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Abstract

Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell
pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent
epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs),

225RKRKRK230. Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear
localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively
localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the
nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG
regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs
fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear
targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear
traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which
subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes
by bacterial proteins.

Citation: Moon DC, Choi CH, Lee SM, Lee JH, Kim SI, et al. (2012) Nuclear Translocation of Acinetobacter baumannii Transposase Induces DNA Methylation of CpG
Regions in the Promoters of E-cadherin Gene. PLoS ONE 7(6): e38974. doi:10.1371/journal.pone.0038974

Editor: Riccardo Manganelli, University of Padova, Italy

Received January 9, 2012; Accepted May 14, 2012; Published June 7, 2012

Copyright: � 2012 Moon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (2010-0016456). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: leejc@knu.ac.kr (JCL); doskim@knu.ac.kr (DSK)

. These authors contributed equally to this work.

Introduction

Acinetobacter baumannii is an important opportunistic pathogen

that causes a variety of human infections in both community and

hospitals [1,2]. A. baumannii infection causes a high mortality rate

in patients with mechanical ventilation and a fatal underlying

disease [3]. The fatality of patients infected with A. baumannii is

primarily due to host factors, but bacterial virulence factors such as

biofilm formation [4,5], serum resistance [6,7], bacterial adher-

ence to host cells [8], and host cell death [9,10] are also associated

with pathogenic processes and disease development.

Nuclear targeting of bacterial proteins has emerged as a

pathogenic mechanism whereby bacterial proteins can directly

interact with nuclear molecules or indirectly disturb signal

transduction pathways, which result in host cell pathology [11].

To date, very few bacterial proteins, including cytolethal

distending toxins of Gram-negative bacteria [12–14], IpaH9.8

and OspF of Shigella species [15,16], SspH1 of Salmonella enterica

[17], YopM of Yersinia species [18], and a novel nuclear effector

(NUE) of Chlamydia trachomatis [19], and outer membrane protein A

of A. baumannii [9], have been found to target the nuclei of host

cells and induce cell pathology. However, whole genome analysis

revealed that A. baumannii, Escherichia coli, Helicobacter pylori,

Pseudomonas aeruginosa, and Shigella sonnei were found to carry

several proteins with nuclear localization signals (NLSs) [20,21].

NLSs are recognized by nuclear transport proteins, importins, and

a complex of the NLS-carrying proteins and importins is

transported to the nucleus through the nuclear pore complex

(NPC) [22,23]. These results suggest that pathogenic bacteria may

employ a strategy to target their effector proteins to the nuclei of

host cells.

Epigenetic alterations are heritable and reversible changes that

alter gene expression without changing the primary DNA

sequence and comprise DNA methylation, histone modification,

and small, noncoding RNAs [24]. They are involved in

transcriptional changes and decisive events determine cell fate

and phenotype. DNA methylation occurs on C5 of the cytosine in

the dinucleotide CpG sites and closely interacts with histone

modifications. In addition, it is required for chromosomal stability,

and is a powerful mechanism for maintaining the suppression of
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gene activity. Accumulation evidence indicates that alteration of

DNA methylation directly or indirectly contributes to the

susceptibility and development of many complex or multifactorial

disease [25]. Bacterial infection has recently been shown to induce

aberrant DNA methylation of CpG regions in the promoters of

host genes, which allow a pathogen to inhibit transcription of host

genes. Campylobacter rectus induces hypermethylation in the

promoter region of the Igf2 gene [26]. H. pylori infection induces

CpG methylation in the promoter regions of mismatch repair and

tumor suppressor genes, which are associated with the initiation

and progression of gastric cancer [27–29]. In addition to chronic

bacterial infection, uropathogenic E. coli also induces DNA

methylation in CDKN2A (p16INK4A) and results in epigenetic

down-regulation of this gene in uroepithelial cells [30]. Induction

of aberrant DNA methylation and subsequent down-regulation of

host genes by bacterial infection are considered to be a new

pathogenic mechanism of bacteria.

