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Abstract

Sumoylation is one of the most essential mechanisms of reversible protein post-translational modifications and is a crucial
biochemical process in the regulation of a variety of important biological functions. Sumoylation is also closely involved in
various human diseases. The accurate computational identification of sumoylation sites in protein sequences aids in
experimental design and mechanistic research in cellular biology. In this study, we introduced amino acid hydrophobicity as
a parameter into a traditional binary encoding scheme and developed a novel sumoylation site prediction tool termed
SUMOhydro. With the assistance of a support vector machine, the proposed method was trained and tested using
a stringent non-redundant sumoylation dataset. In a leave-one-out cross-validation, the proposed method yielded an
excellent performance with a correlation coefficient, specificity, sensitivity and accuracy equal to 0.690, 98.6%, 71.1% and
97.5%, respectively. In addition, SUMOhydro has been benchmarked against previously described predictors based on an
independent dataset, thereby suggesting that the introduction of hydrophobicity as an additional parameter could assist in
the prediction of sumoylation sites. Currently, SUMOhydro is freely accessible at http://protein.cau.edu.cn/others/
SUMOhydro/.
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Introduction

Sumoylation represents an important class of protein post-

translational modifications (PTMs) in which a small ubiquitin-like

modifier (SUMO) protein is covalently attached to a protein. By

adding a SUMO protein to a substrate in a sequence-specific

manner, protein sumoylation has the capacity to regulate multiple

biochemical properties of the protein target, such as the stability,

activity, intracellular localization and protein interactions. As such,

sumoylation can play a critical functional role in various biological

processes, including gene transcription and signal transduction

[1,2,3]. Because most SUMO substrates are localized in the

nucleus, protein sumoylation might have significant effects on

nuclear functions [4], and sumoylation has been shown to be

correlated with DNA damage recovery, gene expression and

chromosomal integrity [5,6]. In addition, the functional impor-

tance of protein sumoylation is reflected in a variety of human

diseases, including Alzheimer’s disease (AD), Parkinson’s disease

(PD) [7], viral infections [8] and cancers [9,10].

SUMO proteins are widely expressed by all eukaryotes. In

mammals, there are at least three SUMO proteins, SUMO1,

SUMO2 and SUMO3, among which SUMO2 and SUMO3 are

twin proteins [1]. In addition, SUMO4 has been identified but is

expressed only in the kidneys and spleen [11]. Less advanced

eukaryotes, such as yeast, worms and flies, express only a single

SUMO gene. In plants, there are at least eight SUMO genes,

and the reversible conjugation of SUMO to protein substrates

has been demonstrated as a conserved regulatory process [12]. It

has been well established that the consensus motif yKxE (y
represents a large hydrophobic amino acid, and x represents any

amino acid) is essential for SUMO1 conjugation, and this motif

has been intensively studied. In addition, two other extended

consensus motifs have been recently identified. One motif is the

PDSM (phosphorylation-dependent sumoylation motif), which is

composed of a SUMO consensus site and an adjacent proline-

directed phosphorylation site (yKxExxSP) [13], and the other is

known as an NDSM (negatively charged amino acid-dependent

sumoylation motif) [14], which refers to the negatively charged

amino acids that frequently appear within the 10 amino acids

downstream of the core SUMO motif, yKxE. Although these

motifs might help define the majority of functional SUMO

substrates, many types of sumoylation can not be classified

according to these rules. For example, approximately 26% (95/

370) of confirmed sumoylation events occur in non-consensus

motifs. Thus, a better understanding of sequence-based pre-

diction is necessary. Because sumoylation is reversible and

unstable, there are significant limitations to experimental study

designs, and labor-intensive methods are required; consequently,

there has been an increasing interest in the computation-aided

identification of sumoylation sites.

Currently, a number of elegant methods for predicting

sumoylation sites are available. SUMOplot, which scores the

sequence fragment xKxx in comparison to the consensus motif

yKxE, was the earliest publicly available web server for
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sumoylation site prediction. Subsequently, Xue et al. applied

GPS and motifX in SUMOsp, which achieved a prediction

sensitivity as high as 89.12% [15] and was updated to

SUMOsp2.0 in 2009 [16]. An additional bioinformatics tool,

SUMOpre, which uses a statistical method for sumoylation

prediction, was also developed and yields an excellent prediction

performance with a correlation coefficient of up to 0.636 [17].

