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Abstract

Situations often arise in which the matrix of independent variables is not of full column rank. That is, there are one or more
linear dependencies among the independent variables. This paper covers in detail the situation in which the rank is one less
than full column rank and extends this coverage to include cases of even greater rank deficiency. The emphasis is on the
row geometry of the solutions based on the normal equations. The author shows geometrically how constrained-
regression/generalized-inverses work in this situation to provide a solution in the face of rank deficiency.
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Introduction

The problem of collinear independent variables is well known.

When there is collinearity (a linear dependency between indepen-

dent variables) in a regression model there is no unique solution for

the regression coefficients. We say that these regression coefficients

are not identified, since there are an infinite number of solutions,

rather than a unique set of solutions. To obtain one of these

solutions, when the rank deficiency is one, a common strategy is to

place one constraint on the regression coefficients (for example, fix

two of the regression coefficients to be equal or one of them to be

twice as large as another). This typically is accomplished using

statistical programs such as [1] or [2] or can be implemented by

the use of generalized inverses or by creative recoding the data [3].

This paper does not propose a new method for solving

regression problems in the face of collinearity. Instead it offers a

general geometric view of the linear dependency problem

(collinearity). It shows how the most common approach to solving

regression equations in such situations (constrained-regression/

generalized-inverses) can be viewed geometrically. Constrained

solutions can be implemented by creating specific generalized

inverses that incorporate one or more constraints [4], and,

importantly, any generalized inverse constrains the solution in

both an algebraic and geometric sense. The user of packaged

programs will not use this geometry to obtain constrained solutions

nor will the researcher use generalized inverses, but this geometry

is extremely helpful in understanding: (1) the problem of

collinearity, (2) how these constrained solutions work, (3) how

many constraints are necessary to identify a solution, and (4) why

some constraints do not produce identified solutions. The general

geometric perspective may also help in judging what it is that

makes a particular constrained solution plausible.

Rank deficient matrices occur when one or more of the

independent variables are a linear function of the other

independent variables in the model. These sorts of dependencies

can occur naturally in the course of research. Four diverse

example are: (1) when the total test score consists of the score on

the math section plus the score on the verbal section and one

wants to assess the independent effects of the total score (TS), the

math score (MS), and the verbal score (VS) on college GPA. The

linear dependency is VS + MS = TS. (2) Separating the effects of

educational status (ES), occupational status, (OS) and status

inconsistency (SI): SI = OS – ES [5]. (3) Disentangling the effects

origin status (OrigS), destination status (DS), and the degree of

mobility DM: DM = DS – OrigS [6]. (6) In demography and

epidemiology separating the effects of current age (A), current

period (P), and birth cohort (C): C = P – A [7] is a vital and

important problem [3,8–12]. In these scenarios, each of the

independent variables may have an effect on the outcome variable,

but in all of these situations the independent variables are linearly

dependent.

I expand upon the Age-Period-Cohort model example, because

I work directly in this area, and the problem of rank deficiency in

this area has generated and continues to generate intense interest

in sociology, demography, epidemiology, medicine, and other

related areas [3,8–12]. This model comes in two distinct forms.

One is simply to code ages in years, cohorts in birth years, and

periods in yearly dates. That is, coding all three of these variables

as continuous interval-level variables. The second, and most

common form, is to code these three variables with dummy

variables or effect coding. With dummy variable coding each age-

group is coded with a dummy variable except for a reference

category, each period is coded with a dummy variable except for a

reference category, and each cohort is coded with a dummy

variable except for a reference category. Using categorical coding,

there are typically many dimensions in the solution space (one for

each dummy variable plus the intercept). The model, however, is

still rank deficient by one.
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The typical solution to this problem is to use constrained

regression. Make an assumption about two of the categories such

as the effects of the first and second dummy variables for birth

cohorts are the same. This will identify the model and produce a

solution. The problem is that the solutions differ depending upon

the constraint imposed and often the solutions differ substantially.

Researchers typically use a constrained regression program

available in commonly used software programs [1,2], but these

same constrained solutions can be found using matrix algebra by

choosing the appropriate generalized inverse [4]. Typically

researchers set the constraint based on theory or past research

hoping that it is approximately correct [8]. Researchers may also

suggest that a particular constraint is the preferred one in general

without resorting to substantive theory or research to set the

constraint [11]. This author has criticized this approach [10],

suggesting that when using constrained regression, constraints

should be based, whenever possible, on substantive/theoretical

considerations.

In this areas of research facing the problem of structural

underidentification, it is helpful to be aware of the geometry of

rank deficient models. What does the geometry of rank deficient

models look like? How does constrained regression work? Why do

some constraints not work? The geometry shows that there are

some things we know about all possible solutions when using rank

deficient models. For example, in the rank deficient by one

situation, the OLS solutions (solutions to the normal equations) all

lie on a line in multidimensional space. We can describe this line

explicitly: the line is identified. The constraint we use (whether it is

implicit or we chose it explicitly) determines one of the points on

this line and, thus, one of the infinite number of least squares

solutions. Our choice is, of course, subject to error; it is no better

than the choice of the constraint used to select that solution. This

fact should keep researchers modest in their claims for solutions

based on constrained regression.

In each of the four cases of linear dependency discussed above,

the matrix of independent variables is one less than full column

rank since only two of the independent variables are linearly

independent. Adding the third independent variable means that

one of the three variables can be determined perfectly from the

other two. This three variable model has a rank of two and is rank

deficient by one. Because of this linear dependency, no unique

solution exists. One way to obtain a solution, however, is to impose

a constraint on the possible solutions such as constraining the math

test effect on GPA to be half as great as that of the verbal test

effect. The constraints are often based on theory or past research.