We previously predicted the NLS-carrying proteins among the

open reading frames (ORFs) of A. baumannii ATCC 17978 based

on NLS sequences and found that A. baumannii transposase (Tnp)

possessed NLSs, RKRKRK, between amino acid positions 225

and 230 [31]. To obtain a better understanding of A. baumannii

pathogenesis regarding nuclear targeting of bacterial proteins, we

examined secretion of A. baumannii Tnp from bacteria and its

delivery to host cells, nuclear targeting of A. baumannii Tnp, and

epigenetic changes and gene expression of host cells. We report

here that A. baumannii Tnp induces DNA methylation in CpG

regions of E-cadherin (CDH1) gene via nuclear targeting, which

subsequently down-regulates expression of this gene.

Results

Nuclear targeting of A. baumannii Tnp via NLS sequences
Tnp of A. baumannii ATCC 17978 (NCBI accession

no. gi|126640304) was composed of 362 amino acids and was

predicted to carry the putative NLSs, 225RKRKRK230 [31]. To

determine whether A. baumannii Tnp targeted the nuclei of host

cells, the full-length A. baumannii Tnp gene was cloned into

pcDNATM6.2/N-EmGFP-DEST using the Gateway recombina-

tional cloning system (Invitrogen) and the constructed plasmids

were transfected into COS-7 cells. As a control, COS-7 cells were

transfected with the destination vector pcDNATM6.2/N-EmGFP-

DEST. The green fluorescent protein (GFP) composed of a

molecular mass of 27 kDa, was observed in both the cytoplasm

and the nucleus of COS-7 cells transfected with the destination

vector. GFP behaves within the exclusion limit of NPC and

passively diffuses into the nuclei of host cells, whereas GFP-tagged

A. baumannii Tnp fusion proteins composed of a molecular mass of

66.8 kDa, are exclusively present in the nuclei (Fig. 1). To

determine whether nuclear targeting of A. baumannii Tnp was

dependent on NLSs, three mutant clones, Tnp1–37, Tnp1–224, and

Tnp1–230, fused with GFP were constructed and their subcellular

localization was determined by confocal laser microscopy. Two A.

baumannii Tnp mutant clones without NLSs, Tnp1–37 and Tnp1–

224, were present in the cytoplasm of host cells, whereas the mutant

clone with NLSs, Tnp1–230, appeared in the nuclei (Fig. 1). These

results suggest that A. baumannii Tnp targets the nuclei of host cells

via functional NLSs.

Delivery of A. baumannii Tnp to host cells via outer
membrane vesicles (OMVs)

Translocation to the cytoplasm of host cells is an essential step

for nuclear targeting of bacterial proteins. We previously

demonstrated that A. baumannii ATCC 19606T and a clinical

isolate DU202 secreted OMVs [32,33]. Since OMVs derived from

A. baumannii and E. coli contained many bacterial proteins that

originated from the outer membrane, periplasmic space, inner

membrane, and cytoplasm [32–34], we determined whether A.

baumannii Tnp was secreted from bacteria via OMVs. A. baumannii

ATCC 17978 was cultured in Luria-Bertani (LB) broth and

OMVs were purified from the culture supernatants. Transmission

electron microscopic (TEM) analysis showed that A. baumannii

ATCC 17978 secreted OMVs during in vitro culture (Fig. 2A). To

verify the presence of OMVs, bacterial lysates, culture superna-

tants, and OMVs were separated by 12% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE). Protein profiles

were different between three samples (data not shown), suggesting

that OMVs purified from A. baumannii ATCC 17978 were not

bacterial lysates or artifacts. To determine whether A. baumannii

ATCC 17978 could secrete Tnp in vitro culture, bacterial culture

supernatants were subjected to Western blot analysis using

polyclonal anti-mouse A. baumannii Tnp antibody. A. baumannii

Tnp, which has a molecular mass of 39.8 kDa, was detected in the

bacterial culture supernatant (Fig. 2B). To verify the presence of

Tnp in the A. baumannii OMVs, bacterial cell lysates and OMVs

were subjected to Western blot analysis. As a control, recombinant

Figure 1. A. baumannii transposase targets in the nucleus of
host cells via NLSs. COS-7 cells were transfected with the plasmid
constructs of transposase gene cloned in the destination vector
pcDNATM6.2/N-EmGFP-DEST and incubated for 24 h. The subcellular
localization of transposase proteins fused with GFP was observed by
confocal laser microscopy. Two A. baumannii transposase proteins with
NLSs, Tnp1–362 and Tnp1–230, were located in the nuclei of host cells,
whereas transposase proteins without NLSs, Tnp1–37 and Tnp1–224, were
located in the cytoplasm.
doi:10.1371/journal.pone.0038974.g001
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A. baumannii Tnp, which has a molecular mass of 44.5 kDa, was

used. A. baumannii Tnp with a molecular mass of 39.8 kDa was

detected in both the bacterial cell lysates and OMVs (Fig. 2C).

