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Abstract

We evaluated the ability of simple and complex surrogate-indices to identify individuals from an overweight/obese cohort
with hepatic insulin-resistance (HEP-IR). Five indices, one previously defined and four newly generated through step-wise
linear regression, were created against a single-cohort sample of 77 extensively characterised participants with the
metabolic syndrome (age 55.6+1.0 years, BMI 31.520.4 kg/m?; 30 males). HEP-IR was defined by measuring endogenous-
glucose-production (EGP) with [6-6°H,] glucose during fasting and euglycemic-hyperinsulinemic clamps and expressed as
EGP*fasting plasma insulin. Complex measures were incorporated into the model, including various non-standard
biomarkers and the measurement of body-fat distribution and liver-fat, to further improve the predictive capability of the
index. Validation was performed against a data set of the same subjects after an isoenergetic dietary intervention (4 arms,
diets varying in protein and fiber content versus control). All five indices produced comparable prediction of HEP-IR,
explaining 39-56% of the variance, depending on regression variable combination. The validation of the regression
equations showed little variation between the different proposed indices (* = 27-32%) on a matched dataset. New complex
indices encompassing advanced measurement techniques offered an improved correlation (r=0.75, P<<0.001). However,
when validated against the alternative dataset all indices performed comparably with the standard homeostasis model
assessment for insulin resistance (HOMA-IR) (r=0.54, P<<0.001). Thus, simple estimates of HEP-IR performed comparable to
more complex indices and could be an efficient and cost effective approach in large epidemiological investigations.
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Introduction measured using tracer dilution technique, and fasting plasma
insulin (FPI) levels has been proposed and used as the next best

Hepati(‘, insulin resistance (HEP—IR) is emerging as a central method for measuring HEP-IR [275]_ Unfortunately, this method
determinant of whole-body insulin resistance, fatty liver disease,

dyslipidemia and Type 2 Diabetes [1-3] and is being suggested as
a key treatment target in new drug development for diabetes and
its precursor states. Therefore, accurate means of assessing and
quantifying the degree of HEP-IR are urgently required.

The gold standard method for measuring HEP-IR 1is the
performance of tracer dilution studies incorporating stepped
clamps, which is not feasible in larger metabolic studies and
would not be suitable for routine clinical use [4]. Considerable
efforts have been devoted to identifying simpler and less resource

still requires highly skilled staff with specialised equipment that is
not available to many clinical centres. In addition, stable isotope
methods are typically time consuming and expensive, thus making
them inapplicable for use in epidemiological and/or larger
metabolic studies. Therefore, the development and validation of
simple and cost effective indices for estimating HEP-IR that
identifies individuals with a high probability of hepatic insulin
resistance 1s clinically relevant.

A large multi-centre European consortium [2] has recently
proposed a novel index for the estimation of HEP-IR, using EGP
intensive means of estimating HEP-IR. Estimating HEP-IR as the multiplied by FPI as the measure of HEP-IR against which the

product of fasting endogenous glucose production (EGP), as index was compared. This index was derived using linear
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regression techniques [6], resulting in a model which combined
simple phenotype information (body mass index (BMI) and
estimated fat-mass) with plasma measurements (insulin and high
density lipoprotein (HDL) cholesterol). The index correlated
reasonably well with the data sets in the original study, between
r=0.53 to 0.65 (P<0.001), depending on data set partitioning.
Using results from an alternative dataset of overweight and obese
non diabetic subjects with the metabolic syndrome [7], as defined
by International Diabetes Federation criteria [8], we aimed to
validate both the proposed estimation index [2] as well as several
potential alternatives proposed in this study by comparing
performance against an accepted direct HEP-IR measurement
using tracer dilution.

Critical factors when developing new indices include: (i) the
ability of the model to accommodate the original data, often
referred to as the goodness-of-fit; and (i1) the ability to accurately
predict the response of new patients in the face of potentially large
variation in signals due to inherent inter and intra-patient
variability and measurement error [9]. Therefore, validation of
any index against other data sets and/or using statistical
approximations (e.g. cross-validation, boot strapping) is essential
[4]. The subjects in this study underwent a dietary intervention
after initial baseline measurements. Since it is not appropriate to
assume that the intervention had no effect on HEP-IR the cohorts
were not pooled into a single dataset to achieve a greater sample
size. Therefore, in this study the measurements obtained have
been maintained separately, creating two datasets which contained
the same subjects with variable measurements taken before and
after an isoenergetic dietary intervention varying in dietary protein
and fiber content [7]. This data partition allows the regression to
be validated and to investigate the robustness and insensitivity of
the proposed indices to real life conditions; further, if an index
were unable to maintain accuracy given such a relatively mild
intervention, it is unlikely to perform in completely independent
cohorts where, apart from the diets, various other factors are likely
to influence the results.

