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Abstract

Using a combination of genomic and post-genomic approaches is rapidly altering the number of identified human influx
carriers. A transmembrane protein bilitranslocase (TCDB 2.A.65) has long attracted attention because of its function as an
organic anion carrier. It has also been identified as a potential membrane transporter for cellular uptake of several drugs and
due to its implication in drug uptake, it is extremely important to advance the knowledge about its structure. However, at
present, only the primary structure of bilitranslocase is known. In our work, transmembrane subunits of bilitranslocase were
predicted by a previously developed chemometrics model and the stability of these polypeptide chains were studied by
molecular dynamics (MD) simulation. Furthermore, sodium dodecyl sulfate (SDS) micelles were used as a model of cell
membrane and herein we present a high-resolution 3D structure of an 18 amino acid residues long peptide corresponding
to the third transmembrane part of bilitranslocase obtained by use of multidimensional NMR spectroscopy. It has been
experimentally confirmed that one of the transmembrane segments of bilitranslocase has alpha helical structure with
hydrophilic amino acid residues oriented towards one side, thus capable of forming a channel in the membrane.
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Introduction

Bilitranslocase (BTL) is a plasma membrane protein functioning
as an organic anion carrier. It is found in liver cell membranes
being involved in the uptake of bilirubin from blood to liver cells
[1-6]. BTL is also expressed in other tissues including the vascular
endothelium [7-9] or epithelia of the gastric mucosa [10]. It has
been shown that BTL has an active role in the transport of many
organic anions through the cell membrane [7,11-13]. Therefore,
it is also likely to be involved in the drug uptake, since carrier-
mediated and active uptake of pharmaceutical drugs may be more
common than is usually assumed, and should be considered as an
essential step in rational drug discovery and development as
reviewed in a recent perspective by Dobson and Kell [14]. Thus, it
is of significant importance for the drug discovery process to
understand at a mechanistic level the specificities of a known drug
transporter for both drugs already in clinical use and potential
drug candidates in development. An atomic resolution protein
structure is needed for any detailed study of the drug-protein

interactions and consequently for illuminating the mechanism of

transport. Unfortunately, very few transmembrane proteins have
their 3D structure solved using X-ray crystallography or NMR
methods; less than 2% of solved structures in the PDB database
can be ascribed to membrane proteins [15,16]. The main
experimental obstacle is low ability of membrane proteins to form
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a crystal structure, and even when soluble their inability of
isotropic reorientation might prevent a suitable experimental
approach using NMR spectroscopy [17]. Slow reorientation is the
principal reason why it is difficult to obtain high resolution spectra
of proteins incorporated in micelles or small bicelles. For this
reason, it is crucial to select a proper solution medium for NMR
studies of membrane proteins. Choice of detergent is empirical
and protein-specific, and has to be optimized during the sample
preparation procedure [18]. The solid state NMR technique is
suitable to proteins of higher molecular weight, because in contrast
to the solution state, the coherence lifetimes in the solid state are
not affected by molecular tumbling [19].

Disappointingly, BTL is very problematic for experimental
determination of its 3D structure although its primary structure
has been available for some time [20]. BTL (UniProt O88750)
consists of 340 amino acids with presumably four transmembrane
regions which have not, however, been absolutely confirmed by
neither experimental nor computational methods [21-23]. The
amino-acid sequence of BTL displays no homology with known
proteins, which makes it difficult to use a standard homology
modeling approach in case of proteins with an unknown 3D
structure. It is also not clear whether the BTL is present in the
membrane as a monomer, or whether two or even three units
should be associated for enabling active transport across the cell
membrane [24].
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Having in mind the considerable interest for resolving the 3D
structure of BTL on one side and all difficulties regarding
parsimonious experimental data on the other, we have employed
the chemometrics approach to predict the four alpha helical
transmembrane subunits of BTL, which is in agreement with
sparse available experimental data based on affinity-purified anti-
sequence antibodies [22]. Molecular dynamics (MD) studies are
used successfully to gain insight into the protein folding problem,
biological function of the protein structure and in studies of ligand-
protein interaction [25-29]. In the present work the initially
predicted transmembrane regions of BTL have been reexamined
and we substantiated that 3D structure of one of the transmem-
brane peptides (I'M 3) is alpha helical by MD simulations in the
standard DPPC (dipalmitoyl phosphatidyl choline) membrane.
This result was further confirmed by the means of NMR
spectroscopic study performed in an SDS (sodium dodecyl sulfate)
micelle environment as well. The schematic workflow is presented
in Figure 1.

