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Introduction

The problem of collinear independent variables is well known.
When there is collinearity (a linear dependency between indepen-
dent variables) in a regression model there is no unique solution for
the regression coefficients. We say that these regression coefficients
are not identified, since there are an infinite number of solutions,
rather than a unique set of solutions. To obtain one of these
solutions, when the rank deficiency is one, a common strategy is to
place one constraint on the regression coeflicients (for example, fix
two of the regression coeflicients to be equal or one of them to be
twice as large as another). This typically is accomplished using
statistical programs such as [1] or [2] or can be implemented by
the use of generalized inverses or by creative recoding the data [3].

This paper does not propose a new method for solving
regression problems in the face of collinearity. Instead it offers a
general geometric view of the linear dependency problem
(collinearity). It shows how the most common approach to solving
regression equations in such situations (constrained-regression/
generalized-inverses) can be viewed geometrically. Constrained
solutions can be implemented by creating specific generalized
inverses that incorporate one or more constraints [4], and,
importantly, any generalized inverse constrains the solution in
both an algebraic and geometric sense. The user of packaged
programs will not use this geometry to obtain constrained solutions
nor will the researcher use generalized inverses, but this geometry

is extremely helpful in understanding: (1) the problem of

collinearity, (2) how these constrained solutions work, (3) how
many constraints are necessary to identify a solution, and (4) why
some constraints do not produce identified solutions. The general
geometric perspective may also help in judging what it is that
makes a particular constrained solution plausible.

Rank deficient matrices occur when one or more of the
independent variables are a linear function of the other
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independent variables in the model. These sorts of dependencies
can occur naturally in the course of research. Four diverse
example are: (1) when the total test score consists of the score on
the math section plus the score on the verbal section and one
wants to assess the independent effects of the total score (T'S), the
math score (MS), and the verbal score (VS) on college GPA. The
linear dependency is VS + MS = T'S. (2) Separating the effects of
educational status (ES), occupational status, (OS) and status
inconsistency (SI): SI = OS — ES [5]. (3) Disentangling the effects
origin status (OrigS), destination status (DS), and the degree of
mobility DM: DM = DS — OrigS [6]. (6) In demography and
epidemiology separating the effects of current age (A), current
period (P), and birth cohort (C): G = P — A [7] is a vital and
important problem [3,8-12]. In these scenarios, each of the
independent variables may have an effect on the outcome variable,
but in all of these situations the independent variables are linearly
dependent.

I expand upon the Age-Period-Cohort model example, because
I work directly in this area, and the problem of rank deficiency in
this area has generated and continues to generate intense interest
in sociology, demography, epidemiology, medicine, and other
related areas [3,8-12]. This model comes in two distinct forms.
One is simply to code ages in years, cohorts in birth years, and
periods in yearly dates. That is, coding all three of these variables
as continuous interval-level variables. The second, and most
common form, is to code these three variables with dummy
variables or effect coding. With dummy variable coding each age-
group is coded with a dummy variable except for a reference
category, each period is coded with a dummy variable except for a
reference category, and each cohort is coded with a dummy
variable except for a reference category. Using categorical coding,
there are typically many dimensions in the solution space (one for
each dummy variable plus the intercept). The model, however, is
still rank deficient by one.
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The typical solution to this problem is to use constrained
regression. Make an assumption about two of the categories such
as the effects of the first and second dummy variables for birth
cohorts are the same. This will identify the model and produce a
solution. The problem is that the solutions differ depending upon
the constraint imposed and often the solutions differ substantially.
Researchers typically use a constrained regression program
available in commonly used software programs [1,2], but these
same constrained solutions can be found using matrix algebra by
choosing the appropriate generalized inverse [4]. Typically
researchers set the constraint based on theory or past research
hoping that it is approximately correct [8]. Researchers may also
suggest that a particular constraint is the preferred one in general
without resorting to substantive theory or research to set the
constraint [11]. This author has criticized this approach [10],
suggesting that when using constrained regression, constraints
should be based, whenever possible, on substantive/theoretical
considerations.

In this areas of research facing the problem of structural
underidentification, it is helpful to be aware of the geometry of
rank deficient models. What does the geometry of rank deficient
models look like? How does constrained regression work? Why do
some constraints not work? The geometry shows that there are
some things we know about all possible solutions when using rank
deficient models. For example, in the rank deficient by one
situation, the OLS solutions (solutions to the normal equations) all
lie on a line in multidimensional space. We can describe this line
explicitly: the line is identified. The constraint we use (whether it is
mmplicit or we chose it explicitly) determines one of the points on
this line and, thus, one of the infinite number of least squares
solutions. Our choice is, of course, subject to error; it is no better
than the choice of the constraint used to select that solution. This
fact should keep researchers modest in their claims for solutions
based on constrained regression.