Methods

Study Population

Details of the here investigated study population have been
published [7,10] and the trial was registered at clinicaltrials.gov as
NCTO00579657. The Ethics Committee of the University of
Potsdam approved the study (BMBF FKZ 0313826). All investi-
gations were preformed in agreement with the declaration of
Helsinki. All participants had given written informed consent. The
baseline characteristics of the subjects with a full data set for the
measurement of whole-body insulin sensitivity (using euglycemic-
hyperinsulinemic clamps), hepatic insulin resistance (HEP-IR;
using stable isotope methods) and further parameters are
presented in Table 1. All participants were characterized using
oral glucose tolerance tests (0GTT) prior to the study (normal
glucose metabolism (NGM), n = 38; impaired fasting glucose (IFG),
n=24; impaired glucose tolerance IGT), n= 3; IFG+IGT, n=12;
diabetes, n=0). All participants were overweight with a body-
mass-index (BMI) =25 kg/m? and fulfilled the criteria of the
metabolic syndrome according to IDF criteria [8], and 53 of the
participants were obese (BMI =30 kg/m?).

Longitudinal data on the same subjects measured after 6-18
weeks were used for validation of the here proposed indices.
Participants were subjected to an 18 weeks isoenergetic dietary
intervention varying in dietary fibre and protein contents, and
comparable fat contents (30% of energy intake). Subjects were
group matched according to age, gender, waist circumference,
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body mass index (BMI), and drug intake, and assigned to either a
control group [percent of energy intake, protein (P) 17%,
carbohydrates (C) 51-52%, dietary fibre (F) 14-15 g]; a high-
cereal fiber group (P 17%, C 51-52%, F 41-43 g); a high-protein
group (P 26-28%, C 43-45%, I 13-14 g); or a diet moderately
high in both protein and dietary fiber (P 22-23%, C 44-46%,
F=26g) [7].

Euglycemic Hyperinsulinemic Clamps for the
Measurement of Whole-body Insulin Sensitivity

Participants arrived at the metabolic unit between 07:15 and
08:30 am after a 10-h overnight fast. No intake of food or any
drinks apart from tap water was allowed within the last 12 h
before the studies. Two intravenous catheters were inserted into
contralateral forearm veins. The arm at which blood samples were
drawn was placed into a warming box (65°C)) throughout the
clamp studies. After administration of an insulin bolus at —10 min
(individually adjusted according to the body surface area of the
participants), euglycemic-hyperinsulinemic clamps were per-
formed at a constant insulin infusion rate of 40 mU+m >min ',
for at least 120 min until steady state conditions were achieved.
Steady state was defined as stable glucose infusion rates (GIR) over
at least 30 min, together with stable plasma glucose concentrations
(range of 4.4%+0.4 mmol/liter). Whole-body glucose disposal was
calculated from the glucose infusion rate and was expressed as
insulin-mediated glucose uptake (M-value). Blood samples were
drawn at timed intervals during the clamps, immediately chilled,
centrifuged, and the supernatants were stored at —80°C until
analysis.

Stable Isotope Studies for the Measurement of Hepatic
Insulin Resistance

For the measurement of hepatic endogenous glucose production
(EGP; given in mg-kg '“min '), a primed [0.06 (mg)xbody wt
(kg) xfasting plasma glucose (mg/dl), from —120 to —115 min],
continuous [0.27 (mg)xbody wt (kg), from —115 to +320 min]
infusion of [6,6—2H2] glucose 99% (Euriso-Top, Saarbriicken,
Germany) was administered. A basal period of 100 min was
allowed for tracer equilibration, as described [11]. The priming
dose was adjusted to fasting glucose concentrations to avoid
overestimation of glucose production rates. Rates of EGP were
determined from the tracer infusion rate of D—[6,6—2H2]glucose
and its enrichment to the hydrogen bound to carbon 6 divided by
the mean percent enrichment of plasma D-[6,6->Hy]glucose.
Because both GIRs and plasma glucose levels were held constant
during the steady state phase of the clamps, steady-state equations
were appropriate for the calculation of EGP [11]. HEP-IR was
then calculated as the product of fasting EGP and fasting plasma
insulin [5]. Further details have been published [7,11,12].
Euglycemic hyperinsulinemic clamp conditions resulted in signif-
icant and near complete suppression of EGP in all subjects
(1.64+0.02 mg-kg '*min" (baseline) vs 0.26+0.03 mg-kg ' -min""
(steady state), £<<0.00001), as could be expected in non diabetic
participants.

