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Abstract

Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation.
The orchards in China could play an important role in the carbon (C) cycle of terrestrial ecosystems and contribute to C
sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential
assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C
sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability
analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old,
and then the capability began to decline with age. Carbon emission derived from management practices would not be
compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China
ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C
sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial
ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy
associated with fruit production in addition to provide fruits.
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Introduction

The contribution of orchards to carbon (C) cycling ranging from

C storage [1,2], root respiration [3,4,5,6,7] and net CO2 flux [8]

has been published. Measured and simulated components of the C

balance in apple trees have also been reported [9,10]. However,

there are very few studies that consider the impacts of orchard

management practices on the environment and C cycle using

a systems approach. The potential for C credits based on standing

biomass for orchards is limited compared to forest stands growing

in the same climatic zone. It is roughly estimated that New

Zealand orchards could sequester less than 70 t C ha21 within

their lifespan of at least 25 years, while forest stands can sequester

much more, e.g. Pinus radiata, reaching 300–500 t C ha21 under

New Zealand conditions [11]. However, orchards and forests may

sequester similar amounts of C in the first few years after their

establishment [11]. Although the comparison of C sequestration

between forests and orchards has been made, the results were not

produced based on the same criteria, e.g. living biomass was only

considered without including indirect C emissions associated with

orchard management practices. The content of soil organic matter

depends largely on the periodic input of organic materials and the

decomposition rate of soil organic matter [12]. Any increase of the

soil C pool is the result of biotic C inputs that comes from CO2

fixation directly or indirectly by plants in agroecosystems. The

fixed C is partitioned to different organs of the fruit trees, which

depends on number of factors, e.g. genotype [13], tree age [14],

orchard density [15], fruit production [16], training systems [17]

and orchard management [18]. Meanwhile, it would be very

difficult to quantify some components of C balance in an orchard

system, e.g. the natural fall of flowers and fruits, microbial

respiration and rhizodeposition in the overall C balance of an

orchard [8]. Some of the C allocated to roots will return to the air

as root respiration and enter the soils as rhizodeposits. The

amount of C losses through these channels varies. It was reported

that one quarter to one third of respiration occurring in a soil is

from roots of higher plants, and rhizodeposition accounts for 2–

30% of total dry matter production in young plants [19]. In

contrast, C immobilised in short-life organs, like fruits and leaves,

has other pathways [8]. Normally, C from fruits is removed from

the orchard system through harvesting while that from leaves is

translocated into the woody perennial parts of the apple trees or

converted to soil organic C through decomposition after the leaves

become litterfall.

China is the largest apple producer in the world with c.a.

356106t in the 2011/2 season (USDA). Fruit trees are an

important component in the Chinese agricultural sector with 8.67

million ha of orchards, of which apple orchards cover 1.99 million

ha [20]. Considering its storage capacity of fixed C and the size of

planting area, the orchards in China could play an important role

in the C cycle of terrestrial ecosystems and contribute to C
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sequestration. However, there is little knowledge on how to

improve the C sequestration potential in Chinese orchards.

To accurately estimate C stocks and fluxes in orchards located

in different regions, it is desirable to set a baseline that can

eliminate the uncertainties caused by the variations in fruit tree

structure, stocks and fluxes among and within geographical sites

combined with direct field measurements from local sample plots.

In natural and semi-natural forests, the C carrying capacity can be

used as an indicator for the baseline [21,22]. The indicator is made

up of a matrix of factors to quantify forest degradation and

sequestration in terms of C losses and gains due to land-use

changes [21,23,24,25]. Because orchards are managed systems,

the estimation of C sequestration capacity is different from the

natural forest. Therefore, it is necessary to build a new matrix for

orchard ecosystems to accommodate management factors. The

aim of this paper is 1) to set up an assessment matrix of C

sequestration capability based on measured data to evaluate the C

sequestration capability of apple trees of a range of ages; and 2) to

assess the status of C sequestration by apple orchards in China.