That is, the researcher has some reason to believe that math skills

(as measured by the test) should be less important to the overall

GPA than verbal skills (as measured by the test). Justifying that the

math effect should be one-half as large as the verbal test effect

requires precision not often found in social research. Less

theoretically, we can obtain a solution by using any appropriate

generalized inverse. This identifies the model, but the solutions

depend on the constraint employed (generalized inverse used) and

different constraints can provide widely divergent results.

Others have written on the geometry of generalized inverses or

related topics [13–16], but this paper provides a unique, and more

intuitive, view. It emphasizes the geometry of the solution space

(not the construction of a generalized inverse), it does so from the

row perspective (using row equations) rather than a column

perspective (using column vectors), and it emphasizes the null

space and the hyperspace of solutions that is parallel to the null

space. It presents a simpler geometric view of the solutions

obtained with generalized-inverses/constrained-regression than

these earlier papers; in part, because its scope and purpose are

quite different. Our purpose is to provide a simple geometric view

of the rank deficiency problem and of how solutions are obtained

by using generalized-inverses/constrained-regression when the

matrix of independent variables is less than full rank.

Methods

The method used is straightforward. I begin with simple spaces

of one, two, and three dimensions. I then extend this approach to

situations with four or more dimensions. Understanding this

geometry takes some effort even in the one-, two-, and three-

dimensional situations and, obviously, more effort as we move to

the geometry of four or more dimensions. To simplify, I will deal

throughout with the normal equations associated with Ordinary

Least Squares (OLS) regression, since this is the situation most

familiar to readers. I begin with the simplest situation, the bivariate

case. We subtract the mean of the independent variable from each

independent variable scores and the mean of the dependent

variable from the dependent variable scores. This leaves us with

deviation scores and allows us to consider only the one regression

coefficient between these two variables since the intercept is zero.

In this situation there is only one normal equation.

In the one independent one dependent variable situation, there

are only two quantities needed to find the regression coefficient:

the sums of squares for the independent variable (
P

x
2
) and the

sum of products for the independent and dependent variables

(
P

xy). In this two variable situation there is one normal equation

X
x2

� �
b~

X
xy, ð1Þ

yielding the familiar solution b~
P

xy
�P

x2. Using matrix

algebra, we write this same equation as X ’Xb~X ’y. Where X is

an n61 vector of the deviations of the scores of the n observations

on the independent variable and y is an n 6 1 vector of the

deviations on the dependent variable for n observations. The

prime means that the column vector has been transposed (in this

case into a row vector). When we carry out the matrix

multiplications, we end up with a single equation: equation (1).

For concreteness, we create values for
P

x2 and
P

xy, and place

them into (1):
P

x2~4 and
P

xy~8. Then we can write (1) as

4b = 8 and; thus, b = 2. Geometrically, the solution space has only

one dimension (b) and equation (1) allows us to solve for a unique

point on this line. It determines where on that one-dimension of

possible values of b the solution lies.

We extend this method by moving to the two independent

variable situation. We again center the variables by subtracting

their means from them so that all of the variables are in deviation

score form. We distinguish between the two independent variables

by subscripting them with a one or a two: x1 or x2. From an

algebraic perspective the quantities of interest are
P

x2
1,
P

x2
2,P

x1x2,
P

x1y,
P

x2y. Formulas from introductory texts that

cover multiple regression allow one to place these quantities into

formulas and solve for the two regression coefficients [17]. The

matrix algebra representation remains the same X ’Xb~X ’y, but

now the X matrix contains two columns (one for each of the

independent variables) and n rows (one for each of the

observations). The vector b has two elements one for the regression

coefficient for the first independent variable (b1) and one for the

second independent variable (b2). We write out the explicit matrix

form of the equations using the sums of squares and cross-

products:

Geometry of Rank Deficient Models: Row Perspective
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P
x2

1

P
x1x2P

x1x2

P
x2

2

" #
b1

b2

� �
~

P
x1yP
x2y

� �
ð2Þ

Carrying out the matrix multiplication in (2), we can write the two

normal equations:

X
x2

1

� �
b1z

X
x1x2

� �
b2~

X
x1y

X
x1x2

� �
b1z

X
x2

2

� �
b2~

X
x2y: ð3Þ

Each of these normal equations is the equation for a line (the

general form of the equation for a line: Ab1zBb2~c). We again

supply some appropriate values for the sums of squares and

products [
P

x2
1,
P

x2
2,
P

x1x2,
X

x1y,
P

x2y] and placing

these into (3) produce a set of two normal equations that could

result from real data,

4b1z2b2~8

2b1{3b2~{4 ð4Þ

We can solve this two equation system by, for example,

substituting 1:5b2{2 into the first equation for b1, we find that

b2~2 and then knowing b2 we can easily solve for b1which is

equal to 1.

Geometrically, the solution space has two dimensions: one for

b1 and one for b2. The normal equations in (4) are equations for

lines and if these two lines intersect in a point in this two

dimensional solution space that point will determine a unique

solution to this two equation system. This is depicted in Figure 1.

The horizontal axis represents the solutions for b1and the vertical

line the solutions for b2. We construct the two lines based on the

equations in (4) in the following manner. Using the first equation,

if b2~0 then b1~2 so that one of the points on the line is (2, 0).