In each of the four cases of linear dependency discussed above,
the matrix of independent variables is one less than full column
rank since only two of the independent variables are linearly
independent. Adding the third independent variable means that
one of the three variables can be determined perfectly from the
other two. This three variable model has a rank of two and is rank
deficient by one. Because of this linear dependency, no unique
solution exists. One way to obtain a solution, however, is to impose
a constraint on the possible solutions such as constraining the math
test effect on GPA to be half as great as that of the verbal test
effect. The constraints are often based on theory or past research.
That is, the researcher has some reason to believe that math skills
(as measured by the test) should be less important to the overall
GPA than verbal skills (as measured by the test). Justifying that the
math effect should be one-half as large as the verbal test effect
requires precision not often found in social research. Less
theoretically, we can obtain a solution by using any appropriate
generalized inverse. This identifies the model, but the solutions
depend on the constraint employed (generalized inverse used) and
different constraints can provide widely divergent results.

Others have written on the geometry of generalized inverses or
related topics [13-16], but this paper provides a unique, and more
intuitive, view. It emphasizes the geometry of the solution space
(not the construction of a generalized inverse), it does so from the
row perspective (using row equations) rather than a column
perspective (using column vectors), and it emphasizes the null
space and the hyperspace of solutions that is parallel to the null
space. It presents a simpler geometric view of the solutions
obtained with generalized-inverses/constrained-regression than
these earlier papers; in part, because its scope and purpose are
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quite different. Our purpose is to provide a simple geometric view
of the rank deficiency problem and of how solutions are obtained
by using generalized-inverses/constrained-regression when the
matrix of independent variables is less than full rank.

Methods

The method used is straightforward. I begin with simple spaces
of one, two, and three dimensions. I then extend this approach to
situations with four or more dimensions. Understanding this
geometry takes some effort even in the one-, two-, and three-
dimensional situations and, obviously, more effort as we move to
the geometry of four or more dimensions. To simplify, I will deal
throughout with the normal equations associated with Ordinary
Least Squares (OLS) regression, since this is the situation most
familiar to readers. I begin with the simplest situation, the bivariate
case. We subtract the mean of the independent variable from each
independent variable scores and the mean of the dependent
variable from the dependent variable scores. This leaves us with
deviation scores and allows us to consider only the one regression
coefficient between these two variables since the intercept is zero.
In this situation there is only one normal equation.

In the one independent one dependent variable situation, there
are only two quantities needed to find the regression %oefﬁcient:
the sums of squares for the independent variable (3 X) and the
sum of products for the independent and dependent variables
(3" xp). In this two variable situation there is one normal equation

(> 2)p=> . (1)

yielding the familiar solution b=} xy / ST x?. Using matrix
algebra, we write this same equation as X' Xb=X"y. Where X is
an n X 1 vector of the deviations of the scores of the n observations
on the independent variable and » is an n X 1 vector of the
deviations on the dependent variable for n observations. The
prime means that the column vector has been transposed (in this
case into a row vector). When we carry out the matrix
multiplications, we end up with a single equation: equation (1).
For concreteness, we create values for 3 x and 3~ xy, and place
them into (1): 3. x?=4 and Y xy=8. Then we can write (1) as
4b =18 and; thus, b =2. Geometrically, the solution space has only
one dimension () and equation (1) allows us to solve for a unique
point on this line. It determines where on that one-dimension of
possible values of b the solution lies.

We extend this method by moving to the two independent
variable situation. We again center the variables by subtracting
their means from them so that all of the variables are in deviation
score form. We distinguish between the two independent variables
by subscripting them with a one or a two: X1 or X;. From an
algebraic perspective the quantities of interest are Y x2, 3" x3,
ST x1x2, Y. X1y, Y, X2p. Formulas from introductory texts that
cover multiple regression allow one to place these quantities into
formulas and solve for the two regression coefficients [17]. The
matrix algebra representation remains the same X' Xb= X"y, but
now the X matrix contains two columns (one for each of the
independent variables) and n rows (one for each of the
observations). The vector 4 has two elements one for the regression
coefficient for the first independent variable (b;) and one for the
second independent variable (by). We write out the explicit matrix
form of the equations using the sums of squares and cross-
products:
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Yoxixa o Yx; LY Xy

by
Carrying out the matrix multiplication in (2), we can write the two
normal equations:

(Z x%)bl + (Z x1xz)b2 =Y xiy

(Zx1x2>b1+ (Zx%)bF > xy 3)

Each of these normal equations is the equation for a line (the
general form of the equation for a line: 4b; + Bby =¢). We again
supply some appropriate values for the sums of squares and

products [ x3, S°x%, 3" x1x, ley, > x2y] and placing

these into (3) produce a set of two normal equations that could
result from real data,

4b1+2b,=8

2by—3by=—4 4)

We can solve this two equation system by, for example,
substituting 1.5b, —2 into the first equation for b, we find that
by =2 and then knowing b, we can easily solve for hywhich is
equal to 1.

Geometrically, the solution space has two dimensions: one for
b1 and one for b;. The normal equations in (4) are equations for
lines and if these two lines intersect in a point in this two
dimensional solution space that point will determine a unique
solution to this two equation system. This is depicted in Figure 1.
The horizontal axis represents the solutions for bjand the vertical
line the solutions for b,. We construct the two lines based on the
equations in (4) in the following manner. Using the first equation,
if b, =0 then b; =2 so that one of the points on the line is (2, 0).
On the other hand, if »; =0 then b =4 and a second point on this
first line is (0, 4) and these two points allow us to draw this first line
in the two dimensional solution space. The second line is
constructed in the same manner, we set b, =0 and b= —2, so
one point on the line is (=2, 0). If we set by =0 then by =1.33,
then a second point on the line is (0, 1.33). This allows us to
construct the second line. These two lines intersect at (1, 2); that is,
by =1 and b, =2. This is the geometric view of the solution to the
normal equations with two independent variables. It is likely
familiar to most readers (albeit from a different context).