Materials and Methods

Study Site
A field-modelling study was conducted in the apple orchards

located in Changping District, Beijing (116u2895599E,
40u2093499N) between 2009 and 2010. The climate of this region

is temperate continental monsoon with an annual average

temperature of 12.1uC. The soil of the orchards is deep sandy

loam or loam with approximately 1.2% of soil organic matter

content in the 20 cm topsoil. Three orchards of Fuji/Makino

apple trees, 5, 18 and 22 years old, were chosen (i.e. apple trees

were planted in 2005, 1992 and 1988 separately), to represent

juvenile, mature and over-mature phases in the life cycle of apple

trees. Information on fertilizer use and irrigation application in the

orchards was obtained via the Beijing Agricultural Technical

Extension Station. General information about the orchards is

shown in Table 1. Four frames [26] in each orchard were

randomly set up but avoiding the influence of diseases and insects

on the trees within the frames to determine the value of stem

diameter. The value with the highest probability within the

orchard using the normal distribution of the stem diameters was

taken to identify an apple tree to be harvested for biomass

estimation. Three frames from the four quadrats in the orchard

were chosen for fine-root observations with minirhizotron, soil

core samplings for fine-roots and soil respiration measurements.

The area of the quadrat was 264 m2 for the 5-year-old orchard

and 365 m2 for the 18- and 22-year-old orchards, considering the

planting densities of the orchards with different ages.

Analysis of Carbon Sequestration Capability
Matrix analysis was used to investigate the capability of C

sequestration. Three indirect sources for C emission: irrigation,

and chemical fertilizer and manure applications were identified. A

set of the potential assessment factors, Ui (i=1,2,3, representing

the 5-, 18- and 22-year-old orchards, respectively), was formed

with the subset in the following order: long residence woody (stem

+ branch + coarse root), leaf, fruit, fine root, pruning, soil

respiration, irrigation and fertilizer application. Because the

pruned branches would normally leave the orchard systems

immediately, this component is treated as a source of C emissions

within the orchards in this study. There are two columns in Ui: the

C capture elements (Ui1) and the C emission elements (Ui2), which

were used to evaluate the contribution of the assessment factors to

C sequestration in an orchard. The C capture by long residence of

woody, leaf or fruit was represented with the C content of

increased biomass. The contribution to C emissions from fertilizer

or irrigation is calculated by amount of fertilizer application or

irrigation multiplied by a conversion coefficient which was

adopted from West and Marland [27].

A vector (Bi) was used to assign weighting factors for each subset

in Ui. The values in the vector reflect the contribution of the

factors in the overall assessment for orchard i. The elements in Bi

include: weighting factors of long residence woody, leaf, fruit, fine

root, pruning, soil respiration, irrigation and fertilizer application

in order. The matrix Vi derived from the product of the matrix and

its corresponding vector was the outcome of the C capture and

emission from the orchard i:

Vi~BiUi ð1Þ

The measurement of the potential assessment factors described

were as below.

Biomass Estimation
Three representative apple trees from each orchard were

identified in September, 2009 and the increments in stem

diameter at 20 cm from the ground of the trees were measured

in October, 2009 to October, 2010. Increment of stem diameter

measurements one year apart were used to estimate the biomass

increment for the experimental year. The trees were divided into

leaves, branches, main stems and coarse roots, and all fresh

weights were measured in the field. Then sub-samples from each

fraction were dried to determine total dry matter of each

fraction. The sub-samples were oven-dried at 65uC until constant

mass was reached. The dried sub-samples were ground after

weighting before total C analysis was made by EA 1108

elemental analyser (Italy, Carlo Erba) to determine C content.

The data were used to fit allometric equations to quantify the

relationship between the biomass of different parts (leaf, stem,

branch, coarse root) and stem diameter. Because of the life cycle

of an apple tree, fruit production would begin to decline in the

over-mature phase year by year. Therefore, a parabola equation

was used to quantify the relationship between fruit production

and stem diameter. Statistical analysis was made using SPSS for

Windows (Rel. 11.5.0, 2002. Tokyo: SPSS Inc.).

Table 1. General information of the Fuji apple tree orchards
at Changping, Beijing.

5-yr-old 18-yr-old 22-yr-old

Orchard size (ha) 0.33 1.67 0.33

Nitrogen application (kg N ha21 yr21) 135 149 149

Phosphorus application(kg P ha21 yr21) 135 149 149

Potassium (kg P ha21 yr21) 135 149 149

Animal manure (kg ha21 yr21)* 87000 99000 97500

KNO3 (kg ha21 yr21) 300 330 330

ZnSO4 (kg ha21 yr21) 300 330 330

Bacterial fertilizer (kg ha21 yr21) 300 330 330

Irrigation amount (m3 ha21 yr21) 3220 3300 3300

*OM content: about 25%; nutrient content: N - 1.6%, P - 1.5% and K - 0.8%.
doi:10.1371/journal.pone.0038883.t001

Carbon Sequestration in Apple Orchards
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Fine Roots Observation
The turnover rate of fine roots is an important parameter to

indicate the contribution of the fine roots to C sequestration.

