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Abstract

Enforced EGFR activation upon gene amplification and/or mutation is a common hallmark of malignant glioma. Small
molecule EGFR tyrosine kinase inhibitors, such as erlotinib (Tarceva), have shown some activity in a subset of glioma
patients in recent trials, although the reported data on the cellular basis of glioma cell responsiveness to these compounds
have been contradictory. Here we have used a panel of human glioma cell lines, including cells with amplified or mutant
EGFR, to further characterize the cellular effects of EGFR inhibition with erlotinib. Dose-response and cellular growth assays
indicate that erlotinib reduces cell proliferation in all tested cell lines without inducing cytotoxic effects. Flow cytometric
analyses confirm that EGFR inhibition does not induce apoptosis in glioma cells, leading to cell cycle arrest in G;.
Interestingly, erlotinib also prevents spontaneous multicellular tumour spheroid growth in U8ZMG cells and cooperates with
sub-optimal doses of temozolomide (TMZ) to reduce multicellular tumour spheroid growth. This cooperation appears to be
schedule-dependent, since pre-treatment with erlotinib protects against TMZ-induced cytotoxicity whereas concomitant
treatment results in a cooperative effect. Cell cycle arrest in erlotinib-treated cells is associated with an inhibition of ERK and
Akt signaling, resulting in cyclin D1 downregulation, an increase in p27“P" levels and pRB hypophosphorylation.
Interestingly, EGFR inhibition also perturbs Rho GTPase signaling and cellular morphology, leading to Rho/ROCK-dependent
formation of actin stress fibres and the inhibition of glioma cell motility and invasion.
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Introduction tracellular signaling pathways such as the Raf/MEK/ERK and
the PI3K/Akt pathways, which are ultimately responsible for the
¢ ! malignant phenotype of glioma cells. Accordingly, small molecule
tumours m adults\ and rank among: the gost FlCVaStatlng al?d inhibitors of EGFR such as erlotinib (Tarceva) and gefitinib
aggressive Lypes of humafl cancer due to their dlsmal Prognosis. (Iressa) have been shown to attenuate glioma cell proliferation
Key blo.loglcal features of t.heSfa tumours are the ability of tumour vitro [5—7], although their clinical activity as single agents remains
cells to invade healthy brain tissue and their enhanced resistance controversial due to the contradictory data obtained in clinical
to ra.dlf) and chemot}}erapy:-mduced apoptosts (1]- SUCh. Fhar- trials (reviewed in [8]). Similarly, opposing results have been
acteristics have dramatic clinical consequences, since they critically reported regarding the predictive value of different biomarkers
challenge the success of therapeutic intervention. A number of such as EGFR and EGFRVIII expression on EGFR inhibitor
genetic alteratl(?ns are respons,lble for _the malignancy Of th,ese responsiveness. For instance, it has been described that sensitivity
tumours, often mlvolw.ng mutglgh leading to the bypcractwauon to erlotinib correlates with high EGFR expression levels but not
?f recepFE(gFtyrosme kmz;;e(if‘ﬁm?ng these, Ihe epldermalvggof/\’tg with EGFRVIIL expression [9] and, oppositely, that EGFRvIII
actor ( . ) receptor ( ) 15 commonly overexpressed an expression correlates with sensitivity to erlotinib, whereas EGFR
amplified in gliomas, and contributes to uncontrolled proliferation expression does not [6]. Tn contrast, it is well-established that

and survival of glioma cells [2]. The EGFR is also frequenty —(pceie ' "EGFR inhibition correlates with low PISK/Akt
mutated in these tumours, leading to the expression of a truncated .. . .
. . . activity, since hyperactivation of the PI3K/Akt pathway through
receptor termed EGIFRVIII which lacks its extracellular domain . . .
phosphatase and tensin homolog (PTEN) mutation renders glioma

and is constitutively active [3,4]. Enhanced activation of the . oy ey R
. . oy [.’ 1 . - cells resistant to EGFR inhibition and, conversely, inhibition of
EGFR tyrosine kinase domain leads to the activation of in-

Malignant gliomas constitute the most common primary brain
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PI3K signaling using different compounds has been shown to
sensitize glioma cells to EGFR inhibitors [6,9-11]. Altogether,
despite the research efforts focused on understanding the
molecular basis of sensitivity to EGFR inhibitors, the prevailing
view is that an in-depth analysis of the molecular responses elicited
by these compounds in glioma cells is still required. Here we have
aimed to further characterize the cellular effects of EGFR
inhibition with erlotinib in a panel of human glioma cell lines.
Erlotinib treatment reduces cell growth and inhibits multicellular
tumour spheroid formation. These effects are accompanied by
alterations in signaling pathways and cell cycle regulators.
Interestingly, EGFR inhibition can cooperate in a schedule-
dependent manner with low doses of temozolomide (TMZ) to
reduce glioma cell growth. We also show that EGFR mhibition
induces a dramatic alteration in cell morphology through the
modulation of Rho/ROCK signaling that leads to the inhibition
of glioma cell motility and invasion. Importantly, EGFR inhibition
is similarly effective in the reduction of proliferation, motility and
invasion in cells expressing wild-type, mutant or amplified EGFR.