Imagine the situation in which the two equations are linearly
dependent, for example:

4b1+2b, =8

2b1+1b,=4 (5)
The second equation is one-half times the first equation. There is

no unique solution to these equations. When we substitute the
second equations value for bj(b;=—.50b,+2) into the first
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Figure 1. Geometric view of a regression solution in a two-
dimensional solution space with no linear dependency. The
solution is where the two lines representing equations 1 and 2 intersect
(1, 2).

doi:10.1371/journal.pone.0038923.g001

equations value for b1 and solve for ba, we obtain 05, =0, a rather
uninformative result since b, could take on any value. We say that
by 1s not identified. If we substitute the value of b, from second
equation (b= —2b;+4) into the first equation, we find that
0b; =0. Geometrically we can plot the first equation as before and
end up with the line for equation 1 in Figure 1. When we plot the
second line, we find that it crosses the bjaxis at (0, 4) and the by
axis at (2, 0). That is, the lines for these two equations coincide.
Any solutions to these equations lie on this line. For example, (2, 0)
is a solution to both of these equations, as are (0, 4) and (1, 2).
There are an infinite number of solutions to these two equations,
and they all lie on this line in a space of two dimensions. One
informative way to write the equation for this line is as the “vector
equation for a line.” That is, as one of the points on the line plus a
scalar (k) times the “direction of the line””:

HRCI

This geometric notion of a line of solutions tells us not only that 4,
and b, are not identified; it tells us the combinations of 4, and by
that solve the normal equations. To show how this works, note that
we have previously shown that (0, 4) is on the line and it is a
solution when £ = 0; we have shown that (1, 2) is on this line and it
is a solution when £ =1; and we have shown that (2, 0) is on this
line and it 1s a solution when £ = 2. Selecting other values for £ will
produce the other points on this line; that is, any of the other
solutions to this set of two equations. Importantly, although there
are an infinite number of solutions to these two equations, the only
solutions are those that lie on this line.

At this point it is appropriate to introduce the null vector. The
null vector is the vector that when multiplied times a matrix results
in a vector of zeros. We focus on the normal equations and X'X.
In this context the null vector is the vector that when premultiplied
by X' Xproduces a vector of zeros under the condition that not all
of the elements of the null vector are zeros. Writing the X’ X'matrix
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for (5) we have {4 2} and we note that the vector {

R } when

-2

. The null vector is

0

(1,—2), and we represent it as v. It is unique up to multiplication
by a scalar. There is only one null vector for the X’X in (5),
because there is only one linear dependency (there cannot be more
than one linear dependencies with only two independent
variables). We note that the line of solutions is parallel to the
null vector, since they share the same direction. The null vector is
a line running through the (0, 0) point with a slope of minus 2.

The final situation in which it is relatively easy to visualize
geometrically the solutions and the problems caused by linear
dependencies among the independent variables is the situation in
which there are three independent variables. Below is the matrix
of sums of squares and cross products in matrix form:

multiplied time X'X produces the vector

S Ywxw Ywxs] [b X1y
Zszl ZX% ZXQX3 by | = Z)Qy (6)
Z)ngl ZX3X2 ZX% bs Zng

We can write the three normal equations based on this matrix
formulation as:

<Z x%)bl + (Z x1x2>b2+ (Z x1x3)b3 = ley
<Z xel)bl + <Z x%)bz-l— (Z x2x3)b3 = szy (7

<Z x3x1)b1 + <Z x3x2> by, + (Z x%)b.; = ngy

These are the three normal equations that when solved for by,
by, and b3 provide the least squares solutions. Geometrically each
of these equations represents the equation for a plane:
Aby+ Bby + Cb3;=d. Where A, B, C, and d are real numbers.
We again can provide some appropriate numbers for these sums of
squares and cross-products (in practice, of course, they are derived
from observations). This produces the three normal equations for
the data:

Aby +4by +2b3 =8
4b1 +6b2+4b3=10 (8)