Minirhizotron and soil coring method were used to estimate the

turnover rate.

In July, 2009 before the experiment started, nine 90 cm-long

minirhizotron tubes of 5 cm diameter were inserted into the soil at

45u angle with the horizon in the second quadrat of each orchard

to allow fine roots to settle in the soil surrounding the tubes.

Minirhizotron images were collected every ten days using a BTC-

10 minirhizotron microscope (Bartz Technology, USA) from

October 2009 to October 2010. This generated 64 images from

each minirhizotron tube. The length of fine roots was calculated

for all the images using the I-CAP software. The collected

information was used to calculate the length of fine roots (cm) per

unit area. A fine root turnover index, defined as the ratio of fine

root mortality in a year (cm cm-1) to initial fine root length (cm

cm21) within the minirhizotron window [26], was calculated using

the data with the reported method. Within a quadrat from each

orchard, ten soil cores of 4 cm in diameter and 80 cm in depth

were sampled. The soil columns were separated into depths 0–20,

20–40, 40–60 and 60–80 cm. The soil samples were transferred in

plastic bags. Roots were manually picked out from the samples,

washed and sorted (,2 mm), then they were oven-dried at 80uC
until constant mass were reached. Fine root dry matter density (mg

DM cm23) was estimated based on the relationship between the

weight and the surface area of sampled fine roots, which was used

to estimate the biomass of fine roots.

Soil Respiration
Soil respiration (and temperature) at 10 cm soil depth in the

three quadrats in each orchards were measured every ten days

between June 2009 and June 2010 (excluding first three months in

2010 when the top soil was frozen) using developed closed gas-

Figure 1. Distribution of apple grown area in China. The regions without colour indicate non-apple grown areas.
doi:10.1371/journal.pone.0038883.g001

Carbon Sequestration in Apple Orchards
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exchange system (LiCor 6400 Portable Photosynthesis System with

6400-09 soil CO2 flux chamber; LiCor, Lincoln, NE, USA). At all

three orchards, 27 replicate LiCor soil collars in total were

installed. The collars remained in place throughout the experi-

ment period, allowing repeated measurements. All measurements

were carried out between 10:00 to 11:30 am. Measurements were

not made on days of rain.

Litterfall Decomposition
At the beginning of September 2010, 20 g fresh leaves collected

from the apple trees was put into a nylon bag with a mesh size of

2 mm. Six bags were randomly placed on the surface of the

orchard soil (after removing the litter layer). At the end of each

month for the following three months, two litterbags were

collected from each orchard to calculate weight loss and C

Figure 2. Dynamics of apple orchards area and production (A) and age distribution of the orchards (B) between 1990 and 2010 in
China [data source: Editorial Committee, 1991;1996;2001;2006;2010].
doi:10.1371/journal.pone.0038883.g002

Table 2. Allometric equations for dry matter (kg) for different
parts of subject trees using the square of the stem diameter
(cm) at 20 cm from the ground as an independent variable
(sample number is 9 for each component).

Formula a B c Adjusted R2

Fruit ax2+bx+c 21.170 0.260 20.001 0.809

Branch axb 0.124 1.234 0.984

Stem 0.178 1.101 0.997

Leaf 0.160 0.656 0.951

Root 0.159 0.999 0.946

doi:10.1371/journal.pone.0038883.t002

Carbon Sequestration in Apple Orchards
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content of litterfall. The data was used to determine decomposition

rate by fitting the exponential function [28]:

Xt~X0|e{kt ð2Þ

where X0 is initial C content of the litterfall (g C), Xt is C content at

time t and k is the decomposition rate (d21). Data processing and

allometric equations.

Other Data Sources
There are three geographical regions for apple production in

China: the western, the central and the eastern regions. This study

covered major apple regions in China (Figure 1), biomass data of

apple trees at various ages from geographic locations was used to

validate the allometric equations described in 2.2. The dynamics

of the net C sink and C storage of apple orchards in China was

calculated based on cultivation areas and tree age groups

(Figure 2). The groups were set 0–7, 8–18 and 19–30 years old

at national level.