It is to be stressed that BTL has no homolog in the PDB
[20], and therefore, the conventional theoretical approaches for
3D structure prediction are not feasible in this case. Here we
show for the first time 3D structure of one of the alpha helices
of BTL spanning the membrane, which has been predicted by
computational methods and confirmed experimentally. The
other three predicted transmembrane segments of BTL are
also in alpha helical conformation during molecular dynamics

PREDICTION OF THE BTL
TRANSMEMBRANE REGIONS
BY CHEMOMETRICS METHODS

INITIAL STABILITY ASSESSMENT OF THE
PREDICTED BTL TRANSMEMBRANE
HELIX 3 BY MD SIMULATIONS
IN THE DPPC MEMBRANE

STRUCTURAL NMR STUDIES
OF THE PREDICTED
BTL TRANSMEMBRANE HELIX 3
IN THE SDS MICELLES

CONSTRUCTION OF THE
TM3 HELIX : SDS MICELLE
AND MD SIMULATION

Figure 1. Schematic representation of the computational and
experimental investigations of the BTL transmembrane region.
doi:10.1371/journal.pone.0038967.9001
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simulations; and in our subsequent work, we intend to examine
the implications of the already resolved transmembrane
structure for interactions with other helical peptides of the
BTL protein sequence forming the channel and its transport
properties for the uptake of drugs.

Results and Discussion

Prediction of BTL Transmembrane Regions

The transmembrane region prediction model [23] requires
dividing the protein sequence into 20 residues long overlapping
segments, ecach of which is then given to the model for
prediction. Segmenting a 340 residues long BTL sequence
yielded 329 such segments, which were then predicted by the
model as either transmembrane or non-transmembrane. Only
the long stretches of 10 or more consecutive overlapping
segments predicted as transmembrane are considered for the
final transmembrane region predictions. In the case of BTL,
four such stretches of more than 10 consecutive overlapping
segments were predicted as transmembrane, which were then
further analyzed. These segments span over the residues 16-53
(19 segments), 65-103 (20 segments), 213-246 (15 segments),
and 250-285 (17 segments). However, the whole transmem-
brane stretch is not reported as a final prediction because the
terminal residues overlap with segments predicted as non-
transmembrane. Hence, only the central residues of these four
overlapping transmembrane segment stretches that are common
to more segments predicted as transmembrane are considered
and reported as the predicted transmembrane residues (see Text
S1). Thus, the transmembrane regions of BTL, TM 1, TM 2,
TM 3, and TM 4, were accordingly predicted to be at residues
24-45, 73-95, 221-238, 258-277 [23].

The final stage of transmembrane region prediction includes
statistical data obtained from position specific amino acid
preference analysis. This was done to fine-tune the transmem-
brane boundaries. Instead of reporting only the central residues of
the overlapping transmembrane segments as final predictions, we
considered the residues that are more statistically favored. The
terminal residues of all the segments in the transmembrane
stretches predicted by the model were considered for this purpose,
and were scored based on the statistically generated amino acid
preference patterns (see Text S2). The position-specific scoring
matrix has been already successfully applied in an automated
multiple protein sequence alignment to classify proteins to a
predefined family, in order to identify related proteins, which was
reported in a survey of integral alpha helical membrane proteins
[30]. In our research the best scoring terminal residues were
reported as a final prediction if the region bounded by them met
the minimum length criteria. In the Table S1, such combinations
of terminal residues are listed and scored for the third stretch of
transmembrane segments 213-246. The terminals of the segment
220-238 show the highest positive score of 13. Therefore, instead
of the segment 221-238, the segment 220-238 with more
statistically plausible terminals was now reported as the third
transmembrane region of BTL. The other three transmembrane
regions were predicted accordingly. Finally, the statistically
improved four transmembrane regions of BTL, TM 1A, TM
2A, TM 3A, and TM 4A, were predicted to be at residues 2448,
75-94, 220-238, and 254-276 respectively (Figure 2). It must be
noted that the statistical scoring method was introduced to fine-
tune the transmembrane region terminals, and therefore, the
central parts of the predicted transmembrane regions remain the
same in both the initial and final predictions with only difference at
the terminal residues. A comparison of the predicted transmem-
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brane regions with the results from other available predictors was
also performed (see Text S3) [23]. Except for three predictors, the
other tested predictors failed to predict all of the four proposed
transmembrane regions of BTL. In our subsequent molecular
dynamics simulations, we have checked the stability of both
variants - TM 3 and TM 3A.

The four transmembrane regions predicted by the chemometric
model are in accordance with experimental results from anti-
sequence antibody studies that indicate the loops at N-terminus of
TM 2 and C-terminus of TM 3 to be extracellular. Antibody A
against the residues 6573, the bilirubin-binding motif, establishes
the segment to be extracellular. The bound antibody also inhibits
transport function, confirming this sequence motif to be important
for substrate binding and transport [6,22]. Immediately next to it
is the second proposed transmembrane region TM 2 (75-94) with
two of its initial residues overlapping with the two terminal
residues of the binding motif. Antibody B against segment 235
246 also shows the segment to be an extracellular one. Further,
transport inhibition experiments signify the importance of the
segment in transport mechanism [6,24]. The segment B is located
immediately after the third transmembrane region TM 3 (220-
238) such that a few of the residues overlap. The observations from
prediction model and antibody studies, therefore, indicate that the
transporting channel possibly consists of the second (75-94) and
third (220-238) transmembrane regions. The extracellular seg-
ments immediate to these two transmembrane regions assist in
binding and guiding the ligands to the transporting channel. It was
also concluded that both the N- and C-terminals of the protein are
intracellular [23]. Owing to the functional importance of the
transmembrane regions TM 2 and TM 3, a detailed study of these
two transmembrane regions is crucial to understand the structural
and functional mechanisms of the transporter BTL.