Materials and Methods

Cell culture and drug treatments

LN229, US7MG, HS683, T98G, U251 and U373 cells were
a gift from Joan Seoane (Institut de Recerca Hospital Universitari
Vall d’Hebron, Barcelona). The U87MG derivative cell line
UB7AEGFR was a gift from Isabel Martinez-Lacaci (Hospital
Universitario Virgen de la Arrixaca, Murcia). SKMG-3 cells were
a gift of Hans Skovgaard (Rigshospitalet, Oslo). All cell lines were
subconfluently grown and passaged, routinely tested for myco-
plasma contamination and subjected to frequent morphological
tests and growth curve analysis as quality-control assessments.
Cells were grown in DMEM (Invitrogen, Carlsbad, CA)
supplemented with 10% foetal calf serum (Biological Industries,
Israel) in a humidified incubator at 37°C with 5% CO?2. Erlotinib
(Roche, Basel, Switzerland), temozolomide (Developmental Ther-
apeutics Program, Division of Cancer Treatment and Diagnosis,
National Cancer Institute, Bethesda, MA), C3 (Cytoskeleton,
Denver, CO) and H-1152 (Calbiochem, Darmstadt, Germany)
were added directly to the media at the indicated concentration
and cells were harvested or analyzed at the time points indicated in
the figure legends.

Measurement of cell proliferation and viability

For cellular growth assays, 2.5x10* cells were plated in 6-well
plates and cell growth was assessed at the indicated time points
counting cells after trypsinizing and incubating them with trypan
blue solution (Sigma-Aldrich, St. Louis, MO). For cellular viability
assays, 5x10” cells were plated in clear bottom 96-well plates,
treated as indicated and processed using the CellTiter-Glo
Luminiscent Assay Kit (Promega, Madison, WI) to measure
cellular  viability, - following the manufacturer’s instructions.
Luminiscence was detected using a multiwell scanning spectro-
photometer (Plate Chameleon, Hidex, Finland).

Multicellular tumour spheroid formation assays

To monitor the formation of multicellular tumour spheroids in
culture, 4x10° U87TMG cells were plated in 6-well plates and
treated as indicated in the figure legends. After 4-6 days cells were
stained with 0.5% (w/v) crystal violet in 70% ethanol and the
number of multicellular tumour spheroids from representative
fields (>10) counted under a light microscope.
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Flow Cytometry

Cell cycle profile was measured by flow cytometry using
propidium iodide. Briefly, trypsinized cells were collected by
centrifugation, washed in PBS and fixed for 30 min at 4°C in 70%
ethanol. After washing twice with PBS, DNA was stained with
50 png/ml propidium iodide (Sigma-Aldrich, St. Louis, MO) in the
presence of 50 pg/ml RNase A (Sigma-Aldrich, St. Louis, MO).
Stained cells were then processed using a Beckman Coulter EPICS
XL Cytometer (Beckman Coulter, Fullerton, CA) and analyzed
with the WinMDI software.

Clonogenic assays

For clonogenic assays, cells grown in 6-well plates were treated
as indicated, trypsinized and plated at low density (3x10” cells per
60-mm plate) in fresh media. After 7-10 days cells were stained
with 0.5% (w/v) crystal violet in 70% ethanol and the number of
colonies counted.

Actin Staining

Cells grown on coverslips were fixed in 3.7% (v/v) para-
formaldehyde for 20 min and permeabilized in 0.1% (v/v) Triton
X-100 for 5 min. Actin filaments were visualized by incubating the
fixed cells for 45 min at 37°C with TRITC-phalloidin (Sigma-
Aldrich, St. Louis, MO, 1:500). Stained cells were analyzed on
a Leica TCS SPE confocal microscope (Leica Microsystems,
Wetzlar, Germany).

Measurement of Rho GTPase activity

The capacity of Rho-GTP and Rac-GTP to bind to GST-
Rhotekin and GST-PBD (p21-activated-kinase-binding-domain)
respectively was used in order to analyze the amount of active
GTPases [12] with Rho and Rac activation assay kits (Cytoskel-
eton, Denver, CO), according to the manufacturer’s instructions.
Briefly, cells (5-10x10°% were lysed, cleared (10,000xg) and
incubated for 45 min at 4°C with glutathione sepharose-4B beads
coupled with GST-Rhotekin or GST-PBD for Rho-GTP or Rac-
GTP pulldowns, respectively. Beads were washed 4 times in Lysis
Buffer. Bound proteins were solubilized by the addition of 35 ul of
Laemmli loading buffer and separated on 12.5% SDS-polyacri-
lamide gels. The amount of Rho or Rac in the bound fraction was
detected by western blotting.

Motility and invasion assays

For 2D motility (wound-healing) assays, 4x10° U87MG cells
were plated in 6-well plates, wounded thrice with a sterile tip and 3
representative images were collected. After 16 h, images of the
same regions were collected and the ratio of cell motility in each
experimental condition quantified. For 3D invasion assays, 2 x10*
U87MG cells were seeded on matrigel-coated transwells (BD
Biosciences, San Diego, CA) containing DMEM supplemented
with 0.5% FCS and placed in 24-well plates containing DMEM
supplemented with 10% FCS to create a growth factor gradient.
24 h later, the matrigel layer was removed and cells were stained
with 0.5% (w/v) crystal violet in 70% ethanol. Invading cells from
6 representative fields were counted under a light optic micro-
scope.