Results

Carbon Storage, Emission and Turnover of Apple Trees
C capture of long residence woody, leaf, fruit. Carbon

storage from a part of an apple tree is estimated based on dry

matter and C content of the part. The average stem diameters at

20 cm from the ground were 3.260.2, 12.960.8 and

14.260.6 cm for the 5-, 18- and 22-year-old trees. The parameter

values for the allometric equations to estimate dry matter from

different parts of an apple tree are presented in Table 2.

In order to validate the allometric equations which can be

applied to the apple production regions in China, biomass data of

an apple tree were collected dated from 1990 in major apple

production regions (Table 3). The observed biomass and estimated

values from the equations were compared (Table 4 and Figure 3).

For the trees with stem diameter between 4 and 6 cm, the

equations underestimated biomass of trees due to a large standard

deviation in the collected data. For the other two groups at stem

diameters of 0–4 cm and 10–15 cm, the estimated values confirm

to the actual ones. These results indicated that the allometric

equations should be suitable for biomass estimation of apple trees

which were subjected to managed agricultural production systems.

The annual biomass increments of living organs of apple trees at

different ages were calculated using the equations. The increments

of an individual tree were converted into the increments per unit

land area through multiplying tree density. The results showed

that the 5-year-old tree has a much higher growth rate than the

other two groups although its standing biomass is low (Figure 4).

The growth rates of all parts (except stem) for the trees older than

18 years began to slow down, which may be caused by reduced

growth of a mature tree. As fruit trees get older, the proportion of

the long residence woody biomass in total standing biomass

production also increases.

C capture and turnover of fine roots. The analysis of

minirhizotron images indicated that the net growth rate of fine

roots had apparent seasonal changes for the trees of all the ages.

Two growth peaks appeared, in early summer and late fall for the

5- and 18-year-old trees throughout the observed soil profile.

However, no significant seasonal change in growth rates was

observed in the 22-year-old trees. The active growing zone of fine

roots fell between 20 and 60 cm of the soil profile (Figure 5). Based

on the observation and the regression analysis between fine root

weight and surface area (Wfr=0.634+0.7689Sarea, R2= 0.8119 and

n=5), the annual growth rate of fine roots was calculated as

33.4616.8, 41.7619.0, and 17.766.8 g DM m22 for the 5-, 18-

and 22-year-old trees, respectively.

The indices of annual fine root turnover were 7.7, 6.8 and 1.5

for the 5-, 18- and 22-year-old trees, respectively. The proportion

of appeared and disappeared fine roots in the minirhizotron

window for the 5-year-old trees remained at a similar value for the

Table 3. Biomass (kg tree21) of various parts of an apple tree with various ages in different geographical areas in China.

Site Age (yr) Stem diameter (cm) Fruit Branch Stem Coarse root Leaf Source*

North China 5 3.19 0.98 1.44 2.23 3.21 0.70 1

3.11 1.58 2.25 2.38 1.10 0.76 1

3.42 1.64 3.18 2.32 1.19 0.76 1

18 13.22 26.06 83.29 52.47 23.84 5.73 1

12.02 17.31 68.02 40.64 30.77 3.61 1

13.42 14.60 92.00 52.21 29.48 7.11 1

22 13.69 12.76 67.44 61.39 22.93 3.574 1

East China 7 5.55 2.42 7.82 7.10 4.91 1.62 2, 3

8 5.51 9.74 5.22 24.24 12.19 3.47 2, 4

5.51 6.52 5.81 20.20 7.71 4.35 5

17 11.58 9.00 8.12 26.86 19.47 3.12 2, 6

11.58 12.23 10.35 12.64 13.68 4.09 2, 5

Northwest China 5 3.58 0.54 1.73 1.69 0.94 0.55 7

Source*: 1 survey by the authors; 2–6 from per. comm. (2 Y. Jiang; 3 L. Zhao; 4 J. Fang; 5 D. Zhang; 6 N. Ding); 7 Zhang et al. [2009].
doi:10.1371/journal.pone.0038883.t003

Table 4. Comparison of the modelled and observed total dry
matter content of an apple tree (kg).

stem diameter range 0–4 cm 4–6 cm 10–15 cm

Modelled 7.561.0 16.960.2 154.1631.9

Observed 6.661.2 29.2612.1 138.0657.6

doi:10.1371/journal.pone.0038883.t004

Carbon Sequestration in Apple Orchards
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longest period compared to those with other two ages (Figure 6),

which indicated that the 5-year-old trees not only produced a large

amount of fine roots, but their root systems also had a high

metabolic rate.