On the other hand, if b1~0 then b2~4 and a second point on this

first line is (0, 4) and these two points allow us to draw this first line

in the two dimensional solution space. The second line is

constructed in the same manner, we set b2~0 and b1~{2, so

one point on the line is (22, 0). If we set b1~0 then b2~1:33,

then a second point on the line is (0, 1.33). This allows us to

construct the second line. These two lines intersect at (1, 2); that is,

b1~1 and b2~2. This is the geometric view of the solution to the

normal equations with two independent variables. It is likely

familiar to most readers (albeit from a different context).

Imagine the situation in which the two equations are linearly

dependent, for example:

4b1z2b2~8

2b1z1b2~4 ð5Þ

The second equation is one-half times the first equation. There is

no unique solution to these equations. When we substitute the

second equations value for b1 b1~{:50b2z2ð Þ into the first

equations value for b1 and solve for b2, we obtain 0b2~0, a rather

uninformative result since b2 could take on any value. We say that

b2 is not identified. If we substitute the value of b2 from second

equation (b2~{2b1z4) into the first equation, we find that

0b1~0. Geometrically we can plot the first equation as before and

end up with the line for equation 1 in Figure 1. When we plot the

second line, we find that it crosses the b1axis at (0, 4) and the b2

axis at (2, 0). That is, the lines for these two equations coincide.

Any solutions to these equations lie on this line. For example, (2, 0)

is a solution to both of these equations, as are (0, 4) and (1, 2).

There are an infinite number of solutions to these two equations,

and they all lie on this line in a space of two dimensions. One

informative way to write the equation for this line is as the ‘‘vector

equation for a line.’’ That is, as one of the points on the line plus a

scalar (k) times the ‘‘direction of the line’’:

0

4

� �
zk

1

{2

� �

This geometric notion of a line of solutions tells us not only that b1

and b2 are not identified; it tells us the combinations of b1 and b2

that solve the normal equations. To show how this works, note that

we have previously shown that (0, 4) is on the line and it is a

solution when k = 0; we have shown that (1, 2) is on this line and it

is a solution when k = 1; and we have shown that (2, 0) is on this

line and it is a solution when k = 2. Selecting other values for k will

produce the other points on this line; that is, any of the other

solutions to this set of two equations. Importantly, although there

are an infinite number of solutions to these two equations, the only

solutions are those that lie on this line.

At this point it is appropriate to introduce the null vector. The

null vector is the vector that when multiplied times a matrix results

in a vector of zeros. We focus on the normal equations and X ’X .

In this context the null vector is the vector that when premultiplied

by X ’Xproduces a vector of zeros under the condition that not all

of the elements of the null vector are zeros. Writing the X ’Xmatrix

Figure 1. Geometric view of a regression solution in a two-
dimensional solution space with no linear dependency. The
solution is where the two lines representing equations 1 and 2 intersect
(1, 2).
doi:10.1371/journal.pone.0038923.g001
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for (5) we have
4 2

2 1

� �
and we note that the vector

1

{2

� �
when

multiplied time X ’X produces the vector
0
0

� �
. The null vector is

(1,{2)’, and we represent it as v. It is unique up to multiplication

by a scalar. There is only one null vector for the X ’X in (5),

because there is only one linear dependency (there cannot be more

than one linear dependencies with only two independent

variables). We note that the line of solutions is parallel to the

null vector, since they share the same direction. The null vector is

a line running through the (0, 0) point with a slope of minus 2.

The final situation in which it is relatively easy to visualize

geometrically the solutions and the problems caused by linear

dependencies among the independent variables is the situation in

which there are three independent variables. Below is the matrix

of sums of squares and cross products in matrix form:

P
x2

1

P
x1x2

P
x1x3P

x2x1

P
x2

2

P
x2x3P

x3x1

P
x3x2

P
x2

3

2
64

3
75

b1

b2

b3

2
64

3
75~

P
x1yP
x2yP
x3y

2
64

3
75 ð6Þ

We can write the three normal equations based on this matrix

formulation as:

X
x2

1

� �
b1z

X
x1x2

� �
b2z

X
x1x3

� �
b3~

X
x1y

X
x2x1

� �
b1z

X
x2

2

� �
b2z

X
x2x3

� �
b3~

X
x2y ð7Þ

X
x3x1

� �
b1z

X
x3x2

� �
b2z

X
x2

3

� �
b3~

X
x3y

These are the three normal equations that when solved for b1,

b2, and b3 provide the least squares solutions. Geometrically each

of these equations represents the equation for a plane:

Ab1zBb2zCb3~d. Where A, B, C, and d are real numbers.

We again can provide some appropriate numbers for these sums of

squares and cross-products (in practice, of course, they are derived

from observations). This produces the three normal equations for

the data:

4b1z4b2z2b3~8

4b1z6b2z4b3~10 ð8Þ

2b1z2b2z4b3~12

We can solve these equations using substitution as we did to solve

the two equation system in (4) or we can use matrix algebra: the

solution set is:b1~2:333, b2~{1:667, and b3~2:667. This

solution set is the unique least squares solution set for this data.

