BGLF4 may elicit CIN at the nuclear structure level, too.

Furthermore, it is speculated that premature chromosome

condensation induces chromosome breaks at common fragile site

[25], reinforcing the linkage of BGLF4 and CIN. Thus, BGLF4

may be one of the important factors that mediate recurrent,

reactivation-induced genomic instability in EBV positive NPC

cells [6]. Here, we showed that BGLF4 may be involved in

multiple pathways leading to GIN, suggesting that BGLF4 may

play a role in EBV-associated epithelial tumor progression.

Materials and Methods

Plasmids
pYPW17 and pYPW20 are pSG5 (Promega) based plasmids

which express BGLF4 and K102I, as described previously [45].

To generate the tetracycline regulated expression plasmids

pLenti4-BGLF4 and pLenti4-K102I, a DNA fragment of BGLF4

open reading frame 1-1290 with RsrII restriction enzyme sites at

both ends was PCR amplified using pYPW17 or pYPW20 as

template and forward primer LMRC481 (59-CACGGTCCGAC-

CATGGATGTGAATATGGCTGC-39) and reverse LMRC482

(59-CACGGACCGTCATCCACGTCGGCCATCT-39). The

Figure 7. A hypothetical model of BGLF4-induced RB phosphorylation and DNA damage response (DDR). BGLF4 induces premature
chromosome condensation through activation of condensin and Topo II. The prophase-like chromosomes may cause abnormal DNA structure and
micronucleus formation. In addition, BGLF4 elicits DNA damage signaling by phosphorylating TIP60. TIP60 is a histone acetyltransferase that
regulates chromatin remodeling and the DNA damage response (DDR). Upon DNA double-stranded breakage, ATM kinase is acetylated by TIP60. The
acetylation of ATM is essential for its autophosphorylation and activation. Therefore, BGLF4 is able to turn on DNA damage signaling in a TIP60/Chk2-
dependent manner. Here we found that the exogenous expression of BGLF4 induces RB hyperphosphorylation at Ser780 and Ser612, which is an
indicator of DNA damage signaling activation. Based on our observation that the RB-E2F1 complex does not dissociate and the E2F1-downstream
cyclin D1 promoter and ZBRK1 activities are repressed upon BGLF4 expression, we propose that BGLF4-induced RB phosphorylation may be a
downstream event of DDR. Because the DNA damage pathway is necessary for efficient EBV replication, BGLF4-induced RB phosphorylation is
favorable for lytic cycle progression, while cellular DNA synthesis is blocked.
doi:10.1371/journal.pone.0039217.g007
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PCR product was digested with RsrII and subcloned into the RsrII

site of pLenti4-TO-V5-His (Invitrogen). pCPL4 and pTHL5 are

plasmids expressing GFP-BGLF4 and GFP-K102I, generated by

cloning a BamHI-EBV BGLF4-EcoRI fragment from pYPW17 or

pYPW20 into the BglII-EcoRI cloning site of pEGFP-c1 (BD

Biosciences). pYHC3 and pYHC4 are plasmids expressing DsRed-

BGLF4 and DsRed-K102I, generated by cloning the BamHI-

BGLF4-BglII fragments from pYPW17 and pYPW20 into the

BamHI site of pDsRed-monomer-c1 (Clonetech). CMV-NeoRB,

which contains pRB cDNA in pCMV-neo-Bam, was kindly

provided by Dr. Phang-Lang Chen (Department of Biological

Chemistry, University of California, Irvine, CA) [46]. For RB

phosphorylation mutants, RB-S612A and RB-S780A were gener-

ated by a single-primer-based site-directed mutagenesis strategy

using CMV-NeoRB as template and forward primer LMRC855

(tatgtatctttctcctgtaagagctccaaagaaaaaaggttcaac) or LMRC856

(tccaccaggccccctaccttggcaccaatacctcacattcctc) respectively.

pCMV-E2F1 was a gift from Dr. Sheau-Yann Shieh (Institute of

Biomedical Sciences, Academia Sinica, Taiwan) [47]. CCND1

reporter plasmids (CCND1-P) containing the 3.3-kb cyclin D1

promoter, and ZBRK1 reporter plasmids (ZBRK1-B) containing

ZBRK1 promoter fragment -624 to +47 bp, were a gift from Dr.