C emissions of pruning and soil respiration. In China,

each individual orchard follows its own guidelines for the disposal

of pruned branches based on the age of trees. In general, more

branches are pruned with tree ages. Biomass in pruned branches

at different ages was shown in Table 5.

Soil respiration from the 18-year-old orchard showed the

strongest seasonal changes among the orchards, and two peaks in

a year existed (Figure 7). We observed that the highest rate for the

5-year-old orchard occurred in spring and early summer, and that

for the 22-year-old orchard occurred in the middle of summer.

Based on the samples, annual soil respiration rates were 1.360.3,

1.660.6 and 1.260.5 kg C m22 in the 5-, 18- and 22-year-old

orchards, respectively.

C emissions of litterfall. The data from the litterfall bags

showed that the decomposition of litterfall followed an exponential

equation:

Xt~X0|e{0:0032t R2~0:8463, n~18
� �

ð3Þ

The total decomposition rate was equivalent to 312 days of

turnover time. i.e., complete decomposition of litterfall would

occur within a year either through emission to the atmosphere as

CO2, or transformation into a stable organic matter pool in the

soil.

Carbon Sequestration Capability with Various Ages of
Apple Trees

Contribution of the components to carbon

sequestration. Annual C increment rate for each part of the

trees in an orchard was treated as a C sink. The value of the

assessment elements related to tree biomass was calculated by the

allometric equations, plant density and the conversion fraction of

dry matter to C content. The fraction was 0.46 g C g21 DM based

on the measurement of this study. In an annual cycle, leaves stay

on trees during the growing season and then fall to the ground as

litterfall for a certain period. During the year, some of litterfall

decomposes releasing C to the atmosphere. Considering the length

of the period and the measured decomposition rate, the emitted

fraction of C in leaves is set at 0.284. Pruned branches, soil

respiration and orchard managements are considered as sources of

C emissions. The matrix of assessment elements for each age

group of the orchard was shown in Table 6.

Weighting factors for the components. Because there are

no substantial changes in long-term residence woody losses within

one year, its weighting factor was set to 1. All leaves from apple

trees will emerge at the beginning of the growing season and fall

after the growing season of the year, so the weighting factor was

also set to 1. An apple tree normally sets more fruits than they can

be supported to grow and it usually becomes necessary to thin

fruits or buds in order to improve the average size of each fruit

remaining on the tree. Therefore, the fallen fruit or buds would be

decomposed. Because harvested fruits usually grow for half a year,

the weighting factor for harvested fruits in an orchard was given

a score of 0.5. The annual fine root turnover index derived from

the minirhizotron images is 7.69, 6.84 and 1.48 for the 5-, 18- and

22-year-old trees, respectively (details in 3.1.2). The orchard would

Figure 3. Comparison between the modelled and observed dry matter of branch, stem, fine root and leaf with different stem
diameters.
doi:10.1371/journal.pone.0038883.g003
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be pruned once a year, its rate is also to be 1. C emissions from all

types of orchard management practices were given a total score of

1. Therefore, the vector of weighting factors for the components

from each orchard can be expressed as:

B1~

B1

B2

B3

2
64

3
75~

1, 1, 0:5, 7:69, 1, 1, 1, 1

1, 1, 0:5, 6:84, 1, 1, 1, 1

1, 1, 0:5, 1:48, 1, 1, 1, 1

2
64

3
75 ð4Þ

Assessment of carbon sequestration capability. The final

evaluation matrix for each orchard (in a row) was produced

through the product of U and B:

V~B:U~

0:76, {1:47

4:19, {2:27

3:72, {2:00

2
64

3
75 ð5Þ

The first column in the matrix represents gross C input to an

orchard and the second is C emission from the orchard. The net C

sink by the end of the experimental period is 20.7, 1.9, and 1.7 kg

C m22 for the 5-, 18- and 22-year-old orchards, respectively.