2b1 +2by+4b3=12

We can solve these equations using substitution as we did to solve
the two equation system in (4) or we can use matrix algebra: the
solution set is:b; =2.333, bp=—1.667, and b3=2.667. This
solution set is the unique least squares solution set for this data.
We can construct our geometric figure as before, except now the
solution space has three dimensions one for by, one for b,, and one
for b3. Each of the three equations represents a plane. To
construct one of the planes, we can determine where the plane for
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the first equation crosses the b; axis; that is, what is the value of b;
when b, and b3 are both equal to zero. The answer is that b; =2;
one point on this plane is (2, 0, 0). Similarly the plane represented
by the equation in the first row crosses the by axis at 2 so a second
point on the plane is (0, 2, 0). Finally, the plane crosses the b3 axis
at 4 so that another point on the plane is (0, 0, 4). These three
points determine the plane represented by the first equation in this
three space. In the same manner we can determine the plane for
the second row equation by finding where it crosses the three axes
(2.50, 0, 0) (0, 1.667, 0), and (0, 0, 2.50); and for the third row
equation (6, 0, 0), (0, 6, 0), and (0, 0, 3). Since two of these planes
are not linearly dependent, they intersect one another and
intersection will determine a line. On this line, the solution to
the equations must lie. In (8) the third plane is not linearly
dependent on the first two planes, so it will intersect this line at a
point, and this point will determine the unique solution for this
three equation system. This point of intersection (2.333, —1.667.
2.667) will be the same as the solution using algebraic means. A
careful geometer would be able to generate this solution using the
intersections of planes. Of course, we are interested in the
visualization/intuition supplied by the geometric perspective and
would not recommend such geometric constructions as a means
for computing these results. For now, we simply need to visualize
two planes intersecting in a line in a three space (imagine the
three-space as a room) and another plane crossing that line. That
point of intersection supplies the unique coordinates in a three-
space and thus a unique solution for the parameter estimates.

Below (9), we depict a linear dependency where the third row
equation is one-half the first row equation plus one-half the second
row equation:

4by +4br +2b3 =8

4y +6by+4b3 =10 9)

4b145b,4+3b3=9

There is not a unique solution to this set of equations. If we
constructed planes for two of these three equations they would
intersect in a line, since any two of these equations do not form a
linearly dependent set. This line will lie on the remaining plane, so
that any solution on this line will be a solution to this set of
equations. In order for there to be a unique solution, the
remaining plane would have had to intersect the line formed by
the intersection of the other two planes at a point.

A line in a space of three or more dimensions is typically
described by using the vector equation for a line. This equation
tells where all of the points on the line are in terms of the
coordinates on each of the dimensions. For the first two equations
in (9) the line of their intersection can be described by the
following vector equation for the line:

1 1
L{+k| -2
0 2

The intersection of the second two planes can be described by the
same line as can the intersection of the first and third planes.

As noted, the remaining plane (the one not involved in the
mntersection) does not help us find a unique solution, since it does
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not intersect with the line of solutions at a single point: all of the
points on the line lie on the remaining plane and thus there is no
unique intersection point for the line and the plane. This makes
sense because we could have used the first and third equation or
the second and third equation and the line created by these
intersections would be the same one. That is, all of the planes have
this line lying on their surfaces. If the plane of the remaining
equation were not linearly dependent on the other two equations,
its plane would intersect the line established by the first two planes.
(In constrained regression, we force the remaining plane to change
direction and thus provide a unique solution under the constraint).
The null vector for (9) is (1, —2, 2)" since:

4 4 2 1 0

4 6 4(|-2(=]0

4 5 3 2 0
The null vector is parallel to the line established by the two
intersecting planes. We label the line of intersection as the “line of
solutions,” since any point on that line solves the set of equations
that are rank deficient by one. Of course, these solutions are not
the unique solutions that one obtains with linearly independent
equations.

With three normal equations there is one more possibility in
terms of linear dependency. The matrix of independent variables
may be rank deficient by 2: that is, there may not be a set of two of
these three equations that are linearly independent. There may be
two linearly independent null vectors. This happens with the
normal equations in (10) for which I have deliberately selected
data to produce an X’ Xmatrix that is rank deficient by two:

4b1 +4by +2b3 =8
2614 2by + 1by =4 (10)

3b14+3by+1.5b3=06

None of these planes intersect: all three of them coincide with one
another. They fall in the same two dimensional subspace. For
example, all three of these planes intersect the b axis at (2, 0, 0);
when by =0 and b3 =0 then b; =2 for all three of the equations.
Similarly, for all three equations the plane intersects the by axis at
(0, 2, 0) and the b3 axis at (0, 0, 4). Clearly these three planes
coincide. The solutions to these equations can reside anywhere on
this “plane of solutions.” We can write these potential solutions as
any one of the solutions (points on this plane) plus a scalar (k) times
one of the directions of this plane plus a scalar (s) times the other
direction of this plane. For example:

by 2 0 1
by|=|0|+k| 1 |+s] 0 (11)
by 0 -2 2

If we setk =2 and s =1, the point on this plane that results: (1, 2,
—2). This works as a solution for (9) as does any point on this
plane.

Not surprisingly the two vectors that are multiplied by £ and s
are the null vectors for (9), that is:

@ PLoS ONE | www.plosone.org

Geometry of Rank Deficient Models: Row Perspective

4.4 2770 0

22 1|1 |=|0]and

33 15]| -2 |o

_ Se L - (12)
4.4 2771 0

22 1||o|=]|o0

3 3 15]|-2] o]

These two null vectors are not linearly dependent on one another,
and any other null vectors that produce the zero vectors are
linearly dependent on these two null vectors. The null space in this
case 1s a plane that passes through the origin (0, 0, 0) that can be
described as:

0 0 1
0|+k| 1 [+s] 0 (13)
0 —2 -2

The solutions to the equations lie on a plane of solutions and that
plane is parallel to the null space which is a plane.