Next, to determine whether OMVs could deliver A. baumannii Tnp

to host cells, COS-7 cells were treated with A. baumannii OMVs

and the subcellular distribution of A. baumannii Tnp was analyzed

by confocal laser microscopy. A. baumannii Tnp was mainly

distributed in the nuclei of COS-7 cells (Fig. 2D). These results

suggest that A. baumannii OMVs deliver their component Tnp to

the cytoplasm of host cells.

DNA methylation of CpG regions in the promoters of E-
cadherin gene and down-regulation of gene expression
by nuclear targeting of A. baumannii Tnp

To determine whether nuclear targeting of A. baumannii Tnp

induced cellular damage, cells were transfected with plasmid

constructs containing the full-length A. baumannii Tnp gene cloned

in the pcDNATM6.2/N-EmGFP-DEST and incubated for 48 h.

The viability of COS-7 cells transfected with the full-length A.

baumannii Tnp gene was slightly increased (12662.8%) as

compared to that of COS-7 cells transfected with the empty

destination vector. Expression of A. baumannii Tnp fused with GFP

in the nuclei of A549 cells did not induce any morphological

change relative to control cells transfected with the destination

vector (Fig. 1). To determine whether A. baumannii Tnp induced

epigenetic changes in host cells, A549 cells were transfected with

plasmid constructs of the full-length A. baumannii Tnp gene cloned

in pcDNATM6.2/N-EmGFP-DEST and incubated for 48 h. A549

cells that originated from human lung carcinoma were used

because the respiratory tract is the most common infection site of

A. baumannii [2]. Genomic DNA was extracted from A549 cells and

methylation-specific polymerase chain reaction (MSP) was per-

formed using primers specific for the CpG regions of p16INK4A,

hMLH1, and E-cadherin genes, which are involved in inhibiting cell

cycle progression, DNA mismatch repair, and adhesion of

epithelial cells to one another, respectively [35–39]. A. baumannii

Tnp specifically induced DNA methylation of CpG regions in the

promoters of E-cadherin gene (Fig. 3A), but not in CpG regions of

p16INK4A and hMLH1 (data not shown). To determine whether

DNA methylation of CpG regions in the promoter of E-cadherin

gene was dependent on nuclear targeting of A. baumannii Tnp,

A549 cells were transfected with three mutant clones, Tnp1–37,

Tnp1–224, and Tnp1–230, fused with GFP and then MSP specific

for the CpG regions of E-cadherin gene was performed. The

truncated Tnp1–230 with NLSs induced DNA methylation,

whereas the two mutant clones without NLSs, Tnp1–37 and

Tnp1–224, did not induce DNA methylation (Fig. 3A). An aberrant

DNA methylation in the promoters of genes can down-regulate

transcription level. We determined mRNA expression of E-cadherin

gene in A549 cells transfected with plasmid constructs of the full-

length of A. baumannii Tnp fused with GFP. When transfection

efficiency reached to 60–70%, total RNA of cells was harvested

and quantitative reverse transcriptase-PCR (qRT-PCR) was

performed. As a control, A549 cells were transfected with

pcDNATM6.2/N-EmGFP-DEST vector. A. baumannii Tnp down-

regulated mRNA expression of E-cadherin gene (0.8260.16) as

compared to the empty destination vector (1.060.06) (p,0.05)

(Fig. 3B). These results suggest that nuclear targeting of A.

baumannii Tnp specifically induces DNA methylation of CpG

regions in the promoters of E-cadherin gene and then down-

regulates gene expression.