Measurement of Body Composition and Liver Fat
Content

Magnetic resonance examinations were performed on a 1.5 T
whole body imager (Magnetom Avanto, Siemens Healthcare,
Erlangen, Germany) as described [7,13]. For quantification of
abdominal adipose tissue, an axial T1-weighted fast spin echo
technique with an echo train length of 7 was applied. Measure-
ment parameters were: echo time (TE)=12 ms, repetition time
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Table 1. Characteristics of the study population cohort for regression.

Baseline Validation P value
Number of subjects (n) 77 74
Sex (males/females) 30/47 30/44
Age (years) 55.6+1.0 57.0£1.0 0.33
Weight (kg) 89.7+1.8 87.7%1.6 0.39
BMI (kg/mz) 31.5+04 30.7+0.3 0.13
Waist (cm) 101.7£1.3 99.3*1.1 0.15
Use of antihypertensive and/or lipid lowering drugs (n) 38 31 0.36
REE (kcal/day) 1495+33 150039 0.91
Insulin resistance
Fasting EGP basal (mg-kg™'*min™") 1.65+0.02 1.68+0.02 0.25
Clamp suppression EGP (mg-kg™"-min~") 0.27+0.03 0.34+0.03 0.08
EGP * FPI (mg-kg™"-min~")* (mU/L) 15.7+0.9 17.7+1.0 0.14
MCR (mL-kg~"-min~") 4.88+0.24 44+0.2 0.11
M-value (mg-kg~'*min~") 42+02 3.9+0.2 0.21
Fasting plasma glucose (mg/dl) 86.10.9 84.2+0.8 0.10
Fasting plasma insulin (mU/L) 9.7+0.6 10.6+0.6 0.30
Body composition
VAT (L) 45*0.2 4.1%0.2 0.34
NVAT (L) 16.3+0.6 141204 0.003
Intrahepatic fat content (%) 8.2*1.1 6.6£0.8 0.26
Total body fat mass (kg) 36.3£1.1 33.1£0.8 0.023
Lean mass (kg) 534%14 545*1.4 0.057
Biomarkers
ASAT (U/L) 21.7*x0.7 20.3*+0.6 0.12
ALAT (U/L) 23.7*x1.7 23.5*2.1 0.93
GGT (U/L) 23520 23.3*2.1 0.93
CK-18 (U/L) 183.7%£12.5 159.4+9.7 0.13
DHEA-S (ng/mL) 107885 107958 1.0
Total cholesterol (mmol/L) 53%0.1 5.2%+0.1 0.67
HDL (mmol/L) 1.3+0.0 1.2+0.0 0.044
LDL (mmol/L) 34+0.1 3.4£0.1 0.50
Triacylglycerols (mmol/L) 1.1%0.1 1.4%0.1 0.014
FFA (mmol/L) 0.7£0.0 0.7£0.0 0.91
Adiponectin (ug/mL) 12.2+0.7 154*1.2 0.022
Leptin (ng/mL) 182+1.4 14.5%1.1 0.043

one-way ANOVA.
doi:10.1371/journal.pone.0039029.t001

(TR)=490 ms, slice thickness 10 mm, 5 slices per sequence,
10 mm gap between the slices. A 256 X178 matrix was recorded in
a measuring time of 12 s and images were recorded from the
femoral head to the head of the humerus (between 26 and 30
slices, depending on the size of the volunteer). Volunteers were in
prone position with the arms extended. Post-processing was
performed by a semiautomatic segmentation program (Matlab 6.5)
by determination of noise, lean tissue and adipose tissue. Visceral
adipose tissue (VAT) was determined by manually drawing a
region of interest in the original image, and non visceral
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BMI, body mass index; REE, resting energy expenditure; EGP, endogenous glucose production; FPI, fasting plasma insulin; MCR, metabolic clearance rate of glucose; VAT,
visceral adipose tissue; NVAT, non-visceral abdominal adipose tissue; ASAT, aspartate amino transferase; ALAT, alanine amino transferase; GGT, gamma-glutamyl
transferase; CK-18, cytokeratin 18; DHEA-S dehydroepiandosterone sulphate; HDL; high density lipoprotein; LDL, low density lipoprotein; FFA, free fatty acids.