Ju-Ming Wang (Institute of Basic Medical Sciences, National

Cheng Kung University, Taiwan) [35]. pEGFP-H2B, which

expresses a GFP-H2B fusion protein, was generously provided

by Dr. Zee-Fen Chang (Institute of Biochemistry and Molecular

Biology, National Yang-Ming University, Taiwan).

Cell Culture and Transfection
HeLa cells (ATCC: CCL-2), derived from a human cervical

carcinoma, were grown in Dulbecco’s modified Eagle’s medium

(DMEM) with 8% fetal calf serum. Saos-2 (ATCC: HTB-85), an

RB deficient cell line derived from a human primary osteosarco-

ma, was grown in DMEM medium with 8% fetal calf serum. 293

T-REx cell line (Invitrogen) is a HEK293 derivative containing a

Tet repressor. NPC-TW01 was derived from an EBV-negative

human nasopharyngeal carcinoma [48]. Cells were transfected

using Lipofectamine 2000 (Invitrogen) in OptiMEM medium

(GIBCO-BRL) according to the manufacturer’s instructions.

TW01 T-REx cells stably expressing the Tet repressor were

generated using the ViraPower T-REx lentiviral expression system

(Invitrogen). 293 T-REx and TW01 T-REx cell lines were grown

in DMEM medium with 8% tetracycline-free fetal calf serum. To

establish tetracycline-regulated BGLF4 inducible cell lines, 293 T-

REx or TW01 T-REx cells were transfected with pLenti4,

pLenti4-BGLF4 or pLenti4-K102I and selected with zeocin

(400 mg/ml for 293 T-REx or 500 mg/ml for TW01 T-REx)

and blasticidin (5 mg/ml for 293 T-REx or 25 mg/ml for TW01 T-

REx) for two months. The V4 clone carrying vector, B9, B10, B17,

B19, B20 and B22 clones carrying the BGLF4 expression plasmid

and K9 clone carrying the K102I expression plasmid were selected

from 293T-Rex cells. The VIT7 clone carrying vector, as well as

KIT2 and KIT21 carrying the BGLF4 expression plasmid, were

picked out from TW01 T-REx for further studies. The selected

clones were maintained in the presence of zeocin (200 mg/ml for

293 T-REx or 250 mg/ml for TW01 T-REx) and blasticidin

(2.5 mg/ml for 293 T-REx or 12.5 mg/ml for TW01 T-REx). To

induce protein expression, doxycycline (Dox) was added (100 ng/

ml for 293 T-REx or 50 ng/ml for TW01 T-REx) to the culture

medium. The inducibility and positive rate of BGLF4 in individual

clones were examined by immunoblotting and indirect immuno-

fluorescence assay (IFA) after Dox treatment for 24 h. The

induction rates of both cell lines were more than 95%, as revealed

by IFA. To establish HeLa cells stably expressing GFP-H2B (GFP-

H2B-HeLa), HeLa cells were transfected with a GFP-H2B

expression plasmid and selected with G418 (1 mg/ml) for 1

month. The clone 3A1 with more than 95% GFP-H2B positive

cells in IFA was used for further experiments. All cells were

maintained in the presence of 1 mM L-glutamine and penicillin

(100 U/ml) and streptomycin (100 mg/ml) at 37uC with 5% CO2.

Akata cell line with recombinant EBV [49] that expressed

enhanced green fluorescent protein was grown in RPMI 1640

medium with 8% fetal calf serum and reactivated with 0.8% anti-

human IgG.

Cell Cycle Synchronization and Fluorescence-activated
Cell Sorter (FACS) Analysis

GFP-BGLF4-transfected HeLa cells were treated with nocoda-

zole (200 ng/ml) for 20 h at 24 h post transfection to arrest them

at the G2/M boundary. After synchronization, cells were

trypsinized, washed with PBS, fixed with 1% paraformaldehyde

at room temperature for 20 min and then with 75% ice-cold

ethanol overnight. Before FACS analysis, cells were permeabilized

with 0.2% Triton X-100 and RNase A (100 ng/ml) and DNA was

stained with propidium iodide (10 mg/ml) at room temperature for

30 min. Finally, cell cycle distribution according to DNA contents

was determined using a FACSCalibur cell sorter and analyzed by

CellQuest software (BD Biosciences).