This methods section was written at the suggestion of a reviewer
and designed to make the results that follow more intuitively
understandable. To summarize: this paper examines the normal
equations: X' Xb= X"y. Any solution to these equations provides a
least squares solution; even in situations where there are linear
dependencies and, thus, an infinite number of solutions. Any one
of the solutions provides a least squares solution. The problem
with a linear dependency is not that we cannot find « solution; the
problem is that there is not a unique solution.

Without linearly dependent equations, we find that in the two-variable
situation the normal equations consist of two equations for lines
and these lines intersect in the two-dimensional solution space and
provide a unique solution to the equations. With three indepen-
dent variables there are three normal equations and each one is
the equation for a plane. These three planes intersect at a unique
point in the three-dimensional solution space providing a unique
solution to the equations. Venturing beyond these intuitive two-
and three-dimensional cases, the generalization/extension is
straightforward, but the terminology and visualizations are more
difficult. With four independent variables there are four normal
equations. Each represents a three-dimension hyper-plane (one up
from a two dimensional plane with three independent variables). If
there are no linear dependencies, these four three-dimensional
hyperplanes intersect in a point in the four-dimensional solution
space and provide a unique solution.

With linear dependency we saw that in the two variable case the two
lines representing the two normal equations coincide (they lie on
one another); they do not intersect and any solution on these
coinciding lines, “the line of solutions,” solves the two normal
equations. In the three independent variable situation where the
three normal equations represent planes; if the matrix of
independent variables is rank deficient by one (there is a set of
two linearly independent equations), then two of the planes
intersect in a line in the three-dimensional solution space. The
remaining plane, however, does not intersect this line at a unique
point, the line of solutions lies on the plane. If the matrix of
independent variables is rank deficient by two: there are two
linearly independent null vectors and all three planes coincide.
Any point on this “plane of solutions’ solves the normal equations.
In a four space, when the matrix of independent variables is rank
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deficient by one, three of the three-dimensional hyperplanes
intersect in a line (the line of solutions), but the remaining three
dimensional hyperplane does not intersect the line of solutions at a
unique point.

In our context, the null vector (v) is a vector that does not consist
of all zeros and for which X" Xv=0. There is one such vector when
a matrix is rank deficient by one, there are two such linearly
independent vectors when the matrix is rank deficient by two and
these two linearly independent vectors define a null space that is a
plane. This null space is parallel to the plane of solutions. By
extension there are ¢ such vectors when the matrix is rank deficient
by ¢ and these ¢ linearly independent null vectors form a null space
that is a g-dimensional hyperplane. This g-dimensional hyperplane
1s parallel to the ¢-dimensional hyperplane of solutions.

These sorts of extensions provide the basis for our results
section. Kendall [18] provides a more technical basis for some of
these results, but he focuses on the full column rank situation. We
include Appendix S1, based in part on [18], which helps to
formalize these extensions. Readers may want to refer to Appendix
S1 as they read the Results section. The algebra and the geometry,
of course, are consistent. The results below necessarily repeat
portions of the methods section.

Results

Identified Models: No Rank Deficiency

When a regression model with two independent variables is
identified, there are two independent normal equations (for lines)
in a two space, and the two lines intersect at a unique point
providing a unique solution to the equations. In a three space with
three independent normal equations (for planes), two of the planes
intersect in a line and the remaining plane intersects the line at a
unique point providing a unique solution to the equations. In a
four space with four independent equations (for three-dimensional
hyperplanes), two of the hyperplanes intersect in a plane, a third
hyperplane intersects the plane in a line, and the fourth
hyperplane intersects the line at a unique point providing a
unique solution to the equations. In an m-space with m
independent equations (each equation represents an (m—1)-
dimensional hyperplane), the m hyperplanes intersect at a unique
point providing a unique solution to the equations.

When the matrix of independent variables is of full column rank
(there is no rank deficiency), finding unique solutions for each of
the independent variables is straightforward using a regular
regression program or matrix algebra. We could constrain one
or more of the regression coeflicients, if we choose; but if we did,
we would likely degrade the fit of the model by changing the
orientation of one or more of the hyperplanes so that their
intersection is at a different point than the identified solution. This
would create a solution that was not a least squares solution. One
could do this to see if the constraint significantly degraded the fit of
the model. Our focus in this paper, however, is on the geometry of
rank deficient models in which the constraints are used to provide
a solution to the models; models that with the constraint are just dentified.

Rank Deficient by One Models

One less than full column rank is the situation illustrated in each
of the empirical examples cited in the introduction. In the case
with three independent variables with a rank of two, we can
determine the line on which the solutions must fall (two of the
normal equations intersect in a line): we label this the line of solutions;
but the remaining plane (equation) does not intersect this line (the
line of solutions lies on this plane). We can determine the line on
which the solution must fall, but not the point on that line. The
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constrained regression solution to this dilemma is to set the
direction of the plane so that it intersects the line on which the
solution must fall. One way to do this is to use a generalized
inverse based on a particular constraint [4]. This provides a solution
to the system of equations (under that constraint). One can use any
appropriate generalized inverse without worrying about the
constraint it imposes, but it most certainly imposes a constraint.