We can construct our geometric figure as before, except now the

solution space has three dimensions one for b1, one for b2, and one

for b3. Each of the three equations represents a plane. To

construct one of the planes, we can determine where the plane for

the first equation crosses the b1 axis; that is, what is the value of b1

when b2 and b3 are both equal to zero. The answer is that b1~2;

one point on this plane is (2, 0, 0). Similarly the plane represented

by the equation in the first row crosses the b2 axis at 2 so a second

point on the plane is (0, 2, 0). Finally, the plane crosses the b3 axis

at 4 so that another point on the plane is (0, 0, 4). These three

points determine the plane represented by the first equation in this

three space. In the same manner we can determine the plane for

the second row equation by finding where it crosses the three axes

(2.50, 0, 0) (0, 1.667, 0), and (0, 0, 2.50); and for the third row

equation (6, 0, 0), (0, 6, 0), and (0, 0, 3). Since two of these planes

are not linearly dependent, they intersect one another and

intersection will determine a line. On this line, the solution to

the equations must lie. In (8) the third plane is not linearly

dependent on the first two planes, so it will intersect this line at a

point, and this point will determine the unique solution for this

three equation system. This point of intersection (2.333, 21.667.

2.667) will be the same as the solution using algebraic means. A

careful geometer would be able to generate this solution using the

intersections of planes. Of course, we are interested in the

visualization/intuition supplied by the geometric perspective and

would not recommend such geometric constructions as a means

for computing these results. For now, we simply need to visualize

two planes intersecting in a line in a three space (imagine the

three-space as a room) and another plane crossing that line. That

point of intersection supplies the unique coordinates in a three-

space and thus a unique solution for the parameter estimates.

Below (9), we depict a linear dependency where the third row

equation is one-half the first row equation plus one-half the second

row equation:

4b1z4b2z2b3~8

4b1z6b2z4b3~10 ð9Þ

4b1z5b2z3b3~9

There is not a unique solution to this set of equations. If we

constructed planes for two of these three equations they would

intersect in a line, since any two of these equations do not form a

linearly dependent set. This line will lie on the remaining plane, so

that any solution on this line will be a solution to this set of

equations. In order for there to be a unique solution, the

remaining plane would have had to intersect the line formed by

the intersection of the other two planes at a point.

A line in a space of three or more dimensions is typically

described by using the vector equation for a line. This equation

tells where all of the points on the line are in terms of the

coordinates on each of the dimensions. For the first two equations

in (9) the line of their intersection can be described by the

following vector equation for the line:

1

1

0

2
64
3
75zk

1

{2

2

2
64

3
75

The intersection of the second two planes can be described by the

same line as can the intersection of the first and third planes.

As noted, the remaining plane (the one not involved in the

intersection) does not help us find a unique solution, since it does

Geometry of Rank Deficient Models: Row Perspective
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not intersect with the line of solutions at a single point: all of the

points on the line lie on the remaining plane and thus there is no

unique intersection point for the line and the plane. This makes

sense because we could have used the first and third equation or

the second and third equation and the line created by these

intersections would be the same one. That is, all of the planes have

this line lying on their surfaces. If the plane of the remaining

equation were not linearly dependent on the other two equations,

its plane would intersect the line established by the first two planes.

(In constrained regression, we force the remaining plane to change

direction and thus provide a unique solution under the constraint).

The null vector for (9) is (1, 22, 2)9 since:

4 4 2

4 6 4

4 5 3

2
64

3
75

1

{2

2

2
64

3
75~

0

0

0

2
64
3
75

The null vector is parallel to the line established by the two

intersecting planes. We label the line of intersection as the ‘‘line of

solutions,’’ since any point on that line solves the set of equations

that are rank deficient by one. Of course, these solutions are not

the unique solutions that one obtains with linearly independent

equations.

With three normal equations there is one more possibility in

terms of linear dependency. The matrix of independent variables

may be rank deficient by 2: that is, there may not be a set of two of

these three equations that are linearly independent. There may be

two linearly independent null vectors. This happens with the

normal equations in (10) for which I have deliberately selected

data to produce an X ’Xmatrix that is rank deficient by two:

4b1z4b2z2b3~8

2b1z2b2z1b3~4 ð10Þ

3b1z3b2z1:5b3~6

None of these planes intersect: all three of them coincide with one

another. They fall in the same two dimensional subspace. For

example, all three of these planes intersect the b1 axis at (2, 0, 0);

when b2~0 and b3~0 then b1~2 for all three of the equations.

Similarly, for all three equations the plane intersects the b2 axis at

(0, 2, 0) and the b3 axis at (0, 0, 4). Clearly these three planes

coincide. The solutions to these equations can reside anywhere on

this ‘‘plane of solutions.’’ We can write these potential solutions as

any one of the solutions (points on this plane) plus a scalar (k) times

one of the directions of this plane plus a scalar (s) times the other

direction of this plane. For example:

b1

b2

b3

2
64

3
75~

2

0

0

2
64
3
75zk

0

1

{2

2
64

3
75zs

1

0

{2

2
64

3
75 ð11Þ

If we set k = 2 and s = –1, the point on this plane that results: (1, 2,

22). This works as a solution for (9) as does any point on this

plane.

Not surprisingly the two vectors that are multiplied by k and s

are the null vectors for (9), that is:

4 4 2

2 2 1

3 3 1:5

2
664

3
775

0

1

{2

2
664

3
775~

0

0

0

2
664
3
775 and

4 4 2

2 2 1

3 3 1:5

2
664

3
775

1

0

{2

2
664

3
775~

0

0

0

2
664
3
775

ð12Þ

These two null vectors are not linearly dependent on one another,

and any other null vectors that produce the zero vectors are

linearly dependent on these two null vectors. The null space in this

case is a plane that passes through the origin (0, 0, 0) that can be

described as:

0

0

0

2
64
3
75zk

0

1

{2

2
64

3
75zs

1

0

{2

2
64

3
75 ð13Þ

The solutions to the equations lie on a plane of solutions and that

plane is parallel to the null space which is a plane.