Thymidine Incorporation Assay
HeLa cells were seeded in 6-well plates (36105/well) and

transfected with BGLF4, K102I expressing plasmid or vector. At

4 h post transfection, cells were labeled with [14C]-thymidine

(0.05 mCi/ml) for 20 h. Subsequently, cells were trypsinized,

washed with PBS and lysed in 0.8 ml 0.2N NaOH. Half of the

NaOH lysates was added to 4 ml Ready-safe liquid scintillation

liquid (Beckman Coulter) and counted in a liquid scintillation

analyzer (LS 6000 TA, Beckman Coulter).

Immunoblotting and Co-immunoprecipitation
Cell extracts harvested with NP-40 lysis buffer (1% NP-40,

50 mM Tris, pH 8.0, 150 mM NaCl, 2 mM EDTA, and 1 mM

Na3VO4) were resolved by SDS-polyacrylamide gel electrophore-

sis (7.5% acrylamide gel for RB detection or 10% acrylamide gel

for the detection of other proteins). After transfer and blocking, the

primary antibodies used were Zta mAb (1B4) [50], BGLF4 mAb

(2616) [45], GAPDH mAb (Biodesign), a-tubulin mAb (Calbio-

chem), b-actin mAb (AC-15, Sigma), RB mAb (pMG3-245, kindly

provided by Dr. Wen-Hwa Lee (Department of Biological

Chemistry, University of California, Irvine, CA)), phosphoPlus-

RB Ab Kit (#9969, Cell Signaling), RB p-Ser612 mAb (4E4,

Abnova), Chk2 (H-300, Santa Cruz), Chk2 p-Thr68 (#2661, Cell

Signaling) and E2F1 Ab (C-20, Santa Cruz). To perform co-

immunoprecipitation assays, 600 mg of Saos-2 cell extract was

prepared in NP-40 lysis buffer and pre-cleared with 100 ml of 20%

protein A-Sepharose beads (Pharmacia) for 1.5 h at 4uC. To

immunoprecipitate RB-associated E2F1, 500 mg of lysates pre-

pared above were incubated with anti-RB antibody at 4uC
overnight. Then 150 ml of 20% protein A-Sepharose beads were

added to pull down the immunocomplexes for 3 h at 4uC. The

beads were washed with NP-40 lysis buffer four times and

resuspended in 4X SDS sample buffer. The immunocomplexes

were resolved in 10% SDS-PAGE and analyzed with immuno-

blotting using anti-RB and anti-E2F1 antibodies.

EBV BGLF4 Kinase Retards S-Phase Progression

PLoS ONE | www.plosone.org 11 June 2012 | Volume 7 | Issue 6 | e39217



Yeast Strains and Yeast Plasmids
S. cerevisiae cdc28-4 [21] and cdc28-13 [21] were gifts from Dr.

Curt Wittenberg (Department of Molecular Biology, The Scripps

Research Institute, CA). Both strains were cultured in YPD (1.0%

yeast extract, 2.0% bacto peptone, 20% glucose) medium.

pVTU101 (from Dr. Shu-Chun Teng, Graduate Institute and

Department of Microbiology, National Taiwan University) based

plasmids expressing BGLF4, K102I, HA-Cdc2 and UL97

(pMTS1, pMTS2, pMTS3 and pMTS4) were generated by

cloning a BamHI-BGLF4 fragment from pYPW17, BamHI-

K102I fragment from pYPW20, XbaI-HA-Cdc2 fragment

partially digested from pSMcdc2H-HATag (a gift from Dr. David

Morgan (Department of Physiology and Biochemistry, University

of California, San Francisco, CA), and a HindIII/XbaI fragment

of HCMV UL97 from pTAG-UL97. pMTS5 and pMTS7 are

constructs expressing HA-tagged BGLF4 and UL97, generated by

inserting an HA linker into the BamHI site of pMTS1 and HindIII

site of pMTS4.

Spot Dilution Assay
S. cerevisiae cdc28-4 cells containing various plasmids as indicated

were adjusted to an OD600 to 0.5, and diluted serially 5-fold in

sterile water. Two ml of each dilution were spotted onto YPD

plates. The plates were incubated at 23, 30 or 37uC for 2 days.

Yeast Budding Assay and FACS Analysis
S. cerevisiae cdc28-13 cells were grown at 23uC in SC medium

(0.17% yeast nitrogen base without amino acids, 0.5% ammonium

sulfate, 0.2% amino acid drop-out mix, 20% dextrose) and lacking

uracil to 0.5 OD at 600 nm. Hydroxyurea (HU, 200 mM) was

added into the culture medium and incubated at 23uC for 3 h.