To make our discussion more concrete, we present an example
with three equations in which the rank of the matrix is two. We
have centered all of the variables in this analysis by subtracting
their mean values from each of the values of the observations on
these variables. Our reason for doing so is to allow us to visualize
the solutions with three independent variables in a three-space.
Alternatively, we could have included a column of ones in the X-
matrix for the intercept and used just two independent variables in
our example.

We use the normal equations for (X" X)b= X"y below for this

example:

56 42 987 [k 350
42 44 86 | by | =300 (14)
98 86 184 | |b; 650

The linear dependency is evident in X’ X matrix. The null vector
(the vector that when multiplied timesX’Xproduces the zero
vector) s (1, 1, —1). This representation of the null vector is unique
up to multiplication by a scalar.

Figure 2 presents this problem in a three-space in which the
axes represent the unknown regression coefficients. We can
represent the null vector in the three-space created by the axes
for by, by, and b5 as a line extending through the points (1, 1, —1)
and (0, 0, 0). It is represented by the left most darkly stippled line.
The right most darkly stippled line is labeled the line of solutions —
it is the line on which the solutions to the constrained regression
must fall. For the data in (14) the line of solutions crosses the b;—b9
plane at (4, 3, 0), because when b3 =0, by =4 and b, =3 provide
the correct solution for all three equations. Similarly, the line of
solutions crosses the b;—b3 plane at (1, 0, 3). We can describe this
line using the vector equation for a line (b=>,+kv) by choosing
any one of these points as a solution (b.) and adding £ times the
null vector (v) to it: (4, 3, 0)' + 41, 1, —1)". This guarantees that the
line of solutions and the null vector are parallel (they share the
same direction). The line of solutions also represents the
intersection of two of the planes described by the normal
equations in (14). The remaining normal equation (plane) does
not intersect the line of solutions: the line of solutions lies on it.
The question is which solution on the line of solutions we will
choose? We can choose it explicitly using constrained regression or
implicitly using any generalized inverse.

A solution is achieved by constraining the direction of the
remaining plane; m general the constrained solution plane will
mtersect the line of solutions at a point which provides « solution to
the equations. We use the term i general, because if the plane is
constrained to be in the direction of the line of solutions, it will not
mtersect the line. For example, setting the constraint b, = by for
this data will not change the orientation of the plane and will not
produce a solution. This happens if we constrain b; = — b3; on the
other hand, b; = by, by = b3, or. 5b; = by will produce a
solution, as will most other constraints. In Figure 2, we depict the
constrained solution plane under the constraint. 56; = by. It has a
slope of.5 with reference to the bo-b; axis (an increase of 1 on b, is
associated with an increase of. 5 on by). The constrained plane is
shaded and intersects the line of solutions at (2, 1, 2). This is the
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1
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7 Line of Solutions
(Values in our Example)
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| null vector

(1, 1,-1) by

Figure 2. Geometric view of constrained regression in three-
dimensions with one linear dependency. The constraint is .5b; =
b,. The null vector intersects the origin, the line of solutions (on which
the solutions must fall) is parallel to the null vector. The constrained
solution plane intersects the line of solutions at (2.0, 1.0, 2.0).
doi:10.1371/journal.pone.0038923.g002

solution under the constraint that. 56, = by. We have kept some
“construction lines” in the figure that are light and stippled to
highlight a few important points in the construction of the figure.

A careful geometer could find the solution to this constrained
regression in this three dimensional case graphically. For this case,
and others involving more dimension, Mazumdar, et al. [4] show
how we can use generalized inverses that correspond to particular
constraints. For example, the solution that corresponds to the
Moore-Penrose inverse is (1.67, .67, 2.33). The Moore-Penrose
corresponds to the constrained solution that is orthogonal to the
null vector [(1.67, .67, 2.33)(1, 1, —1) =0] and can be
implemented using the system of Mazumdar, et al. [4], by using
the constraint 4, = bs— by In a constrained regression program, or
by using the Moore-Penrose inverse. Proceeding graphically, the
constrained plane would be orthogonal to the null vector (1, 1, —1)
and intersect the line of solutions at (1.67, .67, 2.33).

It is, of course, more difficult to draw a figure for the situation in
which the rank deficiency is one and there are four independent
variables. In this case there are four equations representing four
three-dimensional hyperplanes. The line of solutions is determined
by the intersection of three of these hyperplanes and when we find
one of the solutions to the normal equations we can write the line
of solutions as b=b,+kv. The line of solutions is parallel to the
null vector. Unfortunately, the line of solutions does not intersect
the remaining hyperplane.

As an example, we use the following normal equations

(X' X)b=X"y:

50 40 20 557 [b —-25
40 90 10 70| | b |- 180 (15)
20 10 80 55| |bs 185
55 70 55 90] |Lbs —10

For (15) the null vector is (1, 1, 1, —2). When the constraint is
by = —bs, the solution vector is (—1, —4, 1, 3)". This solution vector
certainly  works in (1) for  example  —1x50-
4x40+1 x20+3 %55 =-25 for the first row, and similarly for the
remaining rows of (15). Thus, the line of solutions may be written
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as (—1, —=4,1,3)" + k(1,1,1, —2)". This completely specifies the line
of solutions; and we perhaps can imagine such a line in a four
dimensional space.