Structural Analysis of Bilitranslocase

Initial Stability Assessment of the Predicted BTL
Transmembrane Helix 3 by the MD Simulation in the
DPPC Membrane

MD simulation was performed for the BTL transmembrane
helix 3 (TM 3 helix residues 221-238) and its variant (TM 3A
helix residues 220-238) to provide an assessment to see if the BTL
sequences could adopt a stable helical conformation. The structure
of the starting transmembrane helices TM 3 and TM 3A are
shown in Figure 3.

The only difference between the two systems is that the TM 3A
has an additional BTL amino acid Gly220 constrained to the
alpha helical conformation as predicted by the model. The
generated alpha helices were subsequently inserted into the
membrane. The two additional amino acids that were added on
the C-terminal and the N-terminal end of each of the alpha helices
served to soften the boundary and enabled both ends of the alpha
helix to explore more conformational space. The water molecules
located on top and below the lipid bilayer mimicked the
extracellular and intracellular compartments.

After performing the equilibration, the production MD
simulations were yielding MD trajectories of the 20 ns length for
cach system. The produced 20 ns trajectories were first visually
inspected for the overall conformational changes from the initial
alpha helix structure, and it was revealed that in both systems the
alpha helical conformation was retained. High resolution anima-
tions for TM 3A system is available in the Movie S1.

Representative snapshots of the alpha helices from the
molecular dynamics (MD) simulation in the lipid membrane are
presented in Figure 3. Secondary structure was predicted using the
STRIDE program available in VMD software suite [31]. The
conformational behavior in time showed comparable overall
structure (see animation available in the Movie S1). Interestingly,

EXTRACELLULAR
SPACE

D

D P

L /s AbA (85-75) Ab B (235-246) N

L T

c 75 F v 38 2540 ¢

o o T P

b L F L

L F E l |

L \Y | . A

T A A c M
v T | \ I E
F L P L M
i Q L L B
1 s g L R
F P I P ‘ s A
s F L ) M N
s S G d N E

A
s A >
A i

Y, ¢ T

L A L

1 s v | \ s

c © : ‘ L

K 4 9 c Qﬁ 2 §

N-ter CYTOPLASM Lc-ter
~ -
- . e - = ™

Figure 2. The four predicted transmembrane regions of BTL. The gray circles denote the antibodies tested.

doi:10.1371/journal.pone.0038967.g002
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Figure 3. The initial configuration (A) and representative snapshots (B) of the alpha-helices TM 3 and TM 3A. In Fig. 3A the initial
configuration of the alpha-helices TM 3 and TM 3A are inserted into the DPPC membrane. The helices are surrounded above and below by a layer of
water molecules. In Fig.3B representative snapshots of the alpha helices TM 3 and TM 3A are from the MD simulation. The approximate borders of the
alpha helical structures residue are also depicted. The BTL Pro231 residue, where the alpha helix kink is located is highlighted with a line model.
doi:10.1371/journal.pone.0038967.g003

the additional two residues located above and below the predicted presence of proline in the predicted transmembrane sequence
alpha helical sequences did not adopt the alpha helical confor- (Pro231) resulted in a kink formation in both helices due to the
mation; whereas the both predicted sequences TM 3 and TM 3A sterical interference with the backbone of the preceding turn inside
displayed highly conserved alpha helical conformation. The a helix. This induced a bend of about 20-30° in both TM 3 and
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TM 3A helices. These observations are in accordance with the
literature data and both helices remained stable in these
conformations throughout the 20ns MD simulation [32]. Struc-
tural behavior of TM 3A was comparable with the one amino acid
shorter TM 3 helix, and thus from the qualitative perspective an
additional Gly220 provides also a stable helix in BTL structure
within the performed MD simulation times.

In order to provide initial assessment of the alpha helix
stability during the production stage, RMSD values for all
backbone atoms initially generated in the alpha helical positions
were calculated. Despite reasonably long 20 ns MD simulation
runs a caveat must be stated that this simulation time still does
not encompass sufficient conformational space necessary for a
complete quantitative stability assessment of the helix under
study. As during the MD simulation each alpha helix is allowed
to move freely within the membrane, the occurring translational
motion of the structure would obstruct the interpretation of the
RMSD analysis. Thus, the RMSD values were calculated by
aligning all conformations of the individual alpha helix to the
last MD-generated alpha helix conformation. For the structural
alignment, the backbone atoms (C’, CA, N) were used for those
residues that were chemometrically predicted to form the alpha
helix. In addition, the average RMSD values along with
standard deviations were calculated for these atoms using the
average structure calculated from all the align frames in the
MD trajectory (20000 structures) as a reference.

Calculated RMSD parameters indicate that alpha helix
conformations of both TM 3 and TM 3A do not change
extensively during the MD simulations, thus retaining the
conformations obtained after the equilibration procedure. The
average RMSD for helix TM 3 was 0.83 A with a standard
deviation of 0.24 A (54 aligned atoms), and for the helix TM 3A
the average RMSD value was 0.52 A with the standard deviation
of 0.21 A (57 aligned atoms). We can conclude that a rather
uniform and stable RMSD deviation was observed for both cases.
To further analyze the conformation movement of the studied
systems, RMSD graphs were plotted for both MD trajectories as a
function of the simulation time. They are schematically presented
in Figure 4 and display a high level of structural integrity during
the simulation procedure.