Gel electrophoresis and immunoblotting

Cells were harvested in a buffer containing 50 mM Tris-HCI
pH 7.4, 150 mM NaCl, I mM EDTA and 1% (v/v) Triton X-100
plus protease and phosphatase inhibitors. Protein content was
measured by the Bradford procedure [13]. Cell lysates were
electrophoresed in SDS-polyacrylamide gels. After electrophoresis
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Figure 1. Erlotinib inhibits glioma cell proliferation. (A) Representative phase-contrast micrographs of glioma cell lines left untreated (control)
or treated for 48 h with 10 puM erlotinib (erlotinib). (B) Glioma cell lines were left untreated (untreated) or treated with 10 uM erlotinib (erlotinib) and
the number of cells counted every 24 h. Data from a representative experiment out of three repetitions is shown, representing the total number of
viable cells in untreated and erlotinib-treated conditions at the indicated time-points. (C) Glioma cell lines were treated for 72 h with the indicated
concentrations of erlotinib. The mean = SD values from three independent experiments, each conducted in duplicate, are shown in the graph,
representing the percentage of viable cells relative to untreated conditions. The differences between control and erlotinib treatment are statistically
significant (Student’s t-test: *P<<0.05, **P<<0.01 and ***P<<0.001, respectively). (D) Glioma cell lines were treated for 72 h with 10 uM erlotinib.
Sensitivity to erlotinib of each cell line is expressed as the mean = SD percentage of growth inhibitory activity from three independent experiments,
each conducted in duplicate. The differences between control and erlotinib treatment are statistically significant (Student’s t-test: *P<<0.05) (E)
Representative phase-contrast micrographs of U87MG cells left for 4-6 days to allow formation of multicellular tumour spheroids (MCTS), untreated
(control) or treated with 10 uM erlotinib (erlotinib). The graph indicates the mean = SD values of MCTS formation from three independent
experiments, each conducted in duplicate, expressed as the percentage of MCTS relative to untreated cells. The differences between control and

erlotinib treatment are statistically significant (Student’s t-test: **P<0.01).

doi:10.1371/journal.pone.0038770.g001

the proteins were transferred to Immobilon-P strips (Millipore,
Billerica, MA) for 2 h at 60 V. The sheets were preincubated in
TBS (20 mM Tris-HCI pH 7.5, 150 mM NaCl), 0.05% Tween 20
and 5% defatted milk powder for 1 h at room temperature and
then incubated for 1 h at room temperature in TBS, 0.05%
Tween 20, 1% BSA and 0.5% defatted milk powder containing
the appropriate antibodies: Akt (sc-1618, 1:1000), p274P" (sc-525,
1:1000), cdk4 (sc-260, 1:1000) and p21°P" (sc-471, 1:1000) from
Santa Cruz (Santa Cruz, CA), anti-cyclin D1 (MS-210P,
Neomarkers, Fremont, CA 1:1000), pRB (14001A, BD-Pharmin-
gen, San Diego, CA, 1:500), Rho (ARHO03, Cytoskeleton, Denver,
CO, 1:500), Rac (05-389, Millipore, Billerica, MA, 1:1000), anti-
B-tubulin (T0198, Sigma-Aldrich, St. Louis, MO, 1:4000) and
EGFR (#2232, 1:1000), p-S473-Akt (#9271, 1:500), p-ERK
(#9101, 1:1000) and ERK (#9102, 1:1000) from Cell Signaling
(Beverly, MA). After washing in TBS, 0.05% Tween 20, the sheets
were incubated with a peroxidase-coupled secondary antibody
(Dako, Glostrup, Denmark, 1/2000 dilution,) for 1 h at room
temperature. After incubation, the sheets were washed twice in
TBS, 0.05% Tween 20 and once in TBS. The peroxidase reaction
was visualized by the enhanced chemiluminiscence detection
system (Millipore, Billerica, MA).

Statistical analysis

The statistical significance of differences was  assessed by
Student’s ¢ test using GraphPad Prism (GraphPad Software Inc.
La Jolla, CA). Statistically significant differences are indicated by
*¥p<<0.001, **p<<0.01 and *p<<0.05.

Results

Erlotinib inhibits glioma cell proliferation and prevents
multicellular tumour spheroid formation

In order to characterize the cellular effects of EGFR inhibition
in glioma cells, we treated a panel of 6 human glioma cell lines
(LN229, U87MG, HS683, TI8G, U251, U373) with erlotinib.
Erlotinib reduced cell proliferation in all cell lines tested
(Figures 1A, 1B). Growth curve experiments upon long-term
erlotinib treatment indicated that erlotinib decreased total cell
number (Figure 1B), but did not affect cellular viability as
indicated by trypan blue staining (data not shown). Dose-response
experiments confirmed that 10 iM erlotinib exerted an inhibitory
effect on glioma cell growth ranging from 30% (U373 cells) to 80%
mhibition (LN229 cells) (Figures 1C, 1D). Since U87MG cells
spontaneously form multicellular tumour spheroids in culture [14],
we also investigated whether erlotinib could prevent multicellular
tumour spheroid formation. Whereas control U87MG cells
formed high numbers of large and dense multicellular tumour
spheroids, erlotinib-treated cells were largely resistant to spheroid
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formation (Figures 1E). These observations confirm that EGFR
mnhibition with erlotinib severely reduces glioma cell proliferation.