This methods section was written at the suggestion of a reviewer

and designed to make the results that follow more intuitively

understandable. To summarize: this paper examines the normal

equations: X ’Xb~X ’y. Any solution to these equations provides a

least squares solution; even in situations where there are linear

dependencies and, thus, an infinite number of solutions. Any one

of the solutions provides a least squares solution. The problem

with a linear dependency is not that we cannot find a solution; the

problem is that there is not a unique solution.

Without linearly dependent equations, we find that in the two-variable

situation the normal equations consist of two equations for lines

and these lines intersect in the two-dimensional solution space and

provide a unique solution to the equations. With three indepen-

dent variables there are three normal equations and each one is

the equation for a plane. These three planes intersect at a unique

point in the three-dimensional solution space providing a unique

solution to the equations. Venturing beyond these intuitive two-

and three-dimensional cases, the generalization/extension is

straightforward, but the terminology and visualizations are more

difficult. With four independent variables there are four normal

equations. Each represents a three-dimension hyper-plane (one up

from a two dimensional plane with three independent variables). If

there are no linear dependencies, these four three-dimensional

hyperplanes intersect in a point in the four-dimensional solution

space and provide a unique solution.

With linear dependency we saw that in the two variable case the two

lines representing the two normal equations coincide (they lie on

one another); they do not intersect and any solution on these

coinciding lines, ‘‘the line of solutions,’’ solves the two normal

equations. In the three independent variable situation where the

three normal equations represent planes; if the matrix of

independent variables is rank deficient by one (there is a set of

two linearly independent equations), then two of the planes

intersect in a line in the three-dimensional solution space. The

remaining plane, however, does not intersect this line at a unique

point, the line of solutions lies on the plane. If the matrix of

independent variables is rank deficient by two: there are two

linearly independent null vectors and all three planes coincide.

Any point on this ‘‘plane of solutions’’ solves the normal equations.

In a four space, when the matrix of independent variables is rank
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deficient by one, three of the three-dimensional hyperplanes

intersect in a line (the line of solutions), but the remaining three

dimensional hyperplane does not intersect the line of solutions at a

unique point.

In our context, the null vector (v) is a vector that does not consist

of all zeros and for which X ’Xv~0. There is one such vector when

a matrix is rank deficient by one, there are two such linearly

independent vectors when the matrix is rank deficient by two and

these two linearly independent vectors define a null space that is a

plane. This null space is parallel to the plane of solutions. By

extension there are q such vectors when the matrix is rank deficient

by q and these q linearly independent null vectors form a null space

that is a q-dimensional hyperplane. This q-dimensional hyperplane

is parallel to the q-dimensional hyperplane of solutions.

These sorts of extensions provide the basis for our results

section. Kendall [18] provides a more technical basis for some of

these results, but he focuses on the full column rank situation. We

include Appendix S1, based in part on [18], which helps to

formalize these extensions. Readers may want to refer to Appendix

S1 as they read the Results section. The algebra and the geometry,

of course, are consistent. The results below necessarily repeat

portions of the methods section.

Results

Identified Models: No Rank Deficiency
When a regression model with two independent variables is

identified, there are two independent normal equations (for lines)

in a two space, and the two lines intersect at a unique point

providing a unique solution to the equations. In a three space with

three independent normal equations (for planes), two of the planes

intersect in a line and the remaining plane intersects the line at a

unique point providing a unique solution to the equations. In a

four space with four independent equations (for three-dimensional

hyperplanes), two of the hyperplanes intersect in a plane, a third

hyperplane intersects the plane in a line, and the fourth

hyperplane intersects the line at a unique point providing a

unique solution to the equations. In an m-space with m

independent equations (each equation represents an (m21)-

dimensional hyperplane), the m hyperplanes intersect at a unique

point providing a unique solution to the equations.

When the matrix of independent variables is of full column rank

(there is no rank deficiency), finding unique solutions for each of

the independent variables is straightforward using a regular

regression program or matrix algebra. We could constrain one

or more of the regression coefficients, if we choose; but if we did,

we would likely degrade the fit of the model by changing the

orientation of one or more of the hyperplanes so that their

intersection is at a different point than the identified solution. This

would create a solution that was not a least squares solution. One

could do this to see if the constraint significantly degraded the fit of

the model. Our focus in this paper, however, is on the geometry of

rank deficient models in which the constraints are used to provide

a solution to the models; models that with the constraint are just identified.

Rank Deficient by One Models
One less than full column rank is the situation illustrated in each

of the empirical examples cited in the introduction. In the case

with three independent variables with a rank of two, we can

determine the line on which the solutions must fall (two of the

normal equations intersect in a line): we label this the line of solutions;

but the remaining plane (equation) does not intersect this line (the

line of solutions lies on this plane). We can determine the line on

which the solution must fall, but not the point on that line. The

constrained regression solution to this dilemma is to set the

direction of the plane so that it intersects the line on which the

solution must fall. One way to do this is to use a generalized

inverse based on a particular constraint [4]. This provides a solution

to the system of equations (under that constraint). One can use any

appropriate generalized inverse without worrying about the

constraint it imposes, but it most certainly imposes a constraint.