The analysis of the MD trajectories was further focused on the
distribution of the backbone torsion angles ¢ and  for both
systems during the MD simulations using the available graphical
tools. Whereas the standard Ramachandran plots can efficiently
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display the ¢ and | backbone torsion angles for each residue in a
protein for a single frame only, further extension to three
dimensional histograms is useful for viewing the frequency
distribution of all dihedral backbone angle values observed during
the MD simulation. As only certain values for these angles are
allowed in the alpha helical conformation, this provides a way of
assessing the integrity of the alpha helical conformation in both
simulated systems. The obtained 3D Ramachandran histograms
are displayed in the Figure 5B for the backbone angles of those
residues that were predicted to be in the alpha helical conforma-
tion. The initial ¢ and \ torsion angles of —57° and —47°, which
were used to constrain the predicted BTL protein sequence to
alpha helical conformation, were in line with the experimental
observations. In alpha helical conformation the | dihedral angle of
one residue and the ¢ dihedral angle of the subsequent residue
sum to approximately —105° and that residues in o-helices
typically adopt backbone ¢ and { dihedral angles around —60°
and —45° respectively [32]. As shown in Figure 5A, a very
uniform and stable distribution of backbone dihedral angles reveal
the values of torsion angles typical for the alpha helix structures.
Thus, residues that were modeled into the alpha helical
conformation retained such conformation throughout of the
molecular dynamics simulation of the protein inserted in the
DPPC membrane.

The VMD program was used to produce two dimensional plots
where the simulation time from 20 ns molecular dynamics
trajectory is plotted against the secondary structure analysis of
each frame of the protein structure. The overall plots for both
helices are presented in Figure 5B. Apart from the occasional drift
of the final residue in the helix (Tyr238) the secondary alpha helix
structure seems to be fully stable.

The overall conclusion of our initial MD assessment was that
BTL sequences TM 3 and TM 3A predicted by the chemometrics
approach to encompass the third transmembrane region of the
BTL can adopt a stable alpha helical conformation when inserted
into the DPPC membrane during 20 ns MD simulation. The
inclusion of Gly220 in TM 3A also enabled the stable
conformation of the prolonged alpha helix with virtually all
qualitative and quantitative characteristics preserved (RMSD,
Ramachandran histogram, secondary structure analysis) com-
pared to the one amino acid shorter TM 3 helix. A subsequent
experimental investigation was performed to gain an even more
detailed and precise structural insight.

i TM 3A HELIX

[A]

Simulation time [ns]

Figure 4. RMSD graphs of the backbone atoms for the alpha-helices TM 3 and TM 3A.

doi:10.1371/journal.pone.0038967.9g004
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Figure 5. 3D Ramachandran histograms for the backbone torsion angles ¢ and |y (A) andtwo dimensional plots of the secondary
structure analysis (B). In Fig 5A the analysis was performed for the residues that were predicted to from the transmembrane helix: 221-238 for the
TM 3 helix and 220-238 for the TM 3A helix. Each exported conformation of the peptide in Fig 5B, generated by the 20 ns MD simulation was
analyzed for is the secondary structure. Purple colour depicts the alpha helix structure, green indicates the turn structure and blue depicts the 3-10
helical structure. Selected residue numbers on the y-axis corresponds to the residues numbers of the BTL sequence.
doi:10.1371/journal.pone.0038967.g005
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NMR Study of TM 3

Inspection of 2D homonuclear NMR spectra indicates that after
the addition of SDS-dys to solution to increase solubility, the
peptide reveals a well defined 3D structure. Assignments of 'H
resonances were achieved with standard procedure on the base of
9D 'H-"H TOCSY acquired with mixing times 80 ms and 15 ms,
and 2D '"H-"H NOESY recorded with mixing time 120 ms data
sets [33]. Collected homonuclear NMR spectra were supplement-
ed by heteronuclear 2D 'H-""N and 'H-'"*C HSQC (Hetero-
nuclear Single Quantum Coherence) experiments recorded on
natural abundance of N and '’C isotopes (Figure 6). Finally,
more than 87% of expected 'H, ¥C, and °N resonances in
peptide were successfully assigned for the 22 residues long
synthetic peptide that corresponds to 220-237 residues of the
BTL sequence extended by four lysines. Details on the synthetic
peptide are given in the section Materials and Methods.

The chemical shift of "*CP resonance (27.83 ppm) in Cys224
confirms that the thiol group exists in a reduced state [34]. Due to
strong T} noise coming from water resonance on heteronuclear
'H-"*C HSQC we could not assign 5P/ 'HP and BCY/'HY
correlations for Pro231 and a geometry of Leu230— Pro231 peptide
bond was deduced from an existence of a cross peak between "H”
Leu230 and "H® Pro231 and established as frans. On the other hand,
we have noted several unassigned cross peaks on 2D heteronuclear
and homonuclear NMR spectra corresponding to the minor
conformation of peptide, which is probably formed due to cis—/
trans- isomerization of peptide bond between Leu230-Pro231.