It is more difficult to imagine the remaining three-dimensional
hyperplane. It is the orientation of this hyperplane that is
constrained in four dimensional space to obtain a solution to the
equations. With the linear dependency this three-dimensional
hyperplane, represented by one of the normal equations, does not
mtersect the line of solutions (determined by the other three
hyperplanes). We must use a constraint to force this hyperplane to
cross the line of solutions at a unique point. In this case, if we use
the constraint is ; = —bs, the constrained hyperplane has as slope
of —1 on the b;—b5 plane: an increase of one on b, is associated
with a decrease of 1 on b, (note, the hyperplane must cross the (0,
0, 0, 0) point in the four-dimensional solution space). This change
In orientation constrains this hyperplane to cross the line of
solutions at a unique point. Again we might set a constraint that
yields a hyperplane that does not intersect the line of solutions. In
this case, we might have set b, = b3, and the hyperplane will not
intersect the line. In general, however, for almost all constraints
the hyperplane will intersect with the line of solutions.

The extension to m dimensions is straightforward. There are m
equations representing m (m—1)-dimensional hyperplanes. The line
of solutions (a line in m space) 1s determined by the intersection of
m—1 of these hyperplanes. Its vector equation for the line of
solutions is b=b,+ kv; where b, b,, and v each have m-elements.
The remaining hyperplane does not intersect the line of solutions.
The single constraint that we place on the remaining hyperplane,
in general, reorients it in the m-space, and results in the
constrained hyperplane intersecting the line of solutions at a
single point that yields @ solution to the system of m equations.

Rank Deficient by Two Models

When the X-matrix is two less than full column rank, it is still
possible to visualize the solution in a three-dimensional space. To
do so, we introduce a new set of normal equations (X' X)b=X"y:

144 72 2167 [by 792
72 36 108 ||k | = 396 (16)
216 108 324 | | bs 1188

The linear dependencies are evident in the X' X matrix. There are
two linearly independent null vectors (1, —2, 0) and (1, 1, —1).
These two vectors define the null space, which in this case is a
plane (a hyperplane of two-dimension: a plane).

Once we solve for one of the infinity of possible constrained
solutions, it is a simple matter to write the plane of solutions using
the vector equation for a plane. The solution must lie on the plane
defined as: b=b.+kv;+sv, where b, is any particular con-
strained solutions, b represents all of the possible solutions, £ and s
are scalars, and v, and vy are two linearly independent null vectors.
(There are other ways to represent these two linearly independent
null vectors, but all other ways are linearly dependent on these two
null vectors.) In this situation, all three planes determined by the
three normal equations coincide with each other and form the
plane of solutions. Two constraints are required to determine a
solution in this rank deficient by two case. We can view one of the
constraints as shifting the orientation of one of the two planes so
that it intersects (in general) with one of the other two planes
producing a line under the first constraint. The second constraint
orients this line so that it intersects (in general) with the plane of
solutions. Note the terminology as we move from the rank
deficient by one to the rank deficient by two situation. The line of
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solutions from the previous section is now the plane of solutions. The
plane of solutions is the subspace (two-dimensional) parallel to the
null space on which the solution must lie.

For the data in (16) a solution to the normal equations is
(5.5,0,0), so we can define the plane of solutions as (5.5,0,0)" + (1,
—=2,0)" + 5(1,1, —1)". All of the solutions using linear constraints
will fall on this plane: the question is where. The answer when
using constrained regression depends upon the constraints that we
place on the solution.

In Figure 3, to avoid “cluttering,” we have not depicted the null
space (a plane that is parallel to the plane of solutions and passes
through (0,0,0)). The plane of solutions is depicted in Figure 3 and
passes through the points (5.5,0,0), (0,11,0), and (0,0,3.67). All of
these points fall on the plane of solutions, which can be verified
using the vector equation for this plane. Since theX'X is two less
than full column rank, we must set two constraints on the solution.
In Figure 3, we use the constraints b; = by and by = bs. Together
they constrain the solution to lie on a line that is equiangular
(forming 45 degree angles) with each of the axes. The solution
using these two constraints is (1.833, 1.833, 1.833), which 1is
depicted in Figure 3 as where the arrow from (0,0,0) intersects the
plane of solutions. It is easy to show that this solution works for the
data in (16). It provides a least squares solution, but so do an
infinite number of other solutions based on different combinations
of two constraints that force a line to intersect the plane of
solutions.