n=77 overweight and obese non-diabetic participants with metabolic syndrome. Validation analyses were performed in a semi-independent cohort, investigating the
same participants that participated in an isoenergetic dietary intervention [8], 6-18 weeks after the baseline measurements (n=74). Analyses were performed using

abdominal adipose tissue (NVAT) was calculated as difference
between total abdominal adipose tissue and VAT, thus including
adipose tissue around the heart and intermuscular adipose tissue.

Proton magnetic resonance spectroscopy (‘H-MRS) for the
measurement of hepatic lipid content was performed as described
[7]. In brief; lipid content in the liver was measured by localized
"H-MRS from a volume of interest (VOI) within the posterior part
of segment 7 of the liver. A single segment of the spine array coil
was used for acquisition of the spectroscopic data. For volume
selection, a single voxel STEAM technique was applied.
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Measurement ~ parameters were TR=45s, TE=10ms,
TM =15 ms, VOI 3.0x3.0x2.0 ecm®. Thirty-two acquisitions
were recorded to obtain a sufficient SNR in a measuring time of
2:08 min. In order to minimize line broadening due to breathing,
volunteers were requested to breathe within the TR interval and to
be in expiration during each data acquisition. Shimming of the
VOI was performed in the automatic mode and the volunteers
were requested to breathe flatly. Signal integrals of water (H,O at
4.8 ppm) and lipids (CHy and CHjy at 1.25 ppm and 0.95 ppm)
were quantified manually in fixed frequency intervals (water: 3.1—
6.2 ppm, lipids: 0.5-1.8 ppm). HL,.. values were calculated by
the ratio Int(lipids) over Int(lipids+water).

Total body fat and lean mass were measured by using air-
displacement plethysmography (BOD POD, Cosmed, Rome,
Italy), as described [7].

Biomarkers in Blood

Routine laboratory markers were measured using standard
methods in the research laboratories of the German Institute of
Human Nutrition. Glucose concentrations were measured in
venous blood (ABX Pentra 400, ABX Diagnostics, Montpellier,
France), and additionally, for the performance of clamp studies, in
arterialized blood samples. Arterialized plasma glucose concen-
trations were measured immediately, using the glucose oxidase
method (Dr. Miiller Super-GL glucose analyzer, Freital, Ger-
many). Adiponectin (ADI) concentrations were measured by
enzyme-linked immunosorbent assay (Biovendor, Nashville, TN)
[intra-assay coefficient of variation (CV) 6.7%]. Free fatty acids,
cholesterol, LDL and HDL cholesterol, and triglycerides were
analysed using Cobas Mira (Roche, Lorrach, Germany); intra-
assay CV: free fatty acids, 10.5%; cholesterol, 5.1%; HDL
cholesterol, 5.4%; and triglycerides, 5.1%). Cytokeratin 18 (CK-
18), commonly considered as a marker of cell death, has been
recently proposed as independent predictor of non-alcoholic
steatosis hepatis (NASH) [14-16] and was therefore included in
the analyses. CK-18 was measured using M30-Apoptosense
ELISA (Peviva, Bromma, Sweden; intra-assay and inter-assay
CV <10%). Dehydroepiandrosterone sulphate (DHEA-S) was
measured using a radioimmunoassay (DSL-2700 DHEA-S-7 RIA,
Oxon, UK; intra-assay CV 3%, inter-assay CV 5%).