Then, cells were collected and quickly resuspended in fresh YPD

medium without HU at 38uC for 4 h. For budding assays, cells

were fixed in 3.7% (vol/vol) formaldehyde at 4uC overnight. Cell

aggregates were sonicated and counted under phase contrast

microscopy (Axioskop 49 FL, Zeiss) for the percentage of budded

cells. Before FACS analysis, 107 yeast cells were fixed in 70%

ethanol at 220uC overnight, washed with PBS and treated with

50 mM Tris-HCl containing RNase A (100 mg/ml) at 37uC for

1 h. Cells were stained with 10 mg/ml PI (propidium iodide) at

4uC overnight and the DNA contents were then analyzed by flow

cytometry.

Indirect Immunofluorescence Assay
At the time points indicated post transfection or induction, slide-

cultured cells were fixed with 4% paraformaldehyde at room

temperature for 20 min and washed with PBS for 5 min. Cells

were permeabilized with 0.1% Triton X-100 for 5 min and

subjected to immunofluorescence staining. Cells were first stained

with anti-BGLF4 mAb (2224) at 37uC for 1.5 h, followed by

fluorescein isothiocyanate-conjugated anti-mouse immunoglobulin

G (IgG) (Jackson) or rhodamine red-conjugated anti-mouse IgG

(Jackson) antibodies at 37uC for 1 h. DNA was stained with

Hoechst 33258 at room temperature (5 min for 293 T-REx

inducible cells or 90 sec for HeLa and NPC-TW01 cells). Slides

were mounted with mounting medium (H1000, Vector) and

observed by fluorescence microscopy (Axioskop 49 FL, Ziess).

Time-lapse Microscopy
To capture fluorescence images of living cells, GFP-H2B-HeLa

cells were seeded into 6-well plates and transfected with DsRed-

BGLF4, DsRed-K102I or DsRed expressing plasmids. At 6 h post

transfection, fields of view were selected and cells were subjected to

monitoring every 10 min over a 18 h duration under an

automated inverted fluorescence microscope (Axiovert 200M,

Zeiss). Images were captured by Metamorph software (Universal

Imaging). During imaging, cells were supplemented with 5% CO2

and a heat stage was used to maintain them at 37uC.

MTT Assay
To measure cell proliferation, 16103 293 T-REx inducible cells

or 26103 NPC-TW01 T-REx inducible cells in 200 ml medium

were seeded into 96-well plates in triplicate with or without Dox

(100 ng/ml for 293 T-REx or 50 ng/ml for NPC-TW01 T-REx).

An MTT assay was performed every 24 h after cell seeding. In

brief, the medium was aspirated and replenished with fresh

medium containing MTT (1 mg/ml, Sigma). After incubation at

37uC with 5% CO2 for 4 h, the medium with MTT was removed

and 100 ml DMSO was added to dissolve formazan crystals. The

96-well plates were shaken for 10 min at room temperature to

make sure all the crystals were completely dissolved. Then

absorbance was detected at 550 nm using an ELISA reader.

The percentage of cell proliferation against the control was

calculated by dividing the absorbance of cells treated with Dox by

the absorbance of cells without Dox treatment.

Analysis of Micronucleus Formation
To analyze the formation of micronuclei (MN), slide-cultured

293 T-REx V4, B22 and K9 cells or NPC-TW01 T-REx VIT7

and KIT2 cells were incubated with Dox for 72 h. Cells were fixed

with 4% paraformaldehyde at room temperature for 20 min and

stained with Hoechst33258 for 5 min. Micronuclei were examined

using fluorescence microscopy (Axioskop 49 FL, Ziess). At least

1000 cells were counted for each experiment.

Reporter Assay
To investigate whether BGLF4 regulates cyclin D1and ZBRK1

promoter activity, 56105 Saos-2 cells were seeded into 6-well

plates and transfected with reporter gene plasmid CCND1-P or

ZBRK1-B along with expression plasmids as indicated. The

amount of total DNA was kept constant by supplementing vector

pEGFP-C1. pWP1 (pCMV-Renilla reniformis) was co-transfected in

each reaction for normalizing transfection efficiencies. Luciferase

activity was determined with the dual-luciferase assay system

(Promega) at 48 h post transfection.