Figure 2. A. baumannii OMVs deliver transposase to the nucleus of host cells. (A) TEM observation of OMVs from A. baumannii ATCC 17978.
(B) Detection of A. baumannii transposase in the bacterial culture supernatant. Bacteria were cultured in LB broth and proteins in the culture
supernatants were subjected to 12% SDS-PAGE and Western blot analysis using the polyclonal anti-mouse transposase antibody. (C) Secretion of A.
baumannii transposase from bacteria via OMVs. Bacterial cell lysates (lane 1), OMVs (lane 2), and recombinant A. baumannii transposase (lane 3) were
subjected to 12% SDS-PAGE and Western blot analysis using the polyclonal anti-mouse transposase antibody. (D) COS-7 cells were treated with A.
baumannii OMVs (20 mg/ml of protein concentrations) for 24 h. Cells were fixed, permeabilized with Triton X-100, and stained with a mouse anti-A.
baumannii transposase polyclonal immune sera, followed by Alexa Fluor 488-conjugated mouse immunoglobulin G (green). DAPI was used to stain
the nuclei (blue). Subcellular distribution of A. baumannii transposase was analyzed by confocal microscopy. Analytical sectioning was performed
from the top to the bottom of the cells. The figure represents all projections of the sections in one picture.
doi:10.1371/journal.pone.0038974.g002
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Discussion

Bacterial proteins that target the nucleus of host cells play a

crucial role in bacterial pathogenesis. In this study, we demon-

strated that A. baumannii Tnp is a new bacterial effector that

induces DNA methylation of CpG regions in the promoters of E-

cadherin gene via nuclear targeting. A. baumannii Tnp does not only

catalyze ‘cut-and-paste’ reactions, which promotes the movement

of DNA segments to new sites, but also induces epigenetic

modification of host genes. This is the first study to report that the

A. baumannii protein directly induces epigenetic alteration via

nuclear targeting.

Whole genome analysis of bacteria is a highly useful tool to

predict nuclear targeting proteins based on NLSs. We identified 34

proteins with the putative NLSs among the 3,367 ORFs of A.

baumannii ATCC 17978 [31]. Of the A. baumannii proteins

predicted to carry the putative NLSs, 14 were found to target in

the nuclei of host cells. Among the nuclear targeting proteins

identified, we selected A. baumannii Tnp to determine the DNA

methylation of CpG regions in the promoters of genes because

several bacterial transposons encoded their own DNA modifying

enzymes to regulate gene expression [40]. Aberrant DNA

methylation of CpG regions in the promoters of host genes allows

a pathogen to inhibit or down-regulate transcription of specific

genes, which may alter host cell biology. DNA methylation in

CpG regions of host genes by bacterial infection has been

demonstrated in several previous studies [26,29,30]. Bacterial

infection and inflammatory mediators released from host cells

have been found to trigger CpG methylation in the promoters of

eukaryotic genes [41]. However, specific bacterial molecules that

induce DNA methylation in promoters of host genes have not yet

been identified.

Nuclear targeting of A. baumannii Tnp did not induce

cytotoxicity of host cells, although several nuclear targeting

proteins of A. baumannii, such as transcriptional regulator, 50S

ribosomal protein L20, putative transcriptional regulator, and

DNA cytosine methyltransferase, induce host cell death [31].

Instead, A. baumannii Tnp specifically induced DNA methylation in

Figure 3. Nuclear targeting of A. baumannii transposase specifically induces DNA methylation in CpG regions and down-regulates
expression of E-cadherin gene. (A) A549 cells were transfected with A. baumannii transposase clones and incubated for 48 h. The genomic DNA
was purified and methylation-specific PCR with methylated and unmethylated primers was performed as described in materials and methods. Lane 1,
molecular size marker; 2, unmethylated DNA; 3, methylated DNA; 4, A549 cells; 5, A549 cells transfected with the destination vector pcDNATM6.2/N-
EmGFP-DEST; 6, A549 cells transfected with plasmid constructs of Tnp1–37; 7, A549 cells transfected with plasmid constructs of Tnp1–224; 8, A549 cells
transfected with plasmid constructs of Tnp1–230; 9, A549 cells transfected with plasmid constructs of Tnp1–362. (B) A549 cells were transfected with A.
baumannii transposase clones and incubated for 48 h. Total RNA was extracted and qRT-PCR was performed as described in materials and methods.
Data are presented as mean 6 SD of triplicate determinations. Asterisks indicate a statistically significant difference between A549 cells transfected
with the empty destination vector and plasmid constructs of A. baumannii transposase fused with GFP (student’s t-test p,0.05).
doi:10.1371/journal.pone.0038974.g003
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the CpG regions of E-cadherin gene, but not in the CpG regions of