There is a transition point from net C emission to net C sink with

the tree ages between 5 and 18 years old. The relationship

between tree age (Xage) and C sequestration (Cseq) could be

expressed with a parabola function:

Cseq~{0:0159X 2
agez0:05853Xage{3:5194 (n~3) ð6Þ

The equation showed that an eight-year-old orchard may reach

the balance between the source and the sink. The apple trees older

than 8 years could be considered as the C sink. When the trees are

18 years old, they reach the peak of C sequestration capability

which then begins to decline with their ages.

The proportions of C stocks in short-lived tissues and long

residence woody and C emissions from orchard management

practices in C sequestration were analyzed (Table 7). In the 5-

year-old orchard, the proportion of C emission from the orchard

management practices far exceeds the portion of C stocks from

both short-lived tissues and long residence woody. As the orchard

enters the aging process, the proportion of short-lived tissues is

declining, which could explain the lower C sequestration

capability in the 22-year-old orchard.

Carbon Sequestration Capability in Apple Orchards in
China
There was a great development in apple tree production in the

1980s in China because of government incentives. As a conse-

quence, most of seedling apple trees were planted then. Apple trees

younger than 8 years old accounted for the largest percentage in

the apple orchards by 1990. Therefore apple orchard inventory

Figure 4. Annual biomass increment rates in various living parts of apple trees with different ages between Oct. 2009 and Oct.
2010.
doi:10.1371/journal.pone.0038883.g004

Carbon Sequestration in Apple Orchards
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data from 1990s were analyzed in this paper. The evaluation

matrix for the 5-, 18- and 22-year-old apple orchard generated

from above session were used to estimate net C sink from 1990–

2010 for the age group categories: 0–7 yr., 8–18 yr., and 19–

30 yr., respectively. C storage in the living organs of apple trees at

national level was assessed using the allometric equations. The

estimated net C sink from apple orchards and the C storage of the

apple trees in China were shown in Figure 8. It is noted that the C

sequestration capability declined from 1995 to 2000. This is

because the market price of apple decreased during the period,

and a large number of tress were cut by farmers, especially in the

Figure 5. Dynamic changes of total fine root length in different soil layers in three orchards between Oct. 2009 and Oct. 2010.
doi:10.1371/journal.pone.0038883.g005

Carbon Sequestration in Apple Orchards
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eastern and northeast China. As a result, the total orchard area

was reduced during this period.

The contribution from each region to total C sink from apple

orchards is different and variable (Figure 9a). In the eastern and

western regions, the change of net C sink from 2000 to 2005 had

a similar trend as the national level shown in Figure 8. The sink in

the eastern region has decreased, whilst it has kept rising in both

the western and the central regions since 2005. The net C sink is

13.3, 5.24 and 9.15 Tg year21 in the western, central and east

regions in 2010, respectively. The estimation indicated that the

apple orchards in the western region are the major contributor to

the C sequestration (Figure 9b). The total net C sink from apple

orchards in China is about 27 Tg C year21 in 2010, which is

equivalent to sequester 14 t C ha21 year21.

Figure 6. Dynamics of the proportions of living roots and disappeared roots within the minirhizotron window between Oct. 2009
and Oct. 2010.
doi:10.1371/journal.pone.0038883.g006

Table 5. Dry matter and carbon content in pruned branches
of an apple tree with different ages assuming 3.75 m2 of land
is covered by an 18- or 22-year-old tree and 2 m2 for a 5-year-
old tree.

tree age (yr) 5 18 22

Dry matter (kg tree21) 0.587 3.457 4.630

C content (kg C tree21) 0.270 1.590 2.130

C content (kg C m22) 0.135 0.424 0.568

doi:10.1371/journal.pone.0038883.t005
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Discussion