Erlotinib induces G; phase arrest in glioma cells

In order to characterize the cell cycle arrest induced by erlotinib
treatment in glioma cells, we performed flow cytometric analysis in
a panel of control and erlotinib-treated glioma cell lines. Erlotinib
treatment led to a significant accumulation of cells in G, in all
tested cell lines (Figure 2A), showing a sensitivity to erlotinib in
correlation with our previous results (Figure 2B). Interestingly,
erlotinib did not induce cell death as indicated by the absence of
a detectable sub-G; population (Figures 2A and 2B), in line with
our previous data. Altogether, our results indicate that erlotinib
inhibits glioma cell proliferation primarily by inhibiting S-phase
entry.

EGFR inhibition cooperates with temozolomide to inhibit
glioma cell growth

The current therapy for glioma patients involves the use of the
alkylating agent temozolomide (TMZ) in combination with
radiotherapy. We therefore investigated whether erlotinib could
potentiate the antiproliferative effects of TMZ in glioma cells. For
this purpose we used different experimental strategies. First, we
performed clonogenic assays upon TMZ treatment of control or
erlotinib-treated cells to assess if EGFR inhibition could potentiate
TMZ-induced genotoxicity. LN229, U251 and HS683 cells pre-
treated for 24 h with erlotinib recovered some of their clonogenic
ability when re-plated in the absence of erlotinib (Figure 3A). In
contrast, a short exposure to TMZ (3 h) dramatically compro-
mised their clonogenic capacity (Figure 3A). Interestingly, erlotinib
pre-treatment protected cells from TMZ-induced genotoxicity
(Figure 3A). To extend these observations, we next monitored cell
proliferation in MTT-based assays. In order to test whether
erlotinib could cooperate with TMZ we used sub-optimal doses of
both erlotinib (1 uM) and TMZ (25 uM). As expected, neither
erlotinib nor TMZ at sub-optimal doses were able to significantly
reduce cellular growth (Figure 3B). However, when used in
combination, erlotinib was able to cooperate with TMZ to reduce
cell proliferation in both U87MG and U251 cells (Figure 3B). In
order to validate these results, we performed multicellular tumour
spheroid formation assays using U87MG cells. To this end,
U87MG cells were treated with sub-optimal doses of erlotinib
(I uM) and TMZ (25 uM), alone or in combination, and the
formation of multicellular tumour spheroids was assessed. Simi-
larly to control cells, cells treated with sub-optimal doses of
erlotinib or TMZ alone gave rise to a high number of spheroids
(Figures 3C). In sharp contrast, the combination of sub-optimal
doses of erlotinib and TMZ dramatically reduced spheroid
formation, similarly to the standard erlotinib treatment
(Figures 3C). These results suggest that the combination of low
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cytometry as described in Materials and Methods. The cell cycle distribution is shown for each experimental condition. (B) The graph summarizes the
flow cytometry data obtained in all glioma cell lines, indicating the cell cycle distribution in control and 24 h erlotinib-treated conditions for each cell

line.
doi:10.1371/journal.pone.0038770.9g002

A LN229 U251 HS683
8 100 g 100 . 8 100
‘g 80 c g ‘c 80
[¢] 60 % 2 60
3 60 [<] * %
9 40 * g n g 40
3 [} )
o 2 . (': 20 o
°\° 0 —— =S ° . O\o 0 -
Erlotinib: - + - + Erlotinib: - + - + Erlotinib: - + - +
TMZ: - - + + TMZ: - - + + T™Z: - - + +
U87MG
B 100 1 1001 U251

QL K]

D 80 - o 80

:’J 60 * % CGJ) 60 - * %

:g, 40 § 40

> | > i

“ 20 @ 20

0 - . . . 0
Erlotinib: - 1uM - 1 uM Erlotinib: - 1 uM - 1 uM

T™MZ: - - 25uM 25uM T™Z: - - 25uM 25 puM

Erlotinib: - 1 uM
TMZ: - - 25 uM 25 uM -
100 -
80 -
60 -
40 |
20 -

% of MCTS

1
+

0 -
Erlotinib: - + 10 uM
TMZ: - - + + -

Figure 3. EGFR inhibition cooperates with temozolomide to inhibit glioma cell growth. (A) LN229, U251 and HS683 cells were left
untreated or were treated for 24 h with erlotinib and subsequently exposed to vehicle or TMZ for 3 h, plated and after 7-10 days the remaining
colonies were stained and counted as indicated in Materials and Methods. The mean * SD values from three independent experiments, each
conducted in duplicate, are shown in the graph, representing the number of clones relative to untreated cells. The differences between combined
treatment and either treatment alone are statistically significant (Student’s t-test: *P<<0.05 and **P<C0.01, respectively). (B) U251 and U87MG cells
were plated in 96-well plates, left untreated or treated as indicated for 48 h and cell viability monitored as described in Materials and Methods. The
mean = SD values from three independent experiments, each conducted in duplicate, are shown in the graph, representing the percentage of viable
cells relative to untreated cells. The differences between combined treatment and either treatment alone are statistically significant (Student’s t-test:
**p<0.01). (C) Representative phase-contrast micrographs of U87MG cells treated as indicated and left for 4-6 days to allow formation of MCTS. The
graph indicates the mean * SD values of MCTS formation from three independent experiments, each conducted in duplicate, expressed as the
percentage of MCTS relative to untreated cells. The differences between combined treatment and either treatment alone are statistically significant
(Student’s t-test: ***P<0.001).