p16INK4A and hMLH1. Aberrant DNA methylation in CpG regions

of E-cadherin gene was specifically induced by nuclear targeting of

A. baumannii Tnp with NLSs, but not induced by cytoplasmic

localization of mutant A. baumannii Tnp without NLSs. Our results

suggest that A. baumannii Tnp may exert effects on epigenetic

alterations of host cells after nuclear targeting. Moreover, we

demonstrated that DNA methylation in the CpG regions of E-

cadherin gene down-regulates expression of this gene. Expression of

E-cadherin gene was significantly different between A549 cells

transfected with the empty destination vector and plasmid clones

of A. baumannii Tnp fused with GFP. We did not determine the

molecular mechanisms of DNA methylation in the CpG regions of

E-cadherin gene such as activation of DNA methyltransferases, but

this study identified a novel pathogenic mechanism by which

bacterial proteins regulate expression of host genes via epigenetic

alterations.

There are some variations in methylation frequency of tumor-

associated genes in tumors. We used A549 cells originated from

human lung carcinoma for DNA methylation of CpG regions in

the promoters of tumor-associated genes because the respiratory

tract is the most common site for colonization and infection of A.

baumannii. E-cadherin and p16INK4A genes are frequently methyated

in lung cancer, whereas hMLH1 gene is rarely methylated and its

methylation correlates with late stage of lung cancer [42]. It is thus

plausible to guess that acute and transient transfection of A.

baumannii Tnp cannot induce DNA methylation of hMLH1 gene in

A549 cells. E-cadherin is the key components for adherence

junctions between epithelial cells, which allow the body to

maintain internal homeostasis as a physical barrier [43]. Many

pathogenic bacteria can destroy junctional complexes that

comprise the protective functions of epithelial cells. In particular,

the virulence factors CagA and VacA secreted by H. pylori disrupt

the tight and adherent junctions and cytoskeleton architecture,

and increase cell proliferation through gene modification, finally

contributing to gastric carcinogenesis [44]. Interestingly, E-

cadherin also has a growth suppressor function by inducing cell

cycle arrest via up-regulation of the cyclin-dependent kinases, p27

[45]. It is thus tempting to speculate that E-cadherin gene may be a

good target of A. baumannii Tnp.

We found that A. baumannii Tnp was secreted from bacteria and

delivered to host cells via OMVs. To determine the mechanisms

underlying secretion and delivery of A. baumannii Tnp to host cells,

recognition sites necessary for type I or II secretion systems were

searched. However, A. baumannii Tnp did not harbor signal

peptides or recognition sites necessary for type I or II secretion

systems. A. baumannii does not have type III or IV secretion

systems, although several genes encoding type IV secretion systems

have been found [46]. Instead, A. baumannii OMVs contained

more than 100 proteins derived from the outer membrane,

periplasmic space, inner membrane, and even cytoplasm [32,33].

A. baumannii Tnp was not found in the proteome of OMVs from A.

baumannii ATCC 19606T and DU202 [32,33], but this nuclear

targeting protein was identified in OMVs from A. baumannii ATCC

17978 using Western blot analysis in this study. Discrepancy of A.

baumannii Tnp in the OMVs is possibly due to limitations in the

proteomic analysis or differences between A. baumannii strains.

In conclusion, the present study demonstrated that nuclear

targeting of A. baumannii Tnp induces DNA methylation of CpG

regions in the promoters of E-cadherin gene and down-regulates

expression of this gene. Our study may contribute to a novel

pathogenic mechanism by which bacterial proteins directly

regulate gene expression of host cells via epigenetic alterations.

Materials and Methods

Bacterial strains and DNA manipulations
A. baumannii ATCC 17978 was grown on blood agar plates at

37uC. Genomic DNA was purified from bacteria cultured in LB

broth using a genomic DNA preparation kit (SolGent, Korea) and

then used as a template for PCR. E. coli DH5a and BL21 (DE3)

were used for DNA cloning and production of recombinant

proteins, respectively. E. coli strains were grown on blood agar

plates or in LB broth at 37uC. Routine DNA manipulations were

performed as previously described [47] or according to the

manufacturer’s instructions of the reagents used.