To make our discussion more concrete, we present an example

with three equations in which the rank of the matrix is two. We

have centered all of the variables in this analysis by subtracting

their mean values from each of the values of the observations on

these variables. Our reason for doing so is to allow us to visualize

the solutions with three independent variables in a three-space.

Alternatively, we could have included a column of ones in the X-

matrix for the intercept and used just two independent variables in

our example.

We use the normal equations for (X ’X )b~X ’y below for this

example:

56 42 98

42 44 86

98 86 184

2
64

3
75

b1

b2

b3

2
64

3
75~

350

300

650

2
64

3
75 ð14Þ

The linear dependency is evident in X ’X matrix. The null vector

(the vector that when multiplied timesX ’Xproduces the zero

vector) is (1, 1, –1). This representation of the null vector is unique

up to multiplication by a scalar.

Figure 2 presents this problem in a three-space in which the

axes represent the unknown regression coefficients. We can

represent the null vector in the three-space created by the axes

for b1, b2, and b3 as a line extending through the points (1, 1, –1)

and (0, 0, 0). It is represented by the left most darkly stippled line.

The right most darkly stippled line is labeled the line of solutions –

it is the line on which the solutions to the constrained regression

must fall. For the data in (14) the line of solutions crosses the b1–b2

plane at (4, 3, 0), because when b3~0, b1~4 and b2~3 provide

the correct solution for all three equations. Similarly, the line of

solutions crosses the b1–b3 plane at (1, 0, 3). We can describe this

line using the vector equation for a line (b~bczkv) by choosing

any one of these points as a solution (bc) and adding k times the

null vector (v) to it: (4, 3, 0)9 + k(1, 1, 21)9. This guarantees that the

line of solutions and the null vector are parallel (they share the

same direction). The line of solutions also represents the

intersection of two of the planes described by the normal

equations in (14). The remaining normal equation (plane) does

not intersect the line of solutions: the line of solutions lies on it.

The question is which solution on the line of solutions we will

choose? We can choose it explicitly using constrained regression or

implicitly using any generalized inverse.

A solution is achieved by constraining the direction of the

remaining plane; in general the constrained solution plane will

intersect the line of solutions at a point which provides a solution to

the equations. We use the term in general, because if the plane is

constrained to be in the direction of the line of solutions, it will not

intersect the line. For example, setting the constraint b1 = b2 for

this data will not change the orientation of the plane and will not

produce a solution. This happens if we constrain b1 = 2 b3; on the

other hand, b1 = 2 b2, b1 = b3, or. 5b1 = b2 will produce a

solution, as will most other constraints. In Figure 2, we depict the

constrained solution plane under the constraint. 5b1 = b2. It has a

slope of.5 with reference to the b2-b1 axis (an increase of 1 on b1 is

associated with an increase of. 5 on b2). The constrained plane is

shaded and intersects the line of solutions at (2, 1, 2). This is the
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solution under the constraint that. 5b1 = b2. We have kept some

‘‘construction lines’’ in the figure that are light and stippled to

highlight a few important points in the construction of the figure.

A careful geometer could find the solution to this constrained

regression in this three dimensional case graphically. For this case,

and others involving more dimension, Mazumdar, et al. [4] show

how we can use generalized inverses that correspond to particular

constraints. For example, the solution that corresponds to the

Moore-Penrose inverse is (1.67, .67, 2.33). The Moore-Penrose

corresponds to the constrained solution that is orthogonal to the

null vector [(1.67, .67, 2.33)(1, 1, 21)9 = 0] and can be

implemented using the system of Mazumdar, et al. [4], by using

the constraint b1 = b3– b2 in a constrained regression program, or

by using the Moore-Penrose inverse. Proceeding graphically, the

constrained plane would be orthogonal to the null vector (1, 1, 21)

and intersect the line of solutions at (1.67, .67, 2.33).

It is, of course, more difficult to draw a figure for the situation in

which the rank deficiency is one and there are four independent

variables. In this case there are four equations representing four

three-dimensional hyperplanes. The line of solutions is determined

by the intersection of three of these hyperplanes and when we find

one of the solutions to the normal equations we can write the line

of solutions as b~bczkv. The line of solutions is parallel to the

null vector. Unfortunately, the line of solutions does not intersect

the remaining hyperplane.

As an example, we use the following normal equations

(X ’X )b~X ’y:

50 40 20 55

40 90 10 70

20 10 80 55

55 70 55 90

2
6664

3
7775

b1

b2

b3

b4

2
6664

3
7775~

{25

{180

185

{10

2
6664

3
7775 ð15Þ

For (15) the null vector is (1, 1, 1, 22). When the constraint is

b1 = –b3, the solution vector is (21, 24, 1, 3)9. This solution vector

certainly works in (15); for example –1650–

4640+1620+3655 = –25 for the first row, and similarly for the

remaining rows of (15). Thus, the line of solutions may be written

as (21, 24,1,3)9 + k(1,1,1, 22)9. This completely specifies the line

of solutions; and we perhaps can imagine such a line in a four

dimensional space.

It is more difficult to imagine the remaining three-dimensional

hyperplane. It is the orientation of this hyperplane that is

constrained in four dimensional space to obtain a solution to the

equations. With the linear dependency this three-dimensional

hyperplane, represented by one of the normal equations, does not

intersect the line of solutions (determined by the other three

hyperplanes). We must use a constraint to force this hyperplane to

cross the line of solutions at a unique point. In this case, if we use

the constraint is b1 = –b3, the constrained hyperplane has as slope

of 21 on the b1–b3 plane: an increase of one on b1 is associated

with a decrease of 1 on b2 (note, the hyperplane must cross the (0,

0, 0, 0) point in the four-dimensional solution space). This change

in orientation constrains this hyperplane to cross the line of

solutions at a unique point. Again we might set a constraint that

yields a hyperplane that does not intersect the line of solutions. In

this case, we might have set b1 = b3, and the hyperplane will not

intersect the line. In general, however, for almost all constraints

the hyperplane will intersect with the line of solutions.