In a four-space with X’X rank deficient by two there are two
linearly independent null vectors and the null space is a plane.
Each of the four normal equations represents a three-dimensional
hyperplane and two of them intersect to determine the plane of
solutions, which is parallel to the null space. The two remaining
three-dimensional hyperplanes are linearly dependent on the two
hyperplanes that intersected to form the plane of solutions. Placing
a constraint on one of the two remaining hyperplanes will, in
general, lead to its intersection with the other remaining
hyperplane and determine a plane (a two-dimensional hyper-
plane). This plane does not intersect the plane of solutions. The
second constraint will determine the direction of this plane that, in
general, will intersect the plane of solutions at a single point. Here,

bs
Solution
(by=1.833, b= 1.833, h;=1.833) 5
1
3.67+
Plane of Solutions
1.831 | (Values in our Example)

by

Figure 3. Geometric view of constrained regression in three
dimensions with two linear dependencies. The constraints are
b, = by and b, = bs. The plane of solutions (on which the solutions must
fall) is parallel to the null space (not shown). The constrained solution
line intersects the plane of solutions at (1.833, 1.833, 1.833).
doi:10.1371/journal.pone.0038923.g003
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the geometry strains our intuition, but two planes in a four space,
in general, intersect in a point [18,19]. Fortunately, both the null
space and the solution space being planes are reasonably intuitive
even if they are embedded in a four space.

When we increase the number of dimensions, the solutions
follow this same geometric pattern. Each of the m normal
equations represents an (m—l)-dimensional hyperplane. As long
as there are just two linearly independent null vectors, there will be
a plane of solutions: b=b.+ kv; +sv,. This plane of solutions is
determined by the intersection of m-2 of the hyperplanes (all but
two of the hyperplanes). The two remaining hyperplanes are
linearly dependent on the m—2 hyperplanes that intersected with
each other. We need to constrain these (m—1)-dimensional
hyperplanes so that they intersects with each other. The
intersection results in an (m—2)-dimensional hyperplane and the
second constraint is used to constrain the direction of this
hyperplane. In general, this constrained (m-2)-dimensional hyper-
plane and the two-dimensional plane of solutions will intersect at a
point in the m-dimensional solution space and thus will provide a
unique solution to the system of equations under the constraints
imposed. (Again, the reader is referred to Appendix S1 for some
rules for the intersection of hyperplanes for cases described in this

paper.).

The General Case

In the general case, if we have an m column matrix of
independent variables, there are m normal equations (one for each
row). Each equation represents an (m—1)-dimensional hyperplane.
If the m column matrix is rank deficient by 4, then the null space is
of d-dimensions and the hyperplane of solutions is d-dimensional.
The hyperplane of solution can be represented by
b=b.+kvi+svy+ ---qvg. This d-dimensional hyperplane of
solutions is determined by the intersection of m-d of the
hyperplanes. To solve the system of equations, we need d
constraints. We use d-1 of these constraints to produce an
intersection between the ¢ remaining hyperplanes. These inter-
sections result in (m — d)-dimensional hyperplane. The final
constraint orients this (m — d)-dimensional hyperplane. These two
hyperplanes (the d-dimensional hyperplane of solutions and the
constrained (m — d)-dimensional hyperplane), in general, intersect
in the m — dimensional solution space at a unique point. Thus, they
provide a unique solution to the system of equations under the
constraints imposed.

Discussion

We have examined setting specific constraints to find a solution
to a system of normal equations when the matrix of independent
variables is less than full column rank. Our emphasis has been on
the rows of the normal equations; each row representing an (m —1)-
dimensional hyperplane. We have used the null vectors to help
visualize the hyperplane of solutions that is of the same dimension
as the null space and is parallel to it. The d-dimensional
hyperplane of solutions is created by the intersection of m — d of
the (m —1)-dimensional hyperplanes represented by each of the
rows of the normal equations. Although there are an infinite
number of solutions to the normal equations — we know that they
lie in this space. By appropriately constraining the orientation of
the d remaining (m —1)-dimensional hyperplanes, we can produce a
solution to the normal equations that is unique given the constraints.

Computationally, we can find these constrained solutions by
creating a generalized inverse based on the constraint [4]. It is
important to note that even when we do not deliberately produce a
generalized inverse with a particular constraint, any generalized
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inverse produces a constrained solution. In this sense, the
geometry of using generalized inverses to solve these normal
equations that are rank deficient is the same as when using
constrained regression. Our discussion has focused on the
geometric interpretation of constrained regression from the row
perspective by focusing on the rows of the normal equation and
their intersections. In some ways this perspective may be more
difficult than the column perspective when the number of
dimensions is large [20], but there are geometric intuitions/
insights to be gained by taking this row perspective.

It 1s especially intuitive to think of the line of solutions and the
plane of solutions in rank deficient by one and by two situations.
The row geometry emphasizes that the unconstrained intersec-
tions among the row equations provide, to a large extent, what we
know about the solution — it must fall on this space: a space that is
parallel to the null space. It is helpful to think of the constraints as
arranging the remaining hyperplanes in such a way that they all
intersect with each other (if there is more than one). The
hyperplane created from these constrained intersections (when
there is more than one “remaining” hyperplane) is then oriented
in such a way as to intersect with the hyperplane of solutions. This
intersection produces a solution to the normal equations under the
constraints applied. These are very helpful insights into how
generalized-inverses/ constrained-regression work.

How can this geometry be applied to a particular problem to
help us gain insight into what is “‘going on” in the analysis? Using
the Age-Period-Cohort model as an example of a rank deficient
model which often is “solved” using constrained-regression/
generalized-inverses to produce a least squares solution. The
geometry lays out what the problem in this rank deficient by one
case. A set of all of the independent variables but one are linearly
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