Another classifier called seeSUMO has recently been developed

for predicting sumoylation sites, which used the domain-specific

knowledge in terms of relevant biological features for input

vector encoding [18]. However, the prediction performances

achieved by these existing methods require improvement mainly

because the database employed in their tool development is

limited and does not represent the full characteristics of SUMO

substrates. For example, there are cases in which non-sumoylated

proteins have always been falsely predicted to be sumoylated

simply because they contain the consensus motif yKxE. In other

cases, proteins that lack this consensus motif may actually be

sumoylated and not identified. Therefore, there remains a signif-

icant need to develop better predictors of protein sumoylation

sites.

The input feature vector (i.e., encoding scheme) is critical in the

development of predictors based on machine learning algorithms.

An appropriate feature construction or encoding scheme is

capable of reflecting the biological characteristics of sequence

fragments, and common position-specific features, such as binary

encoding, have been widely used as input features. Certain

physicochemical properties of amino acids, such as hydrophobicity

and solvent accessibility, have also been used as input features. An

additional potentially useful encoding method is evolutionary

information in the form of multiple sequence alignment profiles

generated by the PSI-BLAST program [19]. The composition of

k-spaced amino acid pairs (CKSAAP) has also been successfully

employed to predict protein flexible/rigid regions [20], protein

crystallization [21], protein structural classes [22] and mucin-type

O-glycosylation sites [23], for example. These analyses are helpful

in guiding the selection of novel encoding schemes for sumoylation

sites prediction.

In the present study, SUMOhydro was developed to improve

the prediction performance of sumoylation sites by seeking a new

encoding scheme. After assessing various encoding schemes, we

found that prediction performance could be improved by

combining amino acid hydrophobicity with the binary encoding

scheme. It has been proven that hydrophobicity plays a critical

role in sumoylation site recognition. With the assistance of

support vector machine (SVM), a widely used machine learning

method, the leave-one-out cross-validation tests displayed an

excellent performance with a Matthews’ correlation coefficient

(MCC), specificity, sensitivity and accuracy equal to 0.690,

98.6%, 71.1% and 97.5%, respectively. Finally, the SUMOhydro

server was developed to define sumoylation sites in query

proteins and is available online. Here, we present details on the

construction of SUMOhydro, its overall performance and in-

depth benchmark experiments against three of the current

predictors.

Results

Prediction Performance
The SUMOhydro predictor, which is based on a new, stringent

sumoylation dataset, was constructed by employing the SVM

algorithm. Because the ratio of sumoylation to non-sumoylation

sites was significantly imbalanced (approximately 1:25) and

because the SVM method, compared to other statistical methods,

is highly sensitive to the ratio of positive to negative samples in the

training dataset, the algorithm was trained on datasets with a series

of different ratios of sumoylation to non-sumoylation sites, from

1:1 to 1:25 and was tested on the entire dataset. Details regarding

the compilation of the datasets, encoding schemes and SVM

algorithm are outlined in the Methods section. Four measurements

[accuracy (Ac), sensitivity (Sn), specificity (Sp) and MCC] were

jointly used to assess the performance of the proposed sumoylation

site predictor (cf. Table 1). Based on the MCC value of binary

encoding, we determined 1:10 as the final ratio of sumoylation

sites to non-sumoylation sites in the training dataset (Figure 1). In

these models, the window size was set at 25 (i.e., 2n+1= 25)

because this region could cover the 10-amino acid NDSM region

located downstream from the core SUMO motif, yKxE. For

hydrophobicity-related encoding, the window size was imbalanced

from 1 amino acid upstream to 2 amino acids downstream and

was focused on the hydrophobic region.

Because there are always more non-sumoylation sites than

sumoylation sites, we repeated the training/testing procedures 5

times by randomly changing the negative samples. When the

number of positive and negative data points is different, the MCC

should be more suitable for assessing the overall prediction

accuracy. To test the stability of the hydrophobic encoding

combined with the binary encoding, which was termed ‘‘hydro-

binary encoding’’ in this study, we used two strategies on the same

dataset: a 10-fold cross-validation and a leave-one-out cross-

validation. The prediction performances are shown in Tables 1

and 2, with MCC values as high as 0.682 and 0.690. Because the

dataset is highly imbalanced and the MCC can be affected by the

tradeoff between sensitivity and specificity, the ROC curves for

each strategy were plotted, and the corresponding AUC values

were calculated (see Figures 2 and 3). Currently, the SUMOhydro

web server is constructed based on the full dataset to facilitate

research by the scientific community and is freely available at

http://protein.cau.edu.cn/others/SUMOhydro/.