Supporting Information

Figure S1 Comparison of BGLF4 expression levels in
various cell lines. NA cell line is a recombinant Akata EBV-

converted NPC-TW01 line. EREV8 and Maxi EBV cell line are

derived from 293TREx_Flag_ERTA cell line. EREV8 cells were

generated by infecting 293TREx_Flag_ERTA with Akata EBV by

cocultivation with EBV-producing B cells. 293-Maxi EBV harbors

the EBV bacmid Maxi. NA cells were reactivated with 40 ng 12-

O-tetradecanoylphorbol-13-acetate-3 mM sodium butyrate

(TPA/SB) for 24 h. EREV8 and Maxi EBV was induced with

100 ng/ml Dox for 24 h for the expression of Rta to induce lytic

cycle progression. B22 is a 293 T-REx BGLF4 inducible cell line,

which was induced with100 ng/ml Dox for 24 h for BGLF4

expression. HeLa cells were seeded at a concentration of

26106 cells per 10-cm dish and transfected with 5 mg GFP-

BGLF4 and harvested at 24 h post transfection. The protein

expression levels of BGLF4 were resolved by 10% SDS-PAGE and

immunoblotted with specific antibodies. GAPDH served as a

loading control.

(TIF)
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Figure S2 The kinase activity of viral protein kinase in
S.cerevisiae cdc28-13. (A) S.cerevisiae cdc28-13 with protein

expression as indicated was cultured in 10 ml Ura-SC broth to an

OD at 600 nm of 1.0. The yeast extracts were collected for IP-

kinase assay. EBV BGLF4, HCMV UL97 and human Cdc2 were

immunoprecipitated with HA antibody (HA.11, Covance). The

precipitated proteins were detected using HA antibody. (B) For in

vitro kinase assay, the immunoprecipitates were incubated with

kinase buffer (20 mM Tris-HCl, 1 mM EDTA, 1 mM DTT,

10 mM MgCl2, 0.2 mM Na3VO4, 100 mM ATP) containing[/

232P]ATP with 1 mg histone H1 (Calbiochem) at 30uC for

30 min. After kinase reaction, proteins were resolved by 12%

SDS-PAGE. Gels were dried and subjected to autoradiography for

12 h.

(TIF)

Figure S3 Expression kinetics of BGLF4 in 293 T-REx
BGLF4 inducible cells. (A) Various 293 T-REx BGLF4

inducible clones, B9, B10, B17, B19, B20 and B22, were treated

with 100 ng/ml doxycycline (Dox) for 24 h. The BGLF4 and

GAPDH proteins were resolved by 10% SDS-PAGE and

immunoblotted with specific antibodies. GAPDH served as a

loading control. (B) B22 cells were induced with 100 ng/ml Dox

for the times indicated. The proteins were displayed by SDS-

PAGE and detected with specific antibodies. (C) Slide cultured B9,

B20 and B22 cells were incubated with 100 ng/ml Dox. At 24 h

post induction (hpi), cells were fixed with 4% paraformaldehyde

and stained for BGLF4 with monoclonal antibody 2224 and DNA

with Hoechst 33258. (D) Slide cultured B22 cells were incubated

with 100 ng/ml Dox, harvested at the time points indicated and

stained for BGLF4 and DNA. Chromosome condensation was

observed at 6 hpi in B22 cells. (E) B9, B20 and B22 cells were

seeded in 96-well plate in a triplicate manner and induced with

100 ng/ml Dox for the expression of BGLF4. At 24, 48, 72, 96

and 120 hpi, an MTT assay was performed and the optical

densities (OD) were determined by spectrophotometry at 550 nm.

(TIF)

Figure S4 Expression kinetics of BGLF4 in NPC-TW01
T-REx BGLF4 inducible cells. (A) The NPC-TW01 T-REx

BGLF4 inducible clones KIT1, KIT2, KIT3, KIT20, KIT21 and

KIT22 were treated with 50 ng/ml doxycycline (Dox) for 24 h.

The BGLF4 protein was resolved by 10% SDS-PAGE and

immunoblotted with specific antibodies. GAPDH served as a

loading control. (B) KIT2 cells were induced with 50 ng/ml Dox

and cell extracts were collected at the time points indicated. The

protein expression was displayed by SDS-PAGE and detected with

specific antibodies. (C) Slide cultured KIT2 and KIT21 cells were

incubated with 50 ng/ml Dox. At 60 h post induction (hpi), cells

were fixed with 4% paraformaldehyde and stained for BGLF4

with monoclonal antibody 2224 and DNA with Hoechst 33258.

More than 95% of the cells expressed BGLF4.

(TIF)
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