Cell culture
Two eukaryotic cell lines, COS-7 originating from African

green monkey kidney and A549 cells originating from human lung

Table 1. Oligonucleotide primers used for methylation-specific PCR.

Primers and sequences (59 to 39) Amplicon (bp) Annealing temperature (6C) References

Methylated

P16 (F): TTATTAGAGGGTGGGGCGGATCGC 150 58 49

P16 (R): GACCCCGAACCGCGACCGTAA

hMLH1 (F): ACGTAGACGTTTTATTAGGGTCGC 115 58 49

hMLH1 (R): CCTCATCGTAACTACCCGCG

E-cadherin (F): TGTAGTTACGTATTTATTTTTAGTGGCGTC 112 57.5 50

E-cadherin (R): CGA ATA CGA TCG AAT CGA ACC G

Unmethylated

P16 (F): TTATTAGAGGGTGGGGTGGATTGT 151 58 49

P16 (R): CAACCCCAAACCACAACCATAA

hMLH1 (F): TTTTGATGTAGATGTTTTATTAGGGTTGT 124 56 49

hMLH1 (R): ACCACCTCATCATAACTACCCACA

E-cadherin (F): TGGTTGTAGTTATGTATTTATTTTTAGTGGTGTT 120 57.5 50

E-cadherin (R): ACACCAAATACAATCAAATCAAACCAAA

doi:10.1371/journal.pone.0038974.t001
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carcinoma, were purchased from Korean Cell Line Bak (Seoul,

Korea) and used in this study. COS-7 cells were grown in

Dulbecco’s modified Eagle’s medium (HyClone) supplemented

with 10% fetal bovine serum (FBS; HyClone), 2.0 mM L-

glutamine, 100 U/ml penicillin, and 20 mg/ml streptomycin at

37uC in 5% CO2. A549 cells were grown in RPMI 1640 medium

(HyClone) supplemented with 10% FBS, 2.0 mM L-glutamine,

100 U/ml penicillin, and 20 mg/ml streptomycin at 37uC in 5%

CO2. The cultured cells were seeded in 6-well or 12-well tissue

culture plates to purify genomic DNA or transfect plasmid

constructs, respectively.

Construction and expression of A. baumannii Tnp-GFP
fusion proteins

Genomic DNA was purified from A. baumannii ATCC 17978

and used as a template to perform PCR. The Gateway

recombinational cloning system was used for these experiments.

The specific primer set used for the full-length A. baumannii Tnp

was as follows: forward primer-59-AAA AAG CAG GCT CCA

CCA TGA TCG TAG GGT ATT ACC TAT C-39, reverse

primer-59-AGA AAG CTG GGT TCC TTA AAT CGT CAA

ATG CAG TTA A-39. To generate A. baumannii Tnp mutant

clones, a forward primer (59-GGG GAC AAG TTT GTA CAA

AAA AGC AGG CTC CAC CAT GAT CGT AGG GTA TTA

CCT ATC-39) and three reverse primers (59-GGG GAC CAC

TTT GTA CAA GAA AGC TGG GTT AAT ATC GAG TTC

GAT CAA CTT ACG-39 for Tnp1–37, 59-GGG GAC CAC TTT

GTA CAA GAA AGC TGG GTT ATT ATT GTC CTC TGG

ATC AAT AG-39 for Tnp1–224, and 59-ACA AGA AAG CTG

GGT TTT TTC TTT TGC GCT TTC GAT TAT T-39 for

Tnp1–230) were used. PCR was performed in a total volume of

20 ml containing the following: 1.5 U Platinum Pfx DNA

polymerase (Invitrogen, USA), 2 ml of 106 Pfx amplification

buffer, 0.3 mM dNTP mixture, 1 mM MgSO4, 0.3 mM of each

primer, and template DNA (100 ng). The PCR products were

amplified again with the attB adapter primers (59-GGG GAC

AAG TTT GTA CAA AAA AGC AGG CTC CAC C-39 and 59-

GGG GAC CAC TTT GTA CAA GAA AGC TGG GTT-39),

which generated the full-length attB1 and attB2 sites flanking A.

baumannii Tnp ORFs. The Gateway-compatible amplified gene

was recombined into the pDONR221 vector (Invitrogen) using the

BP reactions. The plasmid pDONR207 was mixed with 2 ml of the

attB-linked PCR product in 15 ml of BP reaction mixture

containing 3 ml BP Clonase I enzyme mix (Invitrogen). After

incubation at 25uC for 60 min, proteinase K (4 mg in 1.5 ml) was

added and then each reaction was incubated at 37uC for 10 min.