Statistical Methods

The statistical methods centre on the use of linear regression to
identify potential indices of HEP-IR. The dataset used [7] contains
over 200 potential predictor variables for the regression models. In
order to address the issue of practicality and cost the predictors
variables are separated into subsets on the basis of cost and the
inherent difficulty in measuring the variable in question, with
variables that may be measured through standard anthropometric
techniques or directly from blood samples being referred to as
simple variables, and more cost intensives variables requiring
specific expertise and laboratory equipment being referred to as
complex variables. The specific variables used are listed in the
relevant parts of the results section. As in previous studies [2]
forward step-wise linear regression was performed on each
variable set using EGP multiplied by fasting plasma insulin
(EGP*FPI) as the outcome variable in each model. Variables were
rejected if additional variable contribution could be ascribed to
chance with P>0.05. In order to avoid potential bias during the
regression analyses all variables were blinded to the scientist
performing the analysis. Variables were checked for normality
using Shapiro-Wilk test and natural logarithmic transformation
was used if required, or to maintain consistency with other
authors. The index EGP*FPI was not normally distributed and
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was therefore log transformed, which is also in accordance with
[2]. Collinearity of variables was determined using variance
inflation factor (VIF). For the regression all data that had a Cook’s
distance of greater than 0.5 were considered outliers and removed
from the dataset to perform stability analysis. Stability of the
regression variables was determined using a bootstrap process (250
iterations). In order to ensure that the indices are not unduly
influenced by patient’s drugs treatment the validation group was
separated into two cohorts (drugs, or no drugs). By definition, each
sub-group was independent; therefore the Fisher Z transforms of
the respective correlations were found and a 95% confidence level
(0 =10.05) was used to decide whether the difference in correlation
was statistically significant.

Baseline characteristics between the regression and the valida-
tion cohort were compared using one-way analysis of variance
(ANOVA). The total area under the curve (AUC) was calculated
using the trapezoidal method. Statistical analyses were performed
by using SPSS version 19 (SPSS Inc, Chicago, USA).

Validation

In order to compare each index with the regression data set
Pearson correlations (r) and the related co-efficients of determi-
nation (¥) were calculated for regression and validation. In
addition, the r? adjusted for the number of variables incorporated
(adj- /%) was calculated for cach regression index, allowing
comparison of indices with respect to the accuracy fit and
parameter numbers.

For validation two additional statistics have been included to
assess the predictive accuracy: the root mean square of the error
(RMSe, also referred to as the standard estimate of the error) and
the co-efficient of variation of the RMSe. Defined as

Z:(Oi—li)2
(n—k)

RMSe=

where O; and I are the i subject of the outcome variable,
log(EGP*FPI) in this case, and index estimate, 7 is the number of
subjects in the validation dataset and & the number of parameters
estimated. The RMSe is an indication of the variability of data
points with respect to the regression line, which has the benefit of
being in the same units as the original outcome variable (L.e.
log(FPI*EGP)) allowing direct comparison between indices [17]. It
can be considered indicative of a typical error in the estimated
value, thus allowing models to be compared. The Coefficient of
Variation of the RMS error is also included

RMSe

where O is the outcome variable as defined above. This can be
interpreted as a percentage average error. All subjects in the
validation data set did not include all measurements required for
each regression equation; therefore the validation set was restricted
to those individuals that had measurements for all the variables
required for all indices.

Results

Baseline characteristics of the investigated participants are
presented in Table 1. Five indices for the estimation of hepatic
insulin resistance have been indentified using step-wise linear
regression, as described in the statistical analysis section. The first
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is the direct application of a recently proposed index of
Vangipurapu et al. [2], and the remaining four are derived for
this paper. The details of each model and the variables included in
the regression analyses are provided below. Table 2 provides a
summary of the regression statistics and results from the validation
process. Figure 1 shows the comparison of the respective
regressions against the outcome variable, EGP multiplied by
FPIL. Results from the validation data set are shown in Figure 2.

Index 1: Vangipurapu et al. Liver Index
The Vangipurapu et al. Liver Index [2] can be described by the
following equation:

Index 1: =—1.9940.45log(AUCy_120(ins))
+0.005/og(Fat%)—0.15log(HDL)
—0.17log(BMI)