Comparison of different Encoding Schemes
Eight encoding schemes have been utilized to represent the

sumoylation site fragment, including traditional binary encoding,

the composition of k-spaced amino acid pairs (CKSAAP)

encoding, PSSM, KNN, six-letter, nine-letter, hydrobinary en-

Table 1. Prediction performance of 10-fold cross-validation
based on different encoding methods.

Site
Encoding
scheme Sn (%) Sp (%) Ac (%) MCC

K Binary 60.362.1 98.861.4 97.260.1 0.63160.005

CKSAAP 55.762.4 94.660.1 93.060.1 0.38560.026

PSSM 51.162.2 95.860.1 93.960.0 0.39360.022

KNN 56.061.2 98.660.0 96.860.0 0.58460.006

Six_letter 53.563.8 96.160.2 94.360.0 0.42260.035

Nine_letter 57.963.1 95.460.1 93.860.1 0.42660.027

Hydrobinary 61.063.7 99.360.1 97.760.1 0.68260.018

Z_scales 57.563.2 98.660.1 96.860.1 0.59360.017

aThe SVM-based prediction algorithm was used, and the parameters for each
encoding scheme were primary optimized. The hydrobinary encoding scheme
resulted in the highest level of accuracy, and the corresponding Sn, Sp, Ac and
MCC values are represented in bold. b Each corresponding measurement is
represented as the average value 6standard deviation.
doi:10.1371/journal.pone.0039195.t001

A Method for the Prediction of Sumoylation Sites
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coding and Z-scale encoding. To compare the performances of

different encoding schemes, the predictors based on these different

encoding schemes were trained and tested on our new datasets in

parallel. As shown in Table 1, the commonly used binary encoding

scheme performed much better compared to all other encoding

schemes in a 10-fold cross-validation, with a MCC value of 0.631

(Sn=60.3%, Sp=98.8%, Ac=97.2%). However, the binary

encoding scheme was outperformed by a value of 0.051 (0.682

minus 0.631) when hydrobinary encoding was utilized. These

results can be further illustrated in the receiver operating

characteristic (ROC) curves and quantified using the correspond-

ing areas under the ROC curves (AUC; Figure 2). Generally, the

highest and leftmost ROC curve in the plot represents the best

classification method. The ROC curve corresponding to hydro-

binary encoding is the highest and leftmost curve, which reaches

a maximum AUC value at 0.912 and represents a better result

than that of binary encoding (Figure 2).

To further evaluate the performance of our method, a leave-

one-out cross-validation was also performed, and the results are

displayed in Table 2. The MCC of hydrobinary encoding

persisted at a high level of 0.690, which was 0.050 greater than

the MCC of binary encoding. ROC curves were plotted, and the

corresponding AUC values were calculated (Figure 3). Because the

results of the leave-one-out validation were almost identical to

those of the 10-fold validation, the hydrobinary approach is

a stable and robust encoding method for sumoylation prediction.

Comparison of SUMOhydro with other Predictors
The proposed SUMOhydro method was benchmarked against

three previously published sumoylation site predictors, SUMOpre

[17], SUMOsp2.0 [16] and seeSUMO (http://bioinfo.ggc.org/

seesumo/). SUMOpre uses a statistical method for sumoylation

site prediction and was trained and tested on 268 sumoylation sites

and 6361 non-sumoylation sites. When leave-one-out cross-

validation was performed, the MCC, specificity, sensitivity and

accuracy of SUMOpre were 0.636, 98.9%, 60.9% and 97.5%,

respectively. Because the web server for SUMOpre was not

available, SUMOpre could not be compared based on the

independent test dataset. However, our method used a larger

dataset and produced a better predictive performance. For

example, the dataset presented here includes 358 sumoylation

sites and 8071 non-sumoylation sites, and the leave-one-out cross-

validation produced MCC, specificity, sensitivity and accuracy

values of 0.690, 98.6%, 71.1% and 97.5%, respectively.

The local version of SUMOsp2.0, SUMOsp_2.0.4_window-

s_20090805.exe, was downloaded and used to predict 24

sumoylation sites in the independent test dataset. The only

applicable thresholds used by SUMOsp2.0 were ‘low’, ‘medium’

and ‘high’, and three thresholds used in seeSUMO were -0.2 (low),

0 (medium) and 0.2 (high). To obtain analogous results, we set the

corresponding thresholds of SUMOhydro to -0.2 (low), 0 (medium)