The extension to m dimensions is straightforward. There are m

equations representing m (m–1)-dimensional hyperplanes. The line

of solutions (a line in m space) is determined by the intersection of

m–1 of these hyperplanes. Its vector equation for the line of

solutions is b~bczkv; where b, bc, and v each have m-elements.

The remaining hyperplane does not intersect the line of solutions.

The single constraint that we place on the remaining hyperplane,

in general, reorients it in the m-space, and results in the

constrained hyperplane intersecting the line of solutions at a

single point that yields a solution to the system of m equations.

Rank Deficient by Two Models
When the X-matrix is two less than full column rank, it is still

possible to visualize the solution in a three-dimensional space. To

do so, we introduce a new set of normal equations (X ’X )b~X ’y:

144 72 216

72 36 108

216 108 324

2
64

3
75

b1

b2

b3

2
64

3
75~

792

396

1188

2
64

3
75 ð16Þ

The linear dependencies are evident in the X ’X matrix. There are

two linearly independent null vectors (1, 22, 0) and (1, 1, 21).

These two vectors define the null space, which in this case is a

plane (a hyperplane of two-dimension: a plane).

Once we solve for one of the infinity of possible constrained

solutions, it is a simple matter to write the plane of solutions using

the vector equation for a plane. The solution must lie on the plane

defined as: b~bczkv1zsv2 where bc is any particular con-

strained solutions, b represents all of the possible solutions, k and s

are scalars, and v1 and v2 are two linearly independent null vectors.

(There are other ways to represent these two linearly independent

null vectors, but all other ways are linearly dependent on these two

null vectors.) In this situation, all three planes determined by the

three normal equations coincide with each other and form the

plane of solutions. Two constraints are required to determine a

solution in this rank deficient by two case. We can view one of the

constraints as shifting the orientation of one of the two planes so

that it intersects (in general) with one of the other two planes

producing a line under the first constraint. The second constraint

orients this line so that it intersects (in general) with the plane of

solutions. Note the terminology as we move from the rank

deficient by one to the rank deficient by two situation. The line of

Figure 2. Geometric view of constrained regression in three-
dimensions with one linear dependency. The constraint is .5b1 =
b2. The null vector intersects the origin, the line of solutions (on which
the solutions must fall) is parallel to the null vector. The constrained
solution plane intersects the line of solutions at (2.0, 1.0, 2.0).
doi:10.1371/journal.pone.0038923.g002
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solutions from the previous section is now the plane of solutions. The

plane of solutions is the subspace (two-dimensional) parallel to the

null space on which the solution must lie.

For the data in (16) a solution to the normal equations is

(5.5,0,0), so we can define the plane of solutions as (5.5,0,0)9 + k(1,

22,0)9 + s(1,1, 21)9. All of the solutions using linear constraints

will fall on this plane: the question is where. The answer when

using constrained regression depends upon the constraints that we

place on the solution.

In Figure 3, to avoid ‘‘cluttering,’’ we have not depicted the null

space (a plane that is parallel to the plane of solutions and passes

through (0,0,0)). The plane of solutions is depicted in Figure 3 and

passes through the points (5.5,0,0), (0,11,0), and (0,0,3.67). All of

these points fall on the plane of solutions, which can be verified

using the vector equation for this plane. Since theX ’X is two less

than full column rank, we must set two constraints on the solution.

In Figure 3, we use the constraints b1 = b2 and b2 = b3. Together

they constrain the solution to lie on a line that is equiangular

(forming 45 degree angles) with each of the axes. The solution

using these two constraints is (1.833, 1.833, 1.833), which is

depicted in Figure 3 as where the arrow from (0,0,0) intersects the

plane of solutions. It is easy to show that this solution works for the

data in (16). It provides a least squares solution, but so do an

infinite number of other solutions based on different combinations

of two constraints that force a line to intersect the plane of

solutions.

In a four-space with X ’X rank deficient by two there are two

linearly independent null vectors and the null space is a plane.

Each of the four normal equations represents a three-dimensional

hyperplane and two of them intersect to determine the plane of

solutions, which is parallel to the null space. The two remaining

three-dimensional hyperplanes are linearly dependent on the two

hyperplanes that intersected to form the plane of solutions. Placing

a constraint on one of the two remaining hyperplanes will, in

general, lead to its intersection with the other remaining

hyperplane and determine a plane (a two-dimensional hyper-

plane). This plane does not intersect the plane of solutions. The

second constraint will determine the direction of this plane that, in

general, will intersect the plane of solutions at a single point. Here,

the geometry strains our intuition, but two planes in a four space,

in general, intersect in a point [18,19]. Fortunately, both the null

space and the solution space being planes are reasonably intuitive

even if they are embedded in a four space.