BP reaction mixtures were used directly for bacterial transforma-

tion. Aliquots (5 ml) of the entry clone were used to transform E.

coli DH5a cells (Library Efficiency) and bacteria were plated on LB medium

containing 50 mg/ml of gentamicin. A single colony from the transformed

plates was tested by colony-PCR with specific primers for the A. baumannii

Tnp gene and sequenced using an ABI Prism 3730XL Analyzer (Applied

Biosystems). The entry clone was used for the generation of GFP-tagged clones

or production of recombinant proteins in a reaction mixture containing 2 ml LR

Clonase II enzyme mix (Invitrogen), 150 ng pcDNATM6.2/N-EmGFP-

DEST vector (Invitrogen) for the GFP-tagged clones or pET160-DEST

(Invitrogen) for the production of recombinant proteins, and TE buffer

(pH 8.0). After incubation at 25uC for 3 h, proteinase K (1 mg/ml) was

added and each reaction was further incubated at 37uC for 10 min. The LR

reactions were used to transform E. coli DH5a or BL21 (DE3).

Transfection of the constructed plasmids in host cells
The plasmid constructs obtained from the LR reactions were

purified using an ExprepTM plasmid SV kit (GeneAll, Korea) and

plasmid DNA was diluted in Opti-MEM MEM I medium

(Invitrogen). The diluted DNA (1.6 mg) was reacted with 4 ml of

LipofectamineTM 2000 (Invitrogen) that had been diluted in Opti-

MEM MEM I medium for 45 min at room temperature. The

mixture was added to 16105 cells and the cells were incubated in a

CO2 incubator for 24 h. The subcellular localization of GFP-

tagged proteins was observed using a confocal laser microscope

(Carl Zeiss).

Production of recombinant A. baumannii Tnp proteins
The plasmid constructs obtained from the LR reactions using

the Gateway cloning system were transformed into E. coli BL21

(DE3) and recombinant proteins were overexpressed after

induction with 1 mM of isopropyl b-D-1-thiogalactopyranoside

at 37uC for 4 h. Recombinant proteins were purified using a

nickel-column (Amersham Biosciences) and endotoxins were

removed by polymyxin B-coated beads (Sigma). The protein

concentration was determined using a modified BCA assay

(Thermo Scientific). Concentrations of endotoxins were deter-

mined using a Limulus Amebocyte lysate test kit (Sigma) and the

quantity of endotoxin in the recombinant proteins was #0.01 ng/

mg.

Purification of OMVs
OMVs were prepared from A. baumannii ATCC 17978 as

previously described [34,48]. Bacteria were grown in LB broth at

37uC with shaking until the optical density at 600 nm reached 1.0.

After removing bacterial cells, culture supernatants were filtered

through a 0.2 mm hollow fiber membrane equipped with Quix-

Stand Benchtop System (GE Healthcare) to remove residual

bacterial debris. The samples were then concentrated via

ultrafiltration with a QuixStand Benchtop System using a

500 kDa hollow fiber membrane (GE Healthcare). The OMV

fractions were ultracentrifugated at 150,0006 g at 4uC for 3 h.

The purified OMVs were resuspended in phosphate-buffered

saline (PBS) and checked for sterility. The OMVs were applied to

copper grids and stained with 2% uranyl acetate. The OMVs were

visualized using a transmission electron microscope (Hitachi,

Japan) that was operated at 120 kV.