Monitoring the dynamics of fine roots and soil respiration,

litterfall decomposition and destructive sampling on apple trees

were made in three apple orchards with 5, 18 and 22 years old,

respectively. The results showed that the 5-year-old tree had the

highest growth rate among the trees with different ages and the

rates of branches and roots for the trees .18 years began to slow

down. The analysis of minirhizotron images indicated that the

annual fine root turnover index is 7.69, 6.84 and 1.48 for the 5-,

18- and 22-year-old trees, respectively, but the 5-year-old tree

produced a large amount of fine roots and its root system also had

a high metabolic rate. Soil respiration from the orchard with 18

years old had the strongest seasonal changes among the orchards

and two peaks in a year existed. Blanke (1996) [29]suggested Soil

and grass respiration occupied a major contribution to the CO2

flux in a fruit orchard. Consistently our data show the annual

respiration rates are 1.25, 1.59 and 1.21 kg C m22 in the 5-, 18-

and 22-year-old orchards, respectively. That means there’s no

significantly relationship between apple trees and respiration. Soil

respiration in 18 yr orchard is higher than the respiration in the

other orchards (5-, 22-year-old orchards). We suppose that more

animal manure applied to 18–year-old orchard (Table 1) which

accelerate the soil respiration. The litterbag experiment made

a conclusion that the residence time for litterfall is about 312 days.

It is noted that the conclusion was drawn only from the results of

a single year experiment. Ideally the experiment should last longer

in order to acquire more data for the analysis of C sequestration

capability. But it is a time-consuming, labour intensive and

expensive experiment. It would be difficult to purely rely on field

experiment for the analysis. Modelling may be an option to

estimate the contribution of each component in an apple orchard

system to C sequestration based on the obtained results from this

experiment.

The results of C sequestration capability matrix suggested that

the net C sink is 20.7 (source), 1.9, and 1.7 kg C m22 for the 5-,

18- and 22-year-old orchards, respectively. The apple trees older

than 8 years could be considered as a C sink. When the trees are

18 years old, they reach the peak of C sequestration capability

which then begins to decline with their ages. Only when apple

trees grew till a certain age in an orchard, the orchard could start

Figure 7. Soil respiration rates in the observed months in the 5-, 18- and 22-year-old apple orchards during the observation period.
doi:10.1371/journal.pone.0038883.g007

Table 6. Carbon capture and emission (kg C m22 yr21) from the evaluation factors in the orchards with different planting ages.

Long residence
woody Leaf Fruit Fine root Pruning Soil respiration Irrigation Fertilizers

5 yrs old Capture (U11) 0.47 0.091 0.17 0.015 0 0 0 0

Emission (U12) 0 0.0026 0 0 0.135 1.25 0.017 0.034

18 yrs old Capture (U21) 2.2 0.676 2.37 0.019 0 0 0 0

Emission (U22) 0 0.192 0 0 0.424 1.59 0.017 0.038

21 yrs old Capture (U31) 2.3 0.56 1.7 0.008 0 0 0 0

Emission (U32) 0 0.159 0 0 0.568 1.21 0.017 0.038

doi:10.1371/journal.pone.0038883.t006
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to sequester C. Carbon emission derived from management

practices would not be compensated through C storage in apple

trees before reaching the mature stage. After an orchard became

a net C sink, short-lived tissues turnover rates would be the major

factor affecting C sequestration in the orchard. Based on apple

orchard inventory data from 1990s and the evaluation matrix

results from modelled plot in Beijing, it was estimated that the net

C sink in apple orchards could range from 13.8 to 32.6 Tg C and

the C storage of the apple trees from 227 to 481 Tg C during the

period of 1990–2010. Among the three major growing regions of

apple trees in China, the apple orchards in the western region are

the major contributor to the C sequestration. The total net C sink

from apple orchards in China is about 27 Tg C in 2010, which is

equivalent to 14 t C ha21. If taking the life cycling of apple trees as

25 years, the figure is similar to the reported amount for organic

kiwifruit and apple production systems in New Zealand [30]. It is

predicted that the capability continues growing substantially in

China in the future because of the increase of growing areas and

more apple orchards entering the mature stage. Therefore apple

production systems can be potentially considered as a C sink apart

from the function of fruit production.

Net ecosystem productivity is often used as a parameter for C

sink at a regional level [11,31] without considering the impact of

orchard management practices. In this study, indirect C emissions

from fertilizer applications and irrigations, as well as the direct

contribution from soil respiration and tree pruning were included

in the estimation of the capability, in addition to the biomass

turnover rates. The results suggested that a young orchard would

be a source of C emissions initially, and then it become a C sink

from the eighth year when the trees are at the full fruit stage and

the capacity of C sequestration gradually increases until it reaches

18 years old. During the full fruit stage, apple trees are more active

in photosynthesis and metabolism, which would have more C

deposited into their organs. Meanwhile, C emissions from orchard

management practices would remain at a constant level. As

a result, net C sequestration capability could increase when an

orchard is between the ages of 8 and 18 years old. In practice, fruit

trees are often forced to enter the full fruit stage as early as possible

in China. To achieve this goal, heavier inputs (chemical fertilizer,

manure, pesticide) was added to the orchards during the early

period of orchard establishment to stimulate tree growth, which

would induce more C emitted to the atmosphere through the

practices.