When we increase the number of dimensions, the solutions

follow this same geometric pattern. Each of the m normal

equations represents an (m–1)-dimensional hyperplane. As long

as there are just two linearly independent null vectors, there will be

a plane of solutions: b~bczkv1zsv2. This plane of solutions is

determined by the intersection of m–2 of the hyperplanes (all but

two of the hyperplanes). The two remaining hyperplanes are

linearly dependent on the m–2 hyperplanes that intersected with

each other. We need to constrain these (m–1)-dimensional

hyperplanes so that they intersects with each other. The

intersection results in an (m–2)-dimensional hyperplane and the

second constraint is used to constrain the direction of this

hyperplane. In general, this constrained (m–2)-dimensional hyper-

plane and the two-dimensional plane of solutions will intersect at a

point in the m-dimensional solution space and thus will provide a

unique solution to the system of equations under the constraints

imposed. (Again, the reader is referred to Appendix S1 for some

rules for the intersection of hyperplanes for cases described in this

paper.).

The General Case
In the general case, if we have an m column matrix of

independent variables, there are m normal equations (one for each

row). Each equation represents an (m–1)-dimensional hyperplane.

If the m column matrix is rank deficient by d, then the null space is

of d-dimensions and the hyperplane of solutions is d-dimensional.

The hyperplane of solution can be represented by

b~bczkv1zsv2z � � � qvd . This d-dimensional hyperplane of

solutions is determined by the intersection of m–d of the

hyperplanes. To solve the system of equations, we need d

constraints. We use d–1 of these constraints to produce an

intersection between the d remaining hyperplanes. These inter-

sections result in (m – d)-dimensional hyperplane. The final

constraint orients this (m – d)-dimensional hyperplane. These two

hyperplanes (the d-dimensional hyperplane of solutions and the

constrained (m – d)-dimensional hyperplane), in general, intersect

in the m – dimensional solution space at a unique point. Thus, they

provide a unique solution to the system of equations under the

constraints imposed.

Discussion

We have examined setting specific constraints to find a solution

to a system of normal equations when the matrix of independent

variables is less than full column rank. Our emphasis has been on

the rows of the normal equations; each row representing an (m –1)-

dimensional hyperplane. We have used the null vectors to help

visualize the hyperplane of solutions that is of the same dimension

as the null space and is parallel to it. The d-dimensional

hyperplane of solutions is created by the intersection of m – d of

the (m –1)-dimensional hyperplanes represented by each of the

rows of the normal equations. Although there are an infinite

number of solutions to the normal equations – we know that they

lie in this space. By appropriately constraining the orientation of

the d remaining (m –1)-dimensional hyperplanes, we can produce a

solution to the normal equations that is unique given the constraints.

Computationally, we can find these constrained solutions by

creating a generalized inverse based on the constraint [4]. It is

important to note that even when we do not deliberately produce a

generalized inverse with a particular constraint, any generalized

Figure 3. Geometric view of constrained regression in three
dimensions with two linear dependencies. The constraints are
b1 = b2 and b2 = b3. The plane of solutions (on which the solutions must
fall) is parallel to the null space (not shown). The constrained solution
line intersects the plane of solutions at (1.833, 1.833, 1.833).
doi:10.1371/journal.pone.0038923.g003
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inverse produces a constrained solution. In this sense, the

geometry of using generalized inverses to solve these normal

equations that are rank deficient is the same as when using

constrained regression. Our discussion has focused on the

geometric interpretation of constrained regression from the row

perspective by focusing on the rows of the normal equation and

their intersections. In some ways this perspective may be more

difficult than the column perspective when the number of

dimensions is large [20], but there are geometric intuitions/

insights to be gained by taking this row perspective.

It is especially intuitive to think of the line of solutions and the

plane of solutions in rank deficient by one and by two situations.

The row geometry emphasizes that the unconstrained intersec-

tions among the row equations provide, to a large extent, what we

know about the solution – it must fall on this space: a space that is

parallel to the null space. It is helpful to think of the constraints as

arranging the remaining hyperplanes in such a way that they all

intersect with each other (if there is more than one). The

hyperplane created from these constrained intersections (when

there is more than one ‘‘remaining’’ hyperplane) is then oriented

in such a way as to intersect with the hyperplane of solutions. This

intersection produces a solution to the normal equations under the

constraints applied. These are very helpful insights into how

generalized-inverses/constrained-regression work.

How can this geometry be applied to a particular problem to

help us gain insight into what is ‘‘going on’’ in the analysis? Using

the Age-Period-Cohort model as an example of a rank deficient

model which often is ‘‘solved’’ using constrained-regression/

generalized-inverses to produce a least squares solution. The

geometry lays out what the problem in this rank deficient by one

case. A set of all of the independent variables but one are linearly

independent. The intersection of the normal equations, for all but

one of the normal equations, forms a line: a line of solutions. The

remaining normal equation can be represented by a hyperplane,

but this hyperplane does not intersect the line of solutions at a

point. Constrained-regression/generalized-inverses change the

orientation of this hyperplane so that it intersects the line of

solutions and provides one of the solutions on the line of solutions.

That solution is a least squares solution. Sometimes a constraint

that we impose in constrained regression does not ‘‘work’’ in terms

of providing a solution. This can occur because the constraint does

not change the direction of the linearly dependent hyperplane and

so it does not intersect the line of solutions. It is important to

remember that this solution depends on the constraint, and we

would recommend that anyone using such a constraint do so on

the basis of theory/substantive considerations. The line of

solutions is what we know from the data. We can determine this

line from the data – it is identified. Although we do not consider it

in this paper, this line can be used to derive other identified

characteristics for the Age-Period-Cohort model [21], the so called

‘‘estimable functions’’ [22–24].
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