(1)

where AUC( j90(ins) is the insulin total Area-Under-Curve
between 0 and 120 min, (fat%) is the percent mass of total body
fat, and HDL is the high density lipoprotein (HDL) cholesterol
measurement. Although additional insulin measurements were
available in our study, to be consistent with the original
manuscript AUC was calculated from three measurements at
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time points 0, 30 and 120 minutes only. To avoid potential
inconsistency in methodology and allow comparison between the
datasets the Vangipurapu et al. model was applied to our dataset
using a linear regression fit, without stepwise removal or inclusion.
If this were not done applying the Vangipurapu et al. model would
result in artificially reduced correlations with the design data set,
due to the natural variation between the original Vangipurapu et
al. data and the design data set of this study. With reference to
Table 2, regression eq. 1 resulted in a medium strength correlation
(1) of 0.62 (P<0.001) within an adjusted-* of 0.34 when applied to
the regression dataset. This decreased to 0.52 (P<<0.001) when the
index (eq. 1) was applied to the validation data set and an RMSe of
0.48, which is approximately 17% of the mean value. Index 1 (eq.
1) when populated with the original Vangipurapu et al. constants
[2] achieved an correlation of r =0.53, P<0.001 for both datasets,
which is marginally lower as compared with the original
Vangipurapu et al paper, but consistent with the analysis above.

Index 2: Standard Clinical Measurements (Simple
Variable)

In this studies dataset [7] several additional variables were
measured that were not available to previous studies, and were
thus added to the candidate predictors for the step-wise regression.
The candidate predictors were added in a two phase approach. Set
one was indicative of simple or cheap measurements, the second

(b)

n ' " L
2 2.5 3
Index 2: Standard Clinical Variables

(d)

2 25 3
Index 5: HOMA-IR Regression

Figure 1. Comparison of regression against outcome variable. a) Hepatic insulin resistance (HIR) Index as described in Vangipurapu et al.; b)
HIR Index generated from simple clinical measurements; c) HIR index from the regression on the complex measurement set. d) HOMA-IR Regression

index.
doi:10.1371/journal.pone.0039029.g001
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Figure 2. Comparison of regression against outcome variable, validation only. a) Hepatic insulin resistance (HIR) Index as described in
Vangipurapu et al.; b) HIR Index generated from simple clinical measurements; c) HIR index from the regression on the complex measurement set. d)
HOMA-IR Regression index.

doi:10.1371/journal.pone.0039029.g002

set included more expensive measurements or ones that required
specialised training or equipment to perform. For Index 2 only the
simple predictors were considered which included the Vangipur-
apu et al. variables as specified in Index 1, with the addition of
adiponectin (ADI), fasting oGTT insulin and glucose levels, age,
waist circumference, sex and whether the subject was IGT and/or

IFG

Index 2 : =0.45+0.23log(ins)+0.24(AUCy_ 129(ins))

—0.24l0g(ADI)

where Insg is the fasting insulin level as obtained on oGTT study
days, AUC_;90(ins) is the insulin total Area-Under-Curve between
0 and 120 min as defined above, and ADI is serum adiponectin.
The variance inflation factor of Insy and AUC_;50(Ins) was tested

Table 2. Output statistics for the regression (n=77) and when the indices are applied to the design and validation dataset (n = 74).

Index Description Regression Validation

r r? adj. r* r r’ RMSe CV%
1 Vangipurapu et al. index (eq. 1) 0.62 0.39 0.34 0.52 0.27 0.48 17.0
3 Standard clinical variables (eq. 2) 0.73 0.54 0.51 0.55 0.30 0.51 18.2
5 Extensive clinical variables (eq. 3) 0.75 0.56 0.54 0.56 0.32 0.46 16.3
4 HOMA-IR 0.58 0.33 N/A 0.54 0.30 N/A N/A
5 HOMA-IR Regression (eq. 4) 0.62 0.39 0.38 0.54 0.30 0.49 17.6
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r is Pearson’s correlation co-efficient, r? is the co-efficient of determination, adj- r? is the adjusted r?, RMSe the root mean squared of the error and CV the co-efficient of
variation of the RMSe; the mean(std. dev) of outcome variable (log EGP*FPI) for the validation data set 2.83 (0.46). “statistically significant at below P<0.001.
doi:10.1371/journal.pone.0039029.t002
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to ensure that there was no collinearity, and in both cases the
variance influence factor (VIF) in the above index was less than 2.
In terms of the regression statistics (Table 2) this index improved
on both the Vangipurapu et al index (r=0.73, adj-*=0.51,
P<0.001) during the regression to the design dataset; however, this
is not reflected in the correlation analysis (r=0.55, P<<0.001) nor
CV-RMSe 18.3% when performed against the validation data.