and 0.2 (high). As shown in Table 3, although the sensitivity of

SUMOsp2.0 and seeSUMO-RF achieved the highest perfor-

mance at 75.0%, the specificity, accuracy and MCC of

SUMOhydro reached higher performance with 91.4%, 90.5%

and 0.405 in the low threshold predictions. For the medium

threshold, the overall accuracy of seeSUMO is higher than

SUMOsp2.0 and SUMOhydro; however, the MCC value of

SUMOhydro is considerably higher than SUMOsp2.0 and

seeSUMO. When the high threshold was used, the MCC value

of SUMOhydro was 0.051 lower than that of SUMOsp2.0 with

the same sensitivity at 58.3%. Because the sensitivity of

SUMOhydro using the high threshold was relatively low, the

optimal thresholds for practical applications would be low and

medium. Based on these benchmarking results, we propose that

Figure 1. Prediction performance for different ratios of positive to negative sets based on binary encoding. The performance of the
binary encoding scheme was assessed using a 10-fold cross-validation strategy.
doi:10.1371/journal.pone.0039195.g001
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SUMOhydro is a novel and useful tool for predicting sumoylation

sites.

Discussion

A competitive sumoylation site predictor termed SUMOhydro

was developed in the present study. We included amino acid

hydrophobicity in a binary encoding scheme, and this hydro-

binary encoding was proven suitable for the prediction of

sumoylation sites, which gives SUMOhydro a better level of

performance and favorable results relative to previously described

predictors. Not only does its ability to clearly characterize amino

acids in different positions surrounding a potential sumoylation

site, it also pays attention on the biochemical property at

different positions. It has been well known that more than two-

thirds of the known sumoylation substrates have the consensus

motif yKxE, suggesting that sumoylation targets the substrate

proteins at a specific position in most cases. Hence, we choose

the position-specific binary encoding as one part of our

hydrobinary encoding approach. On the other hand, the

hydrophobicity has been proven to play a critical role in

sumoylation site recognition. Therefore, the hydrobinary encod-

ing is particularly suitable for the prediction of sumoylation.

Although the overall function of this new tool remains un-

satisfactory, we expect that the hydrobinary encoding approach

reported here will be useful for the further development of more

successful sumoylation prediction systems by adopting additional

state-of-the-art machine learning methods or by combining this

technique with other encoding schemes. The SUMOhydro web

server has been constructed to facilitate its use by the biological

community, and it is freely accessible at (http://protein.cau.edu.

cn/others/SUMOhydro/). In conclusion, this tool has possible

applications to proteome-wide sumoylation site prediction.

Methods

Datasets
The experimentally validated sumoylation sites were extracted

from two sources. The first source was SUMOsp2.0, which

contains 332 non-redundant sumoylation sites in 197 proteins

compiled from research articles published prior to October 18,

2007. The second source was the PubMed database, which was

searched using the keywords ‘‘SUMO’’ and ‘‘sumoylation’’ to

obtain data from October 18, 2007, to January 16, 2010. This

Figure 2. ROC curves of different encoding SVM models using a 10-fold cross-validation.
doi:10.1371/journal.pone.0039195.g002

Table 2. Prediction performance of leave-one-out cross-
validation based on different encoding methods.

Site
Encoding
scheme Sn (%) Sp (%) Ac (%) MCC

K Binary 59.360.6 99.060.0 97.360.1 0.64060.005

CKSAAP 57.061.9 93.760.1 92.160.1 0.36760.016

PSSM 55.361.4 94.860.1 93.160.1 0.38860.021

KNN 57.961.9 98.460.1 96.660.2 0.57660.019

Six_letter 58.364.8 95.260.5 93.760.1 0.42360.020

Nine_letter 57.463.0 95.260.2 93.660.3 0.41560.021

Hydrobinary 71.162.9 98.660.1 97.560.2 0.69060.017

Z_scales 60.164.6 98.460.1 96.860.4 0.59960.037

aThe SVM-based prediction algorithm was used, and the parameters of each
encoding scheme were primary optimized. The hydrobinary encoding scheme
resulted in the highest level of accuracy, and the corresponding Sn, Sp, Ac and
MCC values are represented in bold. b Each corresponding measurement is
represented as the average value 6standard deviation.
doi:10.1371/journal.pone.0039195.t002
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search found 38 experimentally defined sumoylation sites in 27

proteins from 362 research articles. These primary sequences were

also extracted from the UniProt database (http://www.uniprot.