doi:10.1371/journal.pone.0038770.g003

@ PLoS ONE | www.plosone.org 6 June 2012 | Volume 7 | Issue 6 | e38770



A B

&

72
0
A
S,
L2
%,
%
)
&)

%
(&)
X

ST

<.

EGFR
p-Akt
Akt
cyclin D1
P27kip1
pRB

p-ERK

ERK

cdk4

C

Erlotinib Alters Rho/ROCK and Glioma Cell Motility

LN229 T98G

Erlotinib: 0h  4h

8h

16h  24h

LN229 T98G U373
Erlotinib: Oh 24h Oh 24h Oh 24h

Growth inhibition

at 72h: 77,6%

Figure 4. EGFR inhibition alters the expression levels of key cell

67,7% 33,5%

cycle regulators. (A) The indicated human glioma cell lines were harvested

and the expression levels of the indicated proteins were analyzed by western blotting with specific antibodies. (B) LN229 and T98G cells were treated
with 10 uM erlotinib for the indicated time, harvested and the expression levels of the indicated proteins were analyzed by western blotting with
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doi:10.1371/journal.pone.0038770.g004

doses of erlotinib and TMZ can cooperate to reduce glioma cell
proliferation.

Erlotinib inhibits ERK and Akt signaling promoting cyclin
D1 downregulation and increasing p27 " levels

We next investigated the molecular mechanisms responsible for
the cell cycle arrest induced by EGIR inhibition, monitoring
alterations on relevant signaling intermediates and cell cycle
regulatory proteins in glioma cells (Figure 4A). For this purpose we
performed a time-course experiment upon erlotinib treatment in

@ PLoS ONE | www.plosone.org

LN229 and T98G cells. Erlotinib induced a rapid inhibition of
ERK phosphorylation and an inhibition of Akt phosphorylation
that was apparent upon longer term treatment (Figure 4B).
Erlotinib also induced a significant downregulation of cyclin D1
and similarly reduced the levels of p21“P! (Figure 4B). In contrast,
Erlotinib increased the levels of the cyclin-dependent kinase
inhibitor p27"P" (Figure 4B). In agreement with these observa-
tions, erlotinib inhibited pRb phosphorylation (Figure 4B). We
next investigated whether the observed molecular events correlat-
ed with the sensitivity to erlotinib in different glioma cell lines. To
this end, we compared the aforementioned molecular alterations
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24 h with 10 uM erlotinib (erlotinib), fixed and stained with TRITC-
labelled phalloidin. Bar, 5 um. (C) U87MG cells were treated as
indicated, harvested and RhoA and Rac1 activation were analyzed by
GST-Rhotekin and GST-PBD pulldown, respectively, followed by western
blotting with anti-RhoA and anti-Rac1 antibodies (upper panel). An
aliquot of each lysate was also loaded in another gel to analyze total
RhoA and total Racl levels (bottom panel). The graphs represent the
quantified mean = SD Rho/Rac activation values (Rho-GTP/Total Rho
and Rac-GTP/Total Rac), relative to untreated cells, from three
independent experiments.

doi:10.1371/journal.pone.0038770.9005

in three representative glioma cell lines (LN229, T98G and U373)
with high, medium and low sensitivity to erlotinib. Erlotinib
clearly inhibited both ERK and Akt phosphorylation in LN229
cells, which also showed a marked downregulation of cyclin D1
and a strong increase in p27 P levels (Figure 4C). However,
p27"P! levels did not increase in TI8G cells, which show slightly
lower sensitivity to erlotinib (Figure 4C). The behaviour of U373
cells, the least sensitive cell line, was different to that of LN229 and
T98G cells. In U373 cells, erlotinib did not alter cyclin D1 levels
nor Akt or ERK phosphorylation, although it induced p27<P!
upregulation (Figure 4C). Interestingly, the sensitivity to erlotinib
could not be correlated with the expression levels of EGFR
(Figure 4A). Taken together, our results suggest that the inhibition
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of signaling pathways converging on cell cycle regulatory elements
mediate the antiproliferative effects of erlotinib in glioma cells.