Index 3: Extensive Clinical and Biochemical (Complex
Variable)

For the previous two above proposed indices a simple variable
set was chosen with a consideration on cost and the availability of
gold standard measurement techniques; in contrast, irrespective of
methodological considerations for Index 3 more complicated
variables were included that were thought to have a strong
influence on HEP-IR. The variables included are those defined for
the Vangipurapu et al. Index 1 with the addition of intrahepatic
fat content (IHL), visceral and non-visceral adipose fat mass, total
fat and lean mass, biomarkers such as CK-18 and DHEA-S
[18,19], and whole-body insulin sensitivity expressed as M-Value.
This variable combination provided the following index

Index 3 : =3.3140.36log(Insy) —0.15log(M — value)
+0.35/og(ADI)—0.11log(CK —18)

with variables as defined above. This index resulted in the highest
correlation during the stepwise regression (r=0.75, adj-r>=0.54,
P<0.001) and the highest correlation to the validation dataset
(r=0.56, P<0.001). When compared to the outcome variable,
log(EGP*FPI), mean resulted in the lowest co-efficient of variation
of 16%.

It is surprising that whilst some variables, notably IHL r=0.39
(P<0.001) and VAT r=0.36 (P<0.001), showed some correlation
with the outcome measure (EGP*FPI), they were not supported as
being significant during the regression analysis.

Index 4 and 5: Homeostasis Model Assessment for Insulin
Resistance (HOMA-IR)

A standard index for insulin resistance is the well documented
HOMA-IR index [20], which simply uses FPI and fasting plasma
glucose (FPG) measurements to determine whole-body insulin
resistance. To allow independent comparison HOMA-IR was
correlated directly against the design and validation datasets
(referred to as Index 4) and a simple linear regression using the
HOMA-IR was developed to evaluate the benefits of rescaling
HOMA-IR through a simple transform to values within the range
of the HEP-IR estimates; resulting in the following affine
relationship:

Index 5 : =2.267+0.427log(HOMA — IR) (4)

Unsurprisingly, HOMA-IR directly applied to the design data
showed the lowest correlation (r=0.58, P<<0.001), whilst when the
additional regression parameters were used, this improved
marginally (r=0.62, P<<0.001). Interestingly, when used against
the validation dataset the HOMA-IR index showed a correlation
(r=0.54, P<0.001, CV-RMSe =17.6%) higher than that of the
Vangipurapu et al Index and comparable with the new indices
developed in this paper using more extensive clinical measure-
ments.

In addition to the previously described indices an index
developed by Abdul-Ghani et al. [2]1] which incorporates the
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area under the curve of plasma insulin and glucose, as measured
during the first 30 minutes of an oGGT, was analysed. The index
produced low correlation with our regression dataset (r=0.28,
P<0.001), which is believed to be due to differences in the
mvestigated cohorts; in our cohort of strictly overweight and obese
subjects with the metabolic syndrome, a small but statistically
significant difference was detected between fasting plasma insulin
as measured on the study days when stable isotope experiments/
clamps were performed as opposed to oGGT fasting insulin that
was measured after an overnight fast following a carbohydrate
challenge for 2 days (9.7£0.6 mU/L vs. 10.7+0.6, P=0.044).
This is likely to enforce dynamics that may offer insight into the
low correlation of the Abdul-Ghani et al. index in our cohort.

As can be seen in Table 1, a relevant number of the subjects in
both the validation and regression datasets where on drugs for
either lipid reduction or hypertension, which may have an impact
on liver function. To ensure the subjects drug regime did not
impact the predictive quality of the regression, the regression
dataset was split into two subgroups (drug and non-drug) and each
index was applied separately to the subgroups. Using the Fisher Z
Transform none of correlations where found to be significantly
different at a 95% confidence level (o = 0.05). However, it must be
noted that in each case the subgroups were diminished in size
(drug subgroup, n = 36; no-drugs subgroup, n = 38).