Western blot analysis
Bacteria were cultured in LB broth for the indicated time

periods and then culture supernatants were collected. Proteins in

the culture supernatants were precipitated with trichloroacetic

acid. Protein concentrations of each bacterial culture supernatant

and bacterial cell lysates were quantified using a modified BCA

assay (Thermo Scientific). The samples were separated by 12%

SDS-PAGE, followed by electrotransfer onto nitrocellulose mem-

branes (Hybond-ECL; Amersham Pharmacia Biotech). Mem-

brane blots were blocked in 5% non-fat skim milk and incubated

with a mouse anti-A. baumannii Tnp immune sera, which were

produced in our laboratory. The membranes were incubated with

a secondary antibody coupled to horseradish peroxidase and

developed using an enhanced chemiluminescence system (Amer-

sham Pharmacia Biotech).

Cytotoxicity assay
The cellular cytotoxicity was measured using the Premix WST1

cell proliferation assay system (TaKaRa) [10]. Cells were

transfected with the destination vector pcDNATM6.2/N-

EmGFP-DEST and A. baumannii Tnp constructs cloned in the

destination vector, and then incubated for 48 h. When transfec-

tion efficiency of the cloned plasmids reached to 65–70%, WST1
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assay was performed. Cellular growth was measured at 450 nm for

3 h after treatment with WST1.

Methylation-specific PCR
A549 cells were transfected with plasmid constructs of A.

baumannii Tnp cloned in the pcDNATM6.2/N-EmGFP-DEST

vector and the empty destination vector. After 48 h of incubation,

genomic DNA was purified using SolGentTM Genomic DNA prep

kit (SolGent, Korea). The methylation status of the target genes

was determined using a methylation-specific PCR with primers

specific for the methylated and unmethylated alleles of each gene

after treating the genomic DNA with sodium bisulfite [49–51].

The primer sequences, annealing temperatures, and the expected

sizes of PCR products are summarized in Table 1. Briefly, 1 mg of

DNA was denatured with sodium hydroxide and modified with

sodium bisulfite and DNA samples were purified using Wizard

DNA purification resin (Promega). The sample DNA was treated

with sodium hydroxide again, precipitated with ethanol, and

resuspended in distilled water. All PCR amplification steps were

carried out using reagents supplied in a GeneAmp DNA

Amplification Kit with AmpliTaq Gold (PE Applied Biosystems)

on PTC-100 (MJ Research). The CpGenomeTM universal

methylated and unmethylated DNA was used as a positive control

for the methylated and unmethylated genes, respectively. PCR

products were analyzed on 2% agarose gel and stained with

ethidium bromide. Each MSP was repeated at least once to

confirm the results.

Quantitative RT-PCR
A549 cells were transfected with pcDNATM6.2/N-EmGFP-

DEST vector and the full-length A. baumannii Tnp gene cloned in

the expression vector. After 48 h of incubation, total cellular RNA

was extracted using the RNeasy kit (Qiagen). The integrity of

purified mRNA and concentrations of RNAs were measured by

agarose gel electrophoresis and spectrophotometer (Eppendorff),

respectively. Reverse transcription was performed in a total

volume of 20 ml containing the following: 1 mg of total RNA,

2 ml of 106 buffer, 1 ml of dNTP mixture, 20 mM of oligo-dT

primer, and 4 U Molony murine leukemia virus (M-MLV) reverse

transcriptase. The reaction mixtures were incubated for 1 h at

42uC and the samples were stored at 220uC. qRT-PCR was

carried out using the StepOnePlus Real-Time PCR System

(Applied Biosystems) according to the manufacturer’s protocol.

The specific primer set for E-cadherin gene (59-TAC TAT GAT

GAA GAA GGA GG-39 and 59-CGG AAC CGC TTC CTT

CAT AG-39) and glyceraldehyde 3-phosphate dehydrogenase

gene (GAPDH) (59-GAG GAG TGG GTG TCG CTG TT-39

and 59-GGA CCT GAC CTG CCG TCT AG-39) were used.

qRT-PCR was performed in a total volume of 20 ml with the

following components: 10 ml of SYBR Green master-mix (Applied

Biosystems), 2 ml of each forward and reverse primers (0.5 mM

final concentration), 2 ml of cDNA (100 ng), and 6 ml of dH2O.

The amplification conditions were: initial denaturation (95uC,

10 min), followed by 40 cycles of denaturation (95uC, 15 s),

annealing, and extension (60uC, 1 min). Melting curve analysis

was used to confirm amplicon specificity. The normalization and

quantification of mRNA expression were performed using the

StepOneTM Software version2.2 supplied by the manufacturer.
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