The partitioning of photosynthate among metabolic activities,

short-lived tissues and long residence woody organs in fruit trees, is

an important process for C sequestration, especially quantifying

the allocation to fine roots and investigating its residence time in

soils [32]. It was reported that the proportion of photosynthate

allocated for fine root construction could account for 30–50% of

total global terrestrial primary productivity [33,34,35]. Guo et al.

[36] suggested that the most important channel for fixed C into

soils is fine roots because of their short life spans and the quick

decomposition of dead roots. Whether the dynamics of fine roots

in orchards has such an important role in C sequestration is still

controversial, as a considerable portion of photosynthate should be

used to support fruit production which is one of the main goals for

fruit plantation. In this study, the minirhizotron technique was

used to monitor the dynamics of fine roots in order to determine

fine root turnover time much accurately. The image analysis

showed that the annual fine root turnover index of apple trees is

much high, reaching almost 7 for the 5-year-old tree although fine

root biomass only accounts for a small percentage of total biomass

(,0.1%). The fine roots may not make such a large contribution to

C sequestration potential in apple orchards.

The preliminary results from this study showed that the

proportion of C emission from the orchard management

practices far exceeds the portion of C stocks from both the

short-lived tissues and long residence woody tissues in the 5-year-

Table 7. Percentages of various components in net carbon
sequestration in the apple orchards with different ages.

Orchard age (yr) 5 18 22

Long residence woody (%) 22 36 45

Short-lived tissues (%) 12 29 18

Orchard managements (%) 66 35 37

doi:10.1371/journal.pone.0038883.t007

Figure 8. Net carbon sink in apple orchards in China between 1990 and 2010.
doi:10.1371/journal.pone.0038883.g008
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old orchard. When the orchard enters the aging process, the

proportion of short-lived tissues is declining. These conclusions

were made from only one experiment in three orchards for one

growing season. We caution direct interpretation to other

geographic sites where the environmental conditions are signif-

icantly different. In order to estimate C sequestration potential

from apple orchards in China accurately, more long-term field

monitoring experiments at different ages are necessary.

Due to the lack of data on soil organic C pool in apple orchards

at a provincial/national level, soil organic C sequestration in the

apple orchards was not included in the net C sink in this study.

Continuous applications of organic fertilizer to agroecosystems

would result in the accumulation of organic C in cultivated soils,

which could have big potential for C sequestration [37]. As

a managed system, the production of apple orchards in China will

increase the application of organic fertilizers to replace chemical

fertilizers in order to produce high quality fruits and ensure the

sustainability of the system. C sequestration potential covering

trees, management practices and soils in apple orchards could give

more accurate estimation in the future.

Figure 9. Dynamics of net carbon sink in apple orchards in the western, the central and the eastern regions between 1990 and 2010
(A), and the net carbon sink in each apple growing province in China in 2010 (B).
doi:10.1371/journal.pone.0038883.g009
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It was reported that C sequestration potential in Chinese forests

was 5.96103 Tg C in 2000, equivalent to 41 t C.ha21 [38]. C

sequestration from the apple orchards in 2000 was 332.2 Tg C

from this study, which is about 5.6% of forest C sequestration. It

was estimated that a mean net C sequestration rate in the

terrestrial ecosystems which orchard systems were not explicitly

included in China was in the range of 190–260 Tg C yr21 during

the 1980s and 1990 [39]. Our results indicated that the net sink

from the apple orchards in 1990 was 14.1 Tg C, which equals to

4.5% of the reported total C sequestration from the terrestrial

systems in China. The Net C sink has gradually increased since

1990 and reached 27 Tg C in 2010. The estimation from this

study suggested that 1.6–3.0% of China’s CO2 emissions from

burning fossil fuels in 2000 [40,41] could be compensated by C

accumulation in apple orchards. Therefore, C sequestration in

apple orchards can help to offset industrial CO2 emissions.
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