Discussion

A new index for the prediction of HEP-IR has been proposed
recently [2]; however, validation in independent cohorts is
necessary to ensure clinical applicability [2,4]. In the present
study we show that the recently proposed index of Vangipurapu et
al. reasonably predicted HEP-IR in our cohort of well character-
ized overweight and obese participants with the metabolic
syndrome. We show comparable results using the Vangipurapu
et al. index and improved goodness-of-fit using several new indices
and variable combinations. When trying to further improve the
index by using parameters such as liver fat content, body fat
distribution, and several biomarkers related to hepatic insulin
resistance [18,19] the predictive value of the index further
improved (*=56%) but the additional gain of accuracy is
obtained at considerable increased costs due to the state of the
art methodology needed. Furthermore, when validating the
improved index in our semi-independent cohort, the complex
measures did not yield a relevant increase in predictive capability
(= 32%), compared to the other presented indices. Adiponectin
appeared to significantly contribute to HEP-IR predictions in
several of our indices, which is consistent with the known negative
correlation between adiponectin and EGP [22], and the known
value of adiponectin measurements to predict insulin sensitivity in
obese subjects [23]. However, additional parameters that would
have been expected to show strong predictive value such as liver
fat (IHL), and DHEA-S, recently proposed as a biomarker for
hepatic fat content [18,19], showed correlation with the outcome
measure but, surprisingly, were not significant in the regression
analyses, although there was further improvement when forced
manually into the model. This however, would be expected from
an increase in the number of variables and can potentially lead to
over-fitting. The finding that IHL did not strongly predict HEP-IR
is interesting, potentially supporting the concept of intrahepatic
lipid partitioning with H;-spectroscopy not being able to
differentiate between deleterious versus metabolically more neutral
accumulation of intrahepatic fat depots [24,25].

Results of the regression analysis are shown in Fig. 1. In each
case the index describes the distribution of patient response
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adequately, with Index 3 appearing the most appropriate
assuming a linear relationship between the outcome and
predictors. This is supported by the correlation and co-efficient
of determination as displayed in Table 2. However, the validation
procedure (Fig. 2) demonstrates the difficulty in predicting patient
response in separate cohorts, with each index showing a marked
bias towards over predicting the HEP-IR outcome variables of
EGP*FPI. Whilst it is expected that there will be variation when
applying any index to a new dataset, due to inherent natural
variation and measurement noise, it cannot be discounted that in
our study the dietary intervention may have impacted the
dynamics of the variables used. Otherwise, any useful index
should be insensitive to simple changes in diet, given that
generalizability to an independent dataset is the final aim.
Although, index 3, incorporating the complex variables, could
strictly be considered the strongest candidate, as the variation seen
between each index when applied to the validated data set was
minimal, the range of explained variation was only 5% (i.e. with
reference to Table 2, r° is between 0.27 and 0.32); it should not be
implied from these results that any one of the proposed markers
offered a clear advantage in predicting HEP-IR, and that all here
investigated predictors to estimate HEP-IR are an approximation
but cannot substitute the measurement of HEP-IR using state of
the art methods. However, when parsimony is considered a simple
linear index containing a measurement of HOMA-IR only could
offer practical advantages, although care should be taken in
clinical situations that have been shown to influence glucose
tolerance/fasting msulin levels such as chronic renal failure [26]
including its mild- to moderate stages [27]. Furthermore, if
absolute values are required over relative relationship offered by
correlation, a simple affine transformation can be used to map to
HEP-IR (EGP*FPI) values using Index 5 (eq. 4).

Limitations of this study include the relatively small number of
participants investigated, although the number was considerable
for a single center cohort with the advantage of using homogenous
methods and measurement techniques which reduced variance.
Another limitation was that only overweight and obese Caucasian
subjects were investigated and therefore results cannot be
extrapolated to other groups and ethnicities. Strengths of this
study include the detailed phenotypic characterisation of the
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The natural progression for this work is to improve predictability
of estimated HEP-IR by incorporating non-linear dynamics in the
models, with non-linearity being based on clinical evidence, as
opposed to non-causal relationships that may improve regression
statistics. An alternative approach is to develop process-driven
mathematical models that are derived from descriptions of the
physiology, as opposed to the statistical models presented in this
paper.

In conclusion, the indices presented in this paper, including that
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data set, yet all the indices shown can only be considered to offer
an indication of underlying relationship between the index and
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IR index. It would therefore be expected that all indices would
perform at best with the same level of prediction in a completely
independent cohort. However, with reference to Figures 1 and 2, it
should be high-lighted that the indices do correlate well with the
HEP-IR outcome variable, given the natural variation inherent in
biomedical measurements. As such, if a study is willing to accept
the approximation such indices offer they may be of use to large
epidemiological studies that do not have the facilities or resource
to perform stable isotope experiments.
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