EGFR inhibition leads to actin cytoskeleton
reorganization and morphological changes in glioma
cells perturbing Rho GTPase signaling

Our initial observations suggested that LEGFR inhibition
induced morphological changes in glioma cells (Figure 1A). We
used U87MG cells to further investigate this alteration, since in
these cells erlotinib exerted a robust effect on cell morphology.
Untreated U87MG cells were relatively small, morphologically
heterogeneous and loosely attached, with many cells eventually
rounding up (Figure 5A). In contrast, erlotinib-treated US87MG
cells were significantly larger, more homogenecous, firmly attached
and well spread (Figure 5A). These results suggested that EGFR
mhibition induced a profound cytoskeletal rearrangement. We
thus evaluated the organization of the actin cytoskeleton in control
and erlotinib-treated U87MG cells. F-actin staining indicated that
polymerized actin was mostly located within the cell periphery in
untreated U87MG cells, which were largely devoid of actin stress
fibres (Figure 5B). Interestingly, erlotinib increased actomyosin
contractility, as indicated by the assembly of actin stress fibres
(Figure 5B). Since the dynamic regulation of the actin cytoskeleton
1s controlled by Rho GTPases [15], we monitored the activity of
both Rho and Rac upon EGFR inhibition. Basal Rho activity is
low in U87MG cells, but erlotinib induced a rapid and sustained
activation of Rho, in agreement with the observed increase in actin
stress fibres (Figure 5C). In sharp contrast, erlotinib dramatically
reduced Rac activity in US7TMG cells (Figure 5C). These results
indicate that EGFR inhibition promotes the reorganization of the
actin cytoskeleton through the modulation of Rho GTPase

signaling.

Erlotinib inhibits glioma cell motility and invasion

Actin cytoskeleton reorganization in response to Rho GTPase
signaling plays a crucial role in the regulation of cell motility [16].
We therefore investigated whether EGFR inhibition could also
modulate glioma cell motility. For this purpose, we performed
wound-healing assays in untreated and erlotinib-treated U87MG
cells. Control U87MG cells were highly motile and migrated very
efficiently in wound-healing assays (Figure 6A). Interestingly,
erlotinib clearly inhibited cell motility in these assays (Figure 6A
and 6B). Cell motility inhibition in response to erlotinib was also
clearly observed in both T98G and LN229 cells (Figure 6A and
6B). Since increased motility and invasiveness are hallmarks of
malignant glioma cells, we also tested whether EGFR inhibition
could reduce glioma cell invasion in a 3D context. To this end, we
monitored cell invasion using matrigel-coated transwells. In
agreement with our previous data, whilst untreated glioma cells
were highly invasive, cell invasion was strongly inhibited in
erlotinib-treated cells (Figure 6C).

Erlotinib-induced effects on cell morphology and motility
require Rho/ROCK activity

Our previous observations suggest that the increase in Rho
activity and actomyosin contractility are responsible for the
reduction in cell motility observed in response to EGFR inhibition.
In order to confirm this hypothesis, we treated cells with erlotinib
and tested whether Rho/ROCK inhibition could restore cell
morphology and motility to similar conditions as those observed in
untreated cells. As opposed to control cells, erlotinib-treated cells
showed their distinctive morphology, characterized by the
presence of larger, more homogeneous and firmly attached cells
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Figure 6. EGFR inhibition reduces glioma cell motility and invasion. (A) Representative phase-contrast micrographs of U87MG cells left
untreated or treated with 10 M erlotinib as indicated, before (upper panel) and after (lower panel) performing wound healing assays as described in
Materials and Methods. (B) Representation of the mean * SD rate of motility, from three independent experiments performed in sextuplicate,
expressed as the percentage of U87MG cell motility relative to untreated cells. The differences between control and erlotinib treatment are
statistically significant (Student’s t-test: *P<<0.05 and **P<0.01, respectively). (C) U87MG cells were seeded onto Matrigel-coated transwells in the
absence (—) or presence (+) or 10 uM erlotinib to perform invasion assays as described in Materials and Methods. The graph represents the mean =
SD rate of invasion from three independent experiments performed in duplicate, expressed as the percentage of invasion relative to untreated cells.
The differences between control and erlotinib treatment are statistically significant (Student’s t-test: *P<<0.05 and ***P<<0.001, respectively).

doi:10.1371/journal.pone.0038770.g006

(Figure 7A). Interestingly, treatment of U87MG cells with either
a Rho inhibitor (the C3 exoenzyme) or a small-molecule ROCK
inhibitor (H-1152) together with erlotinib resulted in a very similar
cellular morphology to that of control cells (Figure 7A). Accord-
ingly, whereas erlotinib induced the formation of thick and robust
stress fibres, co-treatment with either C3 or H-1152 completely
prevented the formation of actin stress fibres (Figure 7B). We
finally investigated whether Rho/ROCK inhibition could restore
cell motility in ‘erlotinib-treated glioma cells. To this end, we
performed wound healing assays using U87MG cells in the
presence of erlotinib alone or together with C3 or H-1152. In
agreement with our previous data, EGFR inhibition led to
a marked decrease in the rate of cell motility (Figure 7C). In
sharp contrast, inhibition of either Rho or ROCK prevented
erlotinib-induced reduction in cell motility, restoring the motility
rate to that of untreated cells (Figure 7C). Rho/ROCK inhibitors
also restored cell motility in erlotinib-treated T98G and LN229
cells (data not shown). Taken together, these results confirm that
EGFR inhibitors alter glioma cell morphology and motility
through the activation of the Rho/ROCK signaling pathway.