Conformational Analysis of the Peptide 3D Structure in
SDS Micelle

The 2D "H-"H NOESY experiment acquired with the mixing
time 120 ms displays several medium range dyonn(si+2), daam-
N(&#+3) distance contacts assigned to through space interactions
between 11e232 "H* — Glu235 'HY, 11e232 "H* — Phe236 'HY,
Ala233 'H* — Te234 'H" protons (Figure 7A) which are
characteristic for o-helices [33]. The chemical shifts analysis

Structural Analysis of Bilitranslocase

performed with program TALOS+ [35] also suggests the helical
conformation for Ile234 and Glu235 (see Figure S1).

Initial rounds of 3D structure evaluation performed with
program CYANA [36] confirmed our experimental data exhib-
iting existence of the short a-helix in the region Ile232— Phe236.
The o-helical fragment in the C-terminal part of the peptide is also
preserved during the 5 ns time-averaged molecular dynamics in an
explictt. SDS micelle in the parm99 force field of AMBER 11.0
package. The backbone torsion angles for a couple of other
residues (Val222, GIn223, Cys224 and Leu227) are located
predominantly in a helical region on the Ramachandran plot. A
stereo-view of the ensemble of the last 10 structures of peptide
obtained with the MD simulations with time-averaged distance
restraints (TAV) is demonstrated in Figure 7B. The peptide has a
helical conformation with RMSD for backbone atoms
0.39+0.15 A for the fragment Ala225— Thr237. All experimental
constraints used in structure calculations and parameters demon-
strated quality of the final 3D structure are presented in Table S2.

During molecular dynamic simulations, the peptide diffused from
the hydrophobic core of the SDS micelle to the interface to adopt
more favorable conformation from the energetic point of view. After
approximately 5 ns of molecular dynamic simulations the position of
the peptide was fixed and it remained bound to the SDS surface
(Figure 8). The peptide — micelle and peptide — water interactions
were analyzed by the radial distribution function (RDF) obtained with
the program Ptraj from AMBER 11.0 program suite (Figure 9).
Inspection of the RDF data demonstrated that several residues have
side-chains exposed to water. These are Cys224, Ser229, Leu230,
Tle232, Glu235 and Phe236. The side-chains from Val222, Ala225,
11e228, Pro231, Ala233, Ile234 and Thr237 are rather buried in
hydrophobic part of SDS micelle (Figure 9).

The Membrane Part of Peptide Constitute Ala225-

Thr237 Region
3D structures obtained in MD simulations with AMBER
show that three residues on the N-termini did not reveal any
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Figure 6. 2D "H-"°N HSQC spectrum. It is acquired on Varian VNMRS 800 NMR spectrometer at 298 K on natural abundance of >N isotope. The
sequence-specific assignments of main conformation of GSVQCAGLISLPIAIEFTKKKK peptide are presented. The resonance signals coming from side

chain NH; group for GIn4 are also shown.
doi:10.1371/journal.pone.0038967.g006
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Figure 7. Sequence plot of NOESY distance constraints (A) and stereo-view of 10 conformers of studied peptide (B).

doi:10.1371/journal.pone.0038967.g007

fold in water/micelle solution (Figure 7B). Detail inspection of
presented RDF data shows that Ala225 is probably the first
residue from the N-termini with side chain buried in
hydrophobic core of SDS membrane (Figure 9). On the other
side, Thr237 probably is the last residue in hydrophobic
surrounding. This make us able to define the Ala225— Thr237
part of studied peptide as a region intensively interacted with
SDS micelle. The calculation distances between C* atoms in
Ala225 and Thr237 demonstrated that it is oscillating around
22 A during last 200 ps of molecular dynamic simulations

@ PLoS ONE | www.plosone.org

(Figure S2) which is in a good agreement with the thickness of
the cell membrane (~ 20 A).

Positioning Peptide in SDS Micelle

Detail analysis of the RDF data obtained with Ptraj program in
AMBER 11 software suite reveals some conclusions about the
positioning of the peptide in the SDS micelle. In particular, there
are several residues (Ala225, Ile228, Pro231, Ala233, and Ile234)
with the side-chains buried into the hydrophobic part of a micelle
(Figure 9). Taking into account the position in the sequence, these

June 2012 | Volume 7 | Issue 6 | e38967
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Figure 8. High-resolution 3D structure of peptide in SDS micelle. The side chain of residues in the hydrophobic core (Val222, Ala225, 1le228,
Pro231, Ala233, lle234 and Thr237) and those exposed to water (Cys224, Ser229, Leu230, lle232, Glu235 and Phe236) are shown in violet and cyan,

respectively.
doi:10.1371/journal.pone.0038967.g008

residues more or less correspond to helix turns and are located on
one side of the helix. The other side of the helix, composed by
Ser229, Leu230, I1e232, Glu235, and Phe236, is more hydrophilic
and the side-chains are exposed to aqueous phase, which is
confirmed by the water-accessible surface calculated with
MOLMOL [37] (Figure 10). Presented data have a sinusoidal
form which is typical for a helix structure. For instance, the
Pro231- Ala233 part of the peptide sequence, which reveals a
relatively small surface accessible to water, constitutes part of the
helix buried inside the hydrophobic part of an SDS micelle. The
next three residues (Ile234— Phe236) exhibit an increase of
accessible surface exposed to solution. Data obtained for the
Thr237 show that this last residue is more buried in hydrophobic
part of SDS micelle.