org/) (see Supporting Information, Document S1). In total, 221

proteins, covering 370 sumoylation sites, were compiled into the

initial positive dataset. Similar to other PTM sites predictors, the

input for a sumoylation site predictor is also generally represented

by a 2n+1 residue-long sequence with a K in the central position

(i.e., the window size is equal to 2n+1). Each site within the

datasets is represented by a sequence fragment of 25 amino acids

where K is in the central position. For the sites located in the N- or

C-terminus, the number of upstream or downstream residues may

be less than 12. To ensure a sequence fragment with a unified

length, a non-existent amino acid O was assigned to fill in the

corresponding positions. Thus, in the present study, 21 amino

acids were considered to reflect the sequence context of

a sumoylation site, which were ordered alphabetically as

ACDEFGHIKLMNPQRSTVWYO. All K residues in these 221

protein sequences with no annotation related to a sumoylation site

were selected as negative sites. A total of 9195 non-sumoylation

residues were initially selected. We further filtered the initial

dataset using a threshold of 40% sequence identity to avoid an

overestimation of the performance that would be caused by

sequence redundancy. This procedure ensured that any given

fragment pairs in all of the remaining positive and negative

samples shared a sequence identity of less than 40%. Finally, we

obtained a filtered sumoylation site dataset containing 358 positive

(Positive_K) and 8071 negative samples (Negative_K), which were

utilized to train and test SUMOhydro (see Supporting In-

formation, Documents S2 and S3).

To independently compare the prediction performance of

SUMOhydro with previous predictors, we used a test dataset

consisting of an additional 24 sumoylation sites (Positive_test.txt)

and 510 non-sumoylation sites (Negative_test.txt) in 17 proteins

that were reported from June 1, 2010 to January 1, 2012 (see

Supporting Information, Documents S4 and S5). This dataset

excluded all the instances used by seeSUMO, including the

sumoylation sites from research articles published before June 1,

2010.

Figure 3. ROC curves of different encoding SVM models using a leave-one-out cross-validation.
doi:10.1371/journal.pone.0039195.g003

Table 3. Comparison of SUMOhydro with other predictors.

Threshold Method Sn (%) Sp (%) Ac (%) MCC

Low SUMOsp2.0 75.0 83.1 82.8 0.304

seeSUMO-SVM 66.7 91.0 89.9 0.373

seeSUMO-RF 75.0 82.8 82.4 0.300

SUMOhydro 70.8 91.4 90.5 0.405

Medium SUMOsp2.0 62.5 92.6 91.2 0.381

seeSUMO-SVM 54.2 95.1 93.3 0.397

seeSUMO-RF 70.8 88.4 87.6 0.351

SUMOhydro 66.7 93.5 92.3 0.432

High SUMOsp2.0 58.3 96.3 94.6 0.470

seeSUMO-SVM 37.5 97.8 95.1 0.386

seeSUMO-RF 66.8 90.4 89.3 0.362

SUMOhydro 58.3 94.9 93.3 0.419

aSUMOhydro, seeSUMO and SUMOsp2.0 were tested using an entirely
independent dataset. b The highest values for each threshold are indicated in
bold.
doi:10.1371/journal.pone.0039195.t003
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Feature Construction
Binary encoding. In the binary encoding scheme, each

amino acid is represented by a 21-dimensional binary vector, e.g.,

A (100000000000000000000), C (010000000000000000000), …,

O (000000000000000000001), etc. For a query sumoylation site

represented by a fragment of 2n+1 residue, the central residue is

always K, which does not need to be considered. Therefore, the

total dimension of the proposed binary feature vector is 2162n.

CKSAAP encoding. In this study, a sumoylation site is

represented by a sequence fragment of 25 amino acids. CKSAAP

encoding reflects the composition of k-spaced amino acid pairs (i.e.,

pairs that are separated by k other amino acids) within this

sequence fragment. A feature vector is then used to represent the

composition of these pairs, which can be described as follows:

( cAA cAC cAD � � � cOO )441 ð1Þ

The value of each feature denotes the composition of the

corresponding amino acid pair in the fragment. For example, if an

AD pair appears m times in a fragment, the composition of the AD

pair in the vector (i.e.,cAD) is equal to m. The amino acid pairs for

k=0, 1, …, kmax are jointly considered in this study. Therefore, the

total dimension of the proposed feature vector is 4416 (kmax+1). In
our study, we define the kmax as equal to 4 when considering the

dimension and overall performance.

PSSM encoding. The PSSM-encoding method has consis-

tently been used to predict biological problems because of its

ability to reflect the evolutionary information of a sequence

fragment, such as the prediction of RNA-binding sites [24,25] and

subcellular localizations of Gram-negative bacterial proteins [26].

The input for each sequence fragment consisted of a corresponding

row in the position-specific scoring matrix (PSSM) generated from

three cycles of PSI-BLAST [19] searches against the Swiss-Prot

non-redundant database using an E-value of 0.001.