EGFR inhibition is effective in glioma cells with amplified

or mutant EGFR
EGIR is frequently activated through mutation or amplification
in malignant gliomas, although commonly-used glioma cell lines
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lack amplified or mutant EGFR. We therefore investigated
whether EGFR inhibition was equally effective in the context of
amplified or mutant EGFR. For this purpose we took advantage of
the U87MG derivative cell line U87AEGFR, stably expressing the
truncated and constitutively active EGFR mutant EGFRvIII
[6,10], and the SKMG-3 cell line that maintains endogenous
EGFR amplification and expresses high levels of wild-type EGFR
[17]. Dose-response and growth curve experiments showed that
both cell lines were sensitive to EGFR inhibition, similarly to the
previously-characterized standard glioma cell lines (Figure 8A and
8B). In agreement with our previous data, EGFR inhibition also
prevented  multicellular  tumour  spheroid = formation in
UB7AEGTR cells (Figure 8C). We next used multicellular tumour
formation assays to investigate cooperation with TMZ. To this
end, UB7AEGFR cells were treated with sub-optimal doses of
erlotinib (1-5 uM) and TMZ (25-50 uM), alone or in combina-
tion, and the formation of multicellular tumour spheroids was
assessed. Similarly to untreated cells, cells treated with sub-optimal
doses of erlotinib or TMZ alone gave rise to a high number of
spheroids (Figure 8D). In contrast, the diverse combinations of
sub-optimal doses of erlotinib and TMZ clearly reduced spheroid
formation, similar to the standard erlotinib treatment (Figure 8D).
We also investigated whether EGFR inhibition could reduce cell
motility and invasion in the context of activated EGFR using
wound-healing and transwell invasion assays, respectively. EGFR
inhibition strongly reduced cell motility in both U37AEGFR and
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Figure 7. Erlotinib-induced effects on cell morphology and motility require Rho/ROCK activity. (A) Representative phase-contrast
micrographs of U87MG cells left untreated (control) or treated for 24 h with 10 uM erlotinib alone or in the presence of 0,5 pg/ml C3 or 0,5 UM H-
1152. (B) UB7MG cells grown on coverslips were left untreated (control) or were treated for 24 h with 10 uM erlotinib alone or in the presence of
0,5 ug/ml C3 or 0,5 tM H-1152, fixed and stained with TRITC-labelled phalloidin. Bar, 10 um. (C) Representative phase-contrast micrographs of
UB7MG cells left untreated or treated as indicated, before (upper panel) and after (lower panel) performing wound healing assays as described in
Materials and Methods. The graph represents the mean = SD rate of motility, from three independent experiments performed in sextuplicate,
expressed as the percentage of U87ZMG cell motility relative to untreated cells. The differences in motility between cells treated alone with erlotinib or
together with C3 or H-1152 are statistically significant (Student’s t-test: *P<<0.05 and ***P<<0.001, respectively).

doi:10.1371/journal.pone.0038770.g007

lines (Figure 8G). Taken together, these results confirm that EGFR
inhibition can effectively reduce glioma cell proliferation, motility
and invasion in cells with enforced EGFR activation.

SKMG-3 cells (Figures 8E and 8F) and this inhibitory effect on cell
motility was significantly reverted by Rho/ROCK inhibitors C3
and H-1152 (data not shown). Cell invasion within a 3D matrix
was also strongly inhibited in the presence of erlotinib in both cell
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Figure 8. EGFR inhibition is effective in glioma cells with amplified or mutant EGFR. (A) SKMG-3 and U87AEGFR cells were treated for 72 h
with the indicated concentrations of erlotinib. The mean = SD values from three independent experiments, each conducted in duplicate, are shown
in the graph, representing the percentage of viable cells relative to untreated conditions. The differences between control and erlotinib treatment are
statistically significant (Student’s t-test: *P<<0.05, **P<<0.01 and ***P<<0.001, respectively). (B) SKMG-3 and U87AEGFR cells were left untreated
(untreated) or treated with 10 UM erlotinib (erlotinib) and the number of cells counted every 24 h. The mean = SD values from three independent
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experiments, each conducted in duplicate, are shown in the graph, representing the fold increase in cell growth in untreated and erlotinib-treated
conditions at the indicated time-points. (C) Representative phase-contrast micrographs of U87AEGFR cells left for 6 days to allow formation of
multicellular tumour spheroids (MCTS), untreated (control) or treated with 10 uM erlotinib (erlotinib). The graph indicates the mean = SD values of
MCTS formation from three independent experiments, each conducted in duplicate, expressed as the percentage of MCTS relative to untreated cells.
The differences between control and erlotinib treatment are statistically significant (Student’s t-test: ***P<<0.001). (D) U87AEGFR cells were left
untreated or treated as indicated and grown for 6 days to allow formation of multicellular tumour spheroids (MCTS). The graph indicates the mean =
SD values of MCTS formation from three independent experiments, each conducted in duplicate, expressed as the percentage of MCTS relative to
untreated cells. The differences between combined treatments and either treatment alone are statistically significant (Student’s t-test: *P<<0.05). (E)
Representative phase-contrast micrographs of U87AEGFR (left panel) and SKMG-3 (right panel) cells left untreated or treated with 10 uM erlotinib as
indicated, before (upper panel) and after (lower panel) performing wound healing assays as described in Materials and Methods. (F) Representation of
the mean = SD rate of motility, from three independent experiments performed in sextuplicate, expressed as the percentage of cell motility in each
of the indicated conditions relative to untreated cells. The differences between control and erlotinib treatment are statistically significant (Student’s t-
test: *P<<0.05 and **P<<0.01, respectively). (G) UB7AEGFR and SKMG-3 cells were seeded onto Matrigel-coated transwells in the absence or presence
of 10 uM erlotinib to perform invasion assays as described in Materials and Methods. The graph represents the mean = SD rate of invasion from three
independent experiments performed in duplicate, expressed as the percentage of invasion relative to untreated cells. The differences between
control and erlotinib treatment are statistically significant (Student’s t-test: ***P<<0.001).