@ PLoS ONE | www.plosone.org

In Summary, Towards Revealing the Potential Mechanism

of Transport of BTL

Our present study started with the prediction of four
transmembrane segments of BTL using the developed chemo-
metrics model. The predictions were fine-tuned using statistical
data. The proposed transmembrane regions are also in
accordance with the results from previously performed antibody
studies [22,24]. For all predicted segments, we have observed
the stability of their 3D structure by MD simulation in a model
membrane environment. Both TM 3 and TM 3A were shown
to retain stable alpha helical conformation in MD. The
experimental NMR results in SDS micelle have also confirmed
the alpha-helix structure of one of the helices, TM 3A, the final
statistical variant of the third transmembrane region. Further-
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Figure 9. Radial distribution function (RDF) plots. RDF of hydrophobic (black), hydrophilic (red) parts of SDS micelle and water molecules
(green) and the heavy atoms in side chains for all residues with the exception of Gly220 and Gly226.

doi:10.1371/journal.pone.0038967.9g009

more, the orientation of hydrophilic/hydrophobic amino acids
in the 18-residues long transmembrane segment TM 3A and
the analysis of their radial distribution functions support the
hypothesis that it could form a building block of a hydrophilic
channel within the membrane. This is in agreement with
antibody studies, which along with TM 3, also strongly suggest
TM 2 to be an important functional unit in the transport
channel formation. The role of TM 1 and TM 4, whether they
form the channel functional for transport of hydrophilic
molecules, is not yet known. While peptide TM 3 consists
mainly of amino acids that are weak or strong electron donors,
TM 2 also contains those that are electron acceptors. Both TM
2 and TM 3, however, have aromatic amino acids
phenylalanine and tyrosine - that are weak electron acceptors
at their extracellular terminal overlapping with the binding
motifs. NMR studies revealed Glu235 of TM 3 to be exposed
to the aqueous phase and thus forming the transport channel
wall. Glutamic acid is a strong electron donor; and is also
forming the substrate-binding region (corresponding to Ab B,
residues 235-246) [22,24]. It is therefore probable that Glu235
plays an important role in substrate binding and transportation
through a BTL channel acting as a hydrogen bond acceptor for

@ PLoS ONE | www.plosone.org
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the substrate molecules. Another amino acid of TM 3 that may
potentially play a role in transport mechanism is the nucleo-
philic  Ser229, which is also exposed to the hydrophilic
environment. In partial support of this hypothesis are the
results of several previous experimental studies [38], in which
the transport of a number of flavonoids as well as nucleotides
and nucleosides by BTL were evaluated. The structure - activity
correlations of molecules in these series strongly associated the
hydrogen bond formation parameters with their experimental
transport properties in BTL [11,13]. In our subsequent studies,
we plan to analyze the peptide TM 2 and the transport
mechanism in detail. We would also like to analyze the inter-
relation of the four transmembrane peptides of BTL to get a
more detailed picture regarding the structure and functional
mechanism of the protein.

Materials and Methods

Initial Prediction of Transmembrane Regions of BTL

The transmembrane regions of BTL were initially predicted
using the first version of the alpha transmembrane region
prediction tool [23]. It is a data-driven model based on
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Figure 10. The average surface accessibility of amino acid residues. 10 conformations obtained during 5 ns of the MD simulations of the

peptide were considered.
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mathematical descriptors of the protein segments derived from an
amino acid adjacency matrix. The model is built using a counter-
propagation neural network (CPNN), a non-linear supervised
learning method. The model shows an overall prediction accuracy
of 90.75% when tested with an external validation set. Details are
given in Text S4.

The developed model predicts the transmembrane regions of
BTL from its sequence information alone. The 340 residues
sequence was divided into overlapping segments of 20 amino acids
each by shifting one residue at a time, therefore yielding 329 such
segments. The model then predicted for each segment whether it is
transmembrane or not.

Final Transmembrane Region Prediction of BTL with
Incorporation of Statistics

The second version of the alpha transmembrane region
prediction model incorporates amino acid preference data for
final prediction. It is used to score the probable transmembrane
region terminals (see Text S2). We considered all possible
combinations of terminal residues from the initial overlapping
segments of BTL predicted as transmembrane. This generated a
list of probable transmembrane segment terminals for each region.
One of the top 3 scoring segments that meet the length and
position criteria is reported as a transmembrane region in final
prediction.