KNN encoding. KNN encoding scheme is based on the

concept of the nearest neighbor algorithm, which is a method for

classifying a new object according to the k closest samples in the

feature space [27]. The detailed procedures of this encoding

method are described as follows. For two sequence fragments S1
{aa1, aa2, …, aan-1, aan} and S2 {aa1, aa2, …, aan-1, aan}, their

distance (S1, S2) can be defined as:.

Distance(S1,S2)~
Xn

i~1

Blosum(S1(i),S2(i)) ð2Þ

where n is the length of the sequence fragment, and the amino

acid similarity matrix is derived from normalized BLOSUM62

matrix [28]. The average distances from the new sequence s to the

k nearest neighbors in the positive and negative sets were then

calculated and denoted as Dp and Dn, respectively. The KNN score

is defined as the ratio of Dp to Dn. Finally, we set a different k value

to obtain a series of KNN features. In this study, k was chosen to

be (1, 3, 5, 7, 9, 15).

Six_letter encoding. Six_letter encoding is a simple binary

encoding method that uses a reduced alphabet. The 20 amino

acids were divided into five groups based on their physical

characteristics, which were aliphatic (alanine, valine, leucine,

isoleucine), charged (aspartic acid, glutamic acid, arginine, lysine),

polar (serine, threonine, asparagine, glutamine), cyclic (phenylal-

anine, histidine, tyrosine, tryptophan) and other (glycine, proline,

methionine, cysteine). Because we defined a nonexistent amino

acid ‘‘O’’ to represent an empty position, we obtained a total of six

groups.

Nine_letter encoding. This encoding scheme is similar to

six_letter encoding; however, the group ‘‘other’’ was expanded

into individual amino acids. Thus, the nine_letter encoding

scheme included the groups: aliphatic, charged, polar, cyclic,

glycine, proline, methionine, cysteine and the nonexistent amino

acid ‘‘O’’.

Hydrobinary encoding. A new feature construction, termed

‘‘hydrobinary encoding’’, was employed. The basic premise of this

encoding scheme is to combine hydrophobicity and binary

encoding. In this encoding scheme, each amino acid is represented

by a corresponding value, which is based on a hydrophobicity

scale matrix (cf. Table 4). The window size used for hydrophobicity

encoding is 1 amino acid upstream to 2 amino acids downstream,

which covers the entire hydrophobic region. In addition, each

amino acid is also represented by binary encoding. The window

size for the binary encoding used here is the same as for binary

encoding used independently. Therefore, the total dimension of

this proposed method is 2162n+164.

Z_scales encoding. In this encoding scheme, each amino

acid is characterized by five physicochemical descriptor variables

(cf. Table 5), which were developed by Sandberg et al. in 1998

[29].

Support Vector Machine (SVM)
An SVM is a machine learning algorithm that has been widely

employed for different biological problem predictions, such as

protein fold recognition [30], protein isomerization classification

[31] and the prediction of membrane protein types [32].

Generally, SVM constructs a hyperplane in a high-dimension

space, which separates two different groups of feature vectors in

the training set using a maximum margin. The implementation of

the SVM algorithm used here was SVM-Light (http://svmlight.

joachims.org/). In the current study, two parameters (i.e., the

regularization parameter C and the width parameter c) in a radial

basis function (RBF), which is one of the kernel functions in SVM,

were determined in advance to optimize the SVM training.

Performance Assessment
Four measurements, i.e., Ac, Sn, Sp and MCC, which are

commonly used in other studies, were applied to evaluate the

prediction performance. The definitions are as follows:

Table 4. Hydrophobicity scales for the 20 amino acids.

Amino Acid Feature Value Amino Acid Feature Value

A 1.81 M 2.35

C 1.28 N -6.64

D -8.72 P 4.04

E -6.81 Q -5.54

F 2.98 R -14.92

G 0.94 S -3.40

H -4.66 T -2.57

I 4.92 V 4.04

K -5.55 W 2.33

L 4.92 Y -0.14

aCited from [35].
doi:10.1371/journal.pone.0039195.t004
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Ac~
TPzTN

TPzFPzTNzFN
, ð3Þ

Sn~
TP

TPzFN
, ð4Þ

Sp~
TN

TNzFP
, ð5Þ

MCC~
(TP|TN){(FN|FP)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)
p :ð6Þ

where TP, FP, FN and TN denote true positives, false positives,

false negatives and true negatives, respectively. Among these

values, the MCC value is the most important measurement when

considering the highly imbalanced training dataset used here. The

MCC value ranges from -1 to 1, and a higher value indicates

a better prediction performance.

The prediction accuracy was also measured using an ROC

analysis [33,34], which plots the true positive rate (i.e., Sn) as

a function of the false positive rate (i.e., 1-Sp) for all possible

thresholds. The area under the ROC curve (AUC) was also

calculated to quantify the prediction performance of the proposed

method. Generally, a prediction method is considered to improve

as the AUC value approaches 1.

Supporting Information

Document S1 Document S1 contains the primary sequences of

the sumoylated proteins extracted from the UniProt database.

(FA)

Document S2

Document S2 contains the sumoylation sites (Positive_K) used for

training and testing the proposed SUMOhydro predictor. (TXT)

Document S3

Document S3 contains the non-sumoylation sites (Negative_K)

used for training and testing the proposed SUMOhydro predictor.

Document S4 Document S4 contains the sumoylation sites

(Positive_test.txt) that were used in the independent test dataset.

(TXT)

Document S5 Document S5 contains the non-sumoylation sites

(Negative_test.txt) that were used in the independent test dataset.

(TXT)

Acknowledgments

We thank Dr. Ziding Zhang (China Agricultural University) for his

valuable discussions and kind assistance on this work. We are also grateful

to Dr. Binghui Li (Tianjin Medical University Cancer Institute and

Hospital, China) for his critical evaluation of this manuscript.

Author Contributions

Conceived and designed the experiments: YZC GY. Performed the

experiments: YZC. Analyzed the data: YZC. Contributed reagents/

materials/analysis tools: YZC ZC. Wrote the paper: YZC. Manuscript

preparation: ZC. Method assessment: YAG.

References

1. Meulmeester E, Melchior F (2008) Cell biology: SUMO. Nature 452: 709–711.

2. Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on.

Nat Rev Mol Cell Biol 8: 947–956.

3. Gill G (2005) Something about SUMO inhibits transcription. Curr Opin Genet

Dev 15: 536–541.

4. Zhao J (2007) Sumoylation regulates diverse biological processes. Cell Mol Life

Sci 64: 3017–3033.

5. Verger A, Perdomo J, Crossley M (2003) Modification with SUMO. A role in

transcriptional regulation. EMBO Rep 4: 137–142.

6. Hay RT (2005) SUMO: a history of modification. Mol Cell 18: 1–12.

7. Dorval V, Fraser PE (2007) SUMO on the road to neurodegeneration. Biochim

Biophys Acta 1773: 694–706.

8. Boggio R, Chiocca S (2006) Viruses and sumoylation: recent highlights. Curr

Opin Microbiol 9: 430–436.

9. Moschos SJ, Mo YY (2006) Role of SUMO/Ubc9 in DNA damage repair and

tumorigenesis. J Mol Histol 37: 309–319.

10. Kim JH, Choi HJ, Kim B, Kim MH, Lee JM, et al. (2006) Roles of sumoylation

of a reptin chromatin-remodelling complex in cancer metastasis. Nat Cell Biol 8:

631–639.

11. Guo D, Li M, Zhang Y, Yang P, Eckenrode S, et al. (2004) A functional variant

of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes.

Nat Genet 36: 837–841.

12. Miura K, Jin JB, Hasegawa PM (2007) Sumoylation, a post-translational

regulatory process in plants. Curr Opin Plant Biol 10: 495–502.

13. Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, et al. (2006)

PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl

Acad Sci U S A 103: 45–50.

Table 5. Z_scale for the 20 amino acids.

Amino Acid z1 z2 z3 z4 z5 Amino Acid z1 z2 z3 z4 z5

A 0.24 -2.32 0.60 -0.14 1.30 M -2.85 -0.22 0.47 1.94 -0.98

C 0.84 -1.67 3.71 0.18 -2.65 N 3.05 1.62 1.04 -1.15 1.61

D 3.98 0.93 1.93 -2.46 0.75 P -1.66 0.27 1.84 0.70 2.00

E 3.11 0.26 -0.11 -3.04 -0.25 Q 1.75 0.50 -1.44 -1.34 0.66

F -4.22 1.94 1.06 0.54 -0.62 R 3.52 2.50 -3.50 1.99 -0.17

G 2.05 -4.06 0.36 -0.82 -0.38 S 2.39 -1.07 1.15 -1.39 0.67

H 2.47 1.95 0.26 3.90 0.09 T 0.75 -2.18 -1.12 -1.46 -0.40

I -3.89 -1.73 -1.71 -0.84 0.26 V -2.59 -2.64 -1.54 -0.85 -0.02

K 2.29 0.89 -2.49 1.49 0.31 W -4.36 3.94 0.59 3.44 -1.59

L -4.28 -1.30 -1.49 -0.72 0.84 Y -2.54 2.44 0.43 0.04 -1.47

doi:10.1371/journal.pone.0039195.t005

A Method for the Prediction of Sumoylation Sites

PLoS ONE | www.plosone.org 7 June 2012 | Volume 7 | Issue 6 | e39195

 (TXT) 



14. Yang SH, Galanis A, Witty J, Sharrocks AD (2006) An extended consensus motif

enhances the specificity of substrate modification by SUMO. EMBO J 25: 5083–
5093.