Preparation of the Predicted BTL Transmembrane Helices
TM 3 for the Molecular Dynamic Simulation

Two molecular systems were constructed using CHARMM
molecular modeling environment [39]. The initial conformation

@ PLoS ONE | www.plosone.org
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for the amino acid sequence that was predicted to comprise the
transmembrane region TM 3 (BTL residues: 221-238) SVQCA-
GLISLPIAIEFTY [23] from the initial chemometric prediction
model and another conformation of the new chemometric
prediction model with statistics TM 3A (BTL residues: 220-238)
GSVQCAGLISLPIAIEFTY discussed in this article were gener-
ated by using CHARMM topology and structural libraries [40—
43]. Subsequently, an alpha helix conformation for each linear
sequence was generated by constraining the backbone torsion
angles ¢ and \ to the values of —57° and —47° for each amino
acid backbone angle respectively [44]. When building the initial
sequences, two additional amino acids corresponding to the
residues located prior to the start (219-220 BTL residues RG for
TM 3 system and 218-219 BTL residues GR from the TM 3A
system) and subsequent to (239-240 BTL residues QL for both
TM 3 and TM 3A systems) the end of the transmembrane helix on
the BTL sequences were added on the C-terminal and N-terminal
end of TM 3 and TM 3A. These additional amino acid residues
were not constrained to the alpha helical conformation.

For the construction of the lipid-protein systems CHARMM-
GUI Membrane builder generator was exploited [45]. The
CHARMM generated alpha helices were first oriented along the
principal Z-axis. DPPC lipid molecules were selected to represent
the lipid bilayer [46]. A rectangular box consisting of two layers of
DPPC lipids along with 12 A thick layers of water molecules above
and below the lipids surface was constructed. Based on the system
size determined, CHARMM-GUI was used to construct the
individual parts such the lipid bilayer around the protein and
additional water molecules to fully solvate the system. Each alpha
helix was inserted into the membrane using the insertion method,
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where a protein is inserted into a pre-equilibrated lipid bilayer
[453]. Finally, all building parts were assembled together to form
the molecular systems with the size of 18874 (TM 3 system) and
18130 atoms (TM 3A system), respectively.

Molecular Dynamics Simulation Procedure

Molecular dynamics calculations were performed utilizing the
CHARMM molecular modeling suite [39]. CHARMM parameter
and topology files (version 27) for proteins and lipids were utilized
to specify force field parameters describing the protein and the
lipid DPPC molecules [40-43]. To equilibrate the membrane the
following scheme was used resulting in a total of 375 ps simulation
time [45]. The system was first minimized for 500 steps using the
steepest descent method followed by 500 steps of the modified
Adopted Basis Newton-Raphson method with the following set of
force constants: K1 defined the force constant applied to the
protein backbone, K2 force constant was applied to the amino
acid side chains, Kwforce force constant was designed to keep the
water molecules away from the hydrophobic core, Ktforce force
constant constrained the lipid tail, and finally Kmforce force
constant constrained the movement of the lipid head groups. The
values of the used constants for each performed equilibration step
are collected in Table 1 [43].

In the first two equilibration steps (1-2) the system was
simulated twice for 25 ps using the Langevin dynamics along
with a 1 fs integration time step. FFurther four equilibration steps
(3-6) were performed with the standard molecular dynamics using
leapfrog integration scheme. To reduce the possible problem with
the numerical integration with the uncorrelated system, 1 fs time-
step was used only in the third step with the total equilibration
time of 25 ps. In the next stages of the integration scheme, 2 fs step
along with SHAKE algorithm was applied. The simulation times
for steps 46 were 100 ps long. Production trajectories were
generated using a leapfrog integration scheme and 2 fs simulation
step using SHAKE algorithm. 20 ns long MD simulation was
performed for both TM 3 and TM 3A trajectories. Results of the
MD simulations were visualized and analyzed using VMD
software [29,47] and RMSD diagrams were created using Gnuplot
program [48]. 20000 MD generated configurations for each
simulated alpha helices were exported for further studies again
using VMD available MD analysis tools.

Synthetic Peptides — Commercial Source

Synthetic peptides used in this study were purchased from
CASLO Laboratory, Denmark (www.caslo.com). The peptide
(TM 3) is a lyophilized trifluoroacetate salt with four lysines at the
C-terminus with the sequence GSVQCAGLISLPIAIEFTKKKK

Table 1. Values of the force constants used during the
equilibration MD steps of the TM 3 and TM 3A helices inserted
into the DPPC membrane (values are in kcal/mol/A?) [45].

Equlibration

step1 step2 step3 step4 step5 step6
K1 10 5.0 25 1.0 0.5 0.1
K2 5 25 1.0 0.5 0.1 0.0
Kwforce 25 2.5 1.0 0.5 0.1 0.0
Ktforce 25 25 1.0 0.5 0.1 0.0
Kmforce 2.5 2.5 1.0 0.5 0.1 0.0

doi:10.1371/journal.pone.0038967.t001
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and purity 93.87%. Four lysines were added by the producer
because of extreme hydrophobicity of the peptide and therefore
problems with synthesis and purity.