15. Xue Y, Zhou F, Fu C, Xu Y, Yao X (2006) SUMOsp: a web server for

sumoylation site prediction. Nucleic Acids Res 34: W254-W257.
16. Ren J, Gao X, Jin C, Zhu M, Wang X, et al. (2009) Systematic study of protein

sumoylation: Development of a site-specific predictor of SUMOsp 2.0.
Proteomics 9: 3409–3412.

17. Xu J, He Y, Qiang B, Yuan J, Peng X, et al. (2008) A novel method for high

accuracy sumoylation site prediction from protein sequences. BMC Bioinfor-
matics 9: 8.

18. Teng S, Luo H, Wang L (2011) Predicting protein sumoylation sites from
sequence features. Amino Acids.

19. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped
BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res 25: 3389–3402.

20. Chen K, Kurgan LA, Ruan J (2007) Prediction of flexible/rigid regions from
protein sequences using k-spaced amino acid pairs. BMC Struct Biol 7: 25.

21. Chen K, Kurgan L, Rahbari M (2007) Prediction of protein crystallization using
collocation of amino acid pairs. Biochem Biophys Res Commun 355: 764–769.

22. Chen K, Kurgan LA, Ruan J (2008) Prediction of protein structural class using

novel evolutionary collocation-based sequence representation. J Comput Chem
29: 1596–1604.

23. Chen YZ, Tang YR, Sheng ZY, Zhang Z (2008) Prediction of mucin-type O-
glycosylation sites in mammalian proteins using the composition of k-spaced

amino acid pairs. BMC Bioinformatics 9: 101.
24. Cheng CW, Su EC, Hwang JK, Sung TY, Hsu WL (2008) Predicting RNA-

binding sites of proteins using support vector machines and evolutionary

information. BMC Bioinformatics 9 Suppl 12: S6.

25. Kumar M, Gromiha MM, Raghava GP (2008) Prediction of RNA binding sites

in a protein using SVM and PSSM profile. Proteins 71: 189–194.

26. Wang T, Yang J (2010) Predicting subcellular localization of gram-negative

bacterial proteins by linear dimensionality reduction method. Protein Pept Lett

17: 32–37.

27. Gao J, Agrawal GK, Thelen JJ, Obradovic Z, Dunker AK, et al. (2009) A New

Machine Learning Approach for Protein Phosphorylation Site Prediction in

Plants. Lect Notes Comput Sci 5462/2009: 18–29.

28. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein

blocks. Proc Natl Acad Sci U S A 89: 10915–10919.

29. Sandberg M, Eriksson L, Jonsson J, Sjostrom M, Wold S (1998) New chemical

descriptors relevant for the design of biologically active peptides. A multivariate

characterization of 87 amino acids. J Med Chem 41: 2481–2491.

30. Yan RX, Si JN, Wang C, Zhang Z (2009) DescFold: a web server for protein

fold recognition. BMC Bioinformatics 10: 416.

31. Song J, Burrage K, Yuan Z, Huber T (2006) Prediction of cis/trans

isomerization in proteins using PSI-BLAST profiles and secondary structure

information. BMC Bioinformatics 7: 124.

32. Hayat M, Khan A (2011) MemHyb: Predicting membrane protein types by

hybridizing SAAC and PSSM into the general form of Chou’s PseAAC. J Theor

Biol.

33. Centor RM (1991) Signal detectability: the use of ROC curves and their

analyses. Med Decis Making 11: 102–106.

34. Gribskov M, Robinson NL (1996) Use of receiver operating characteristic

(ROC) analysis to evaluate sequence matching. Comput Chem 20: 25–33.

35. Radzicka A, Wolfenden R (1988) Comparing the polarities of the amino acids:

Side-chain distribution coefficients between the vapor phase, cyclohexane, 1-

Octanol, and neutral aqueous solution. Biochemistry: 1664–1670.

A Method for the Prediction of Sumoylation Sites

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e39195