NMR Sample Preparation

The NMR sample was obtained by making a solution of about
1 mM peptide in partially deuterated water (90%/10% HyO/
DyO) containing about 32 mg of deuterated sodium dodecyl
sulfate micelles (SDS-dys) (Sigma Aldrich). The concentration of
SDS-dys exceeded the critical micelle concentration (8.3 mM) and
SDS-dys : peptide ratio was adjusted to approximately 40:1 to be
sure that the peptides were in micelle bound state. To increase
homogeneity of the peptide:micelle complex, the NMR sample
was placed into an ultrasound bath for nearly 20 minutes. The pH
was measured just before the start of the NMR experiments and its
uncorrected value was 6.5.

NMR Measurements

All NMR data sets were acquired at 303 K on a Varian
VNMRS 800 NMR spectrometer (‘H resonance frequency
799.81 MHz) equipped with four channels, gradient unit along
z-axis, DirectDrive console and 'H/'*C/"N probe-head with
inverse detection. Homonuclear 2D "H-"H TOCSY spectra were
recorded with mixing times 15 and 80 ms using MLEV-17 pulse
scheme for spinlock (Bax & Davis, 1985). 2D "H-"H NOESY data
sets were acquired with 80, 120 and 150 ms mixing times for
exclusion of the spin-diffusion effect. To get access to '°C and '°N
chemical shifts the heteronuclear 2D '"H —"°N and 'H -'*C
HSQC experiments were performed on natural abundance of '*C
and "N nuclei. All chemical shifts were referenced with respect to
external 2,2-dimethyl-2-silapentanesulfonic acid (DSS) using
==0.251449530 and E==0.101329118 ratios for indirectly
referenced '?C and '°N resonances, respectively [49]. All recorded
NMR data were processed by NMRPipe software [50] and
analyzed with the Sparky program [51].

3D Structure Calculation of Peptide

3D structure calculations were done using 'H-'H distance
constraints evaluated on the base of 2D homonuclear NOESY
spectrum acquired with mixing times 120 ms. The manually
selected NOESY cross peaks yielded 180 nontrivial distance
constraints (107 intraresidual, 58 sequential, and 15 medium
range) which were applied for structure solution. The calculation
protocol started with generating 200 initial structures created with
randomly chosen torsion angles. The calibration of peaks’ volume
to distance constraints was done with the CALIBA program in
semiautomatic way. Finally, simulated annealing procedure with
10000 steps of molecular dynamic in torsion angle space was
performed with the ANNEALING program. All programs are
included in the CYANA 2.1 [36] software suite.

Construction of Peptide: SDS Complex and Molecular
Dynamic Simulations

Molecular dynamics simulations were carried out with the
program AMBER 11 [52]. Micelle preparation was initiated by
construction of a single molecule of sodium dodecyl sulfate
(SDS) on the basis of previously published parameters [53,54]
using united atoms presentation and all bonds trans
configuration. According to previously established protocol
[52], a starting model containing 60 monomers of SDS was
subjected to minimization in vacuum. Later, minimized micelle
was placed in a cubic box enlarged by about 8 A in each
direction that included water molecules. As a result, 7126 water

in
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molecules were added to simulated peptide:micelle complex
increasing the total number of atoms up to 22458. Finally, a
I ns simulation was carried out in order to reach an
equilibrium density of the entire system. The final density was
1.0080 g/mL which is in agreement with reported experimental
value of 1.0093 g/mL for SDS/water solution [55].

Molecular dynamic procedure was started by positioning the
peptide into the simulation box with its center of mass
coinciding with that of the micelle. The initial peptide structures
were taken from results of calculations with the CYANA
program. Owing to micelle spherical symmetry, orientation of
the peptide was not important. Taking into account the pH of
NMR sample, the side chains of four lysines and N-terminus
were defined as protonated, whereas the side chains of one
glutamate and C-terminus were negatively charged. The
chloride ions were used to neutralize a total charge +3 of the
entire system.

To remove the initial bad contact between the peptide and
the micelle core and to prevent penetration of water during
equilibration the peptide and bulk water were kept under weak
harmonic constraints with force constants of 10 and 5 kcal/
(molxA), respectively. Those constraints were removed after
20000 steps of minimization (the steepest descent method).
Later, the entire system was minimized for 20000 steps without
any constraints. Thereafter, the whole complex was subjected to
molecular dynamic simulations under the constant pressure and
the temperature of 301 K for 5 ns with TAV distance restraints
derived from NMR  spectroscopy. The interproton distances
were introduced with the force constants =20 kcal/ (molXAz).
The geometry of the peptide groups was kept fixed according to
NMR data (all #rans) with the force constant f=50 kcal/
(molxrad®). MD simulations were performed with a time step
2 fs and 9.0 A cutoff radius. The coordinates were recorded at
4 ps (2000" step) each and 10 conformations obtained in the
last steps of MD simulation were chosen for final structure
analysis.

Obtained 3D structures were analyzed with Ptraj program
included in the AMBER 11.0 package. To characterize interactions
of the peptide with the micelle or aqueous phase, the radial
distribution functions for peptide side chains and negatively charged
groups, hydrophobic part of the SDS-dys micelle and water, were
calculated. The presented data were evaluated on the average of
over the last 200 ps of MD simulation.

Supporting Information

Figure S1 Prediction of conformation for Ile234 with the
program TALOS+ [35] based on reported chemical
shifts.
DOC)
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