doi:10.1371/journal.pone.0038770.g008

Discussion multicellular tumour spheroid formation in both parental U§7TMG
cells and their oncogenic, EGFRvIl-expressing, derivative
In this report we have investigated the cellular effects of EGIFR US7AEGFR. Taken together, these data suggest that EGFR

inhibition with erlotinib in a panel of human glioma cell lines. We inhibitors can cooperate with TMZ for the treatment of gliomas,
consistently observed that erlotinib inhibited cell growth in all even at sub-optimal doses. However, our results also point out that
tested cell lines, leading to the accumulation of treated cells in G;. drug scheduling is likely to influence the outcome of such
A combination of dose-response and time-course growth assays treatments, and consequently should be taken into account in
indicated that 10 UM erlotinib inhibited glioma cell proliferation the design of clinical trials. In agreement with this, different
within a 30-80% range. Sensitivity to EGFR inhibition in cellular scheduling regimens might be partially responsible for the
growth assays was strongly correlated with its ability to induce G, conflicting data obtained i clinical trials with erlotinib in

arrest, and was most apparent in LN229 and U87MG cells. A combination with TMZ in glioma patients. Ior instance, a phase
similar pattern of sensitivity to the EGFR inhibitor AG1478 has I/11 trial in which patients received treatment with erlotinib prior
been recently reported [7]. We did not detect cellular death upon to its combination with TMZ and radiotherapy (RT) showed no
EGFR inhibition neither in cell viability nor in flow cytometry benefit when compared to the standard historical treatment [20],

assays, in correlation with previous reports showing that EGFR whereas another clinical trial assessing a similar combination in
inhibition mainly exerts cytostatic effects in glioma cells [6]. In which patients where administered erlotinib and TMZ continuosly
agreement with its ability to inhibit glioma cell proliferation in from the beginning reported a better survival than historical
culture, EGFR inhibition also suppressed the formation of controls [21]. Similarly, recent work in lung cancer cells has also
multicellular tumour spheroids in U87MG cells. EGFR inhibition highlighted the importance of drug scheduling when combining
was equally effective in the context of amplified or mutated EGFR, TKIs and conventional chemotherapeutic agents [22,23]. Note-
since both SKMG-3 cells (with EGFR amplification and over- worthy, the timing of administration in combinations of erlotinib
expression) [17] and U87AEGFR (stably expressing the truncated or other TKIs leading to G, arrest together with radiotherapy in
and constitutively active EGFRVIII) [6,10] were' sensitive to glioma patients should also be carefully considered, since cellular

erlotinib. Accordingly, EGFR inhibition also suppressed the radiosensitivity has also been shown to be cell cycle dependent
formation of multicellular tumour spheroids in U87AEGFR cells. [24].

Since the alkylating agent TMZ is routinely used in chemo- Our results do not support the notion that EGFR expression
therapy to treat gliomas, we tested whether EGFR inhibition could levels predict the response to EGFR inhibitors, in agreement with
cooperate with TMZ to prevent growth of glioma cells. We first previous reports [5] and in contradiction with others [25].
used clonogenic assays to test whether inhibition of EGFR Interestingly, it has been recently reported that small EGFR
signaling sensitized glioma cells to TMZ-induced cytotoxicity. inhibitors such as AG1478, erlotinib, gefitinib and lapatinib, as
However, erlotinib pre-treatment had a protective effect against opposed to the EGFR monoclonal antibody cetuximab, also
TMZ in this setting, probably related to accumulation of cells in reduce erbB3 and erbB4 phosphorylation, and this inhibition
G induced by erlotinib and the consequent attenuation of the  correlates with their cellular activity in glioma cells [7]. These
DNA damage elicited by TMZ, a hypothesis that was recently observations raise the possibility that EGFR inhibitors might
suggested [18]. Indeed, these results are in agreement with the partially mediate their antitumoral effects through other members
observation that the efficacy of TMZ in glioma cells is cell cycle of the erbB family. Whatever the case, the cellular effects of EGFR
dependent, since E2F expression in glioma cells increases TMZ, inhibitors have been clearly associated with their ability to inhibit
sensitivity, whereas p21“P' expression reduces it [19]. We PI3K/Akt signaling and, accordingly, inhibitors of this pathway
therefore assessed whether concomitant treatment with erlotinib have been shown to potentiate the effects of EGFR inhibitors in
and TMZ had any cooperative effects, although clonogenic assays sensitive cells and restore sensitivity in some resistant cell lines
could not be used for this purpose since the effects of TMZ are [10,11,26]. Not surprisingly, the most sensitive cell line in our

very robust and do not follow a linear dose-dependent pattern in panel, LN229, is the only one expressing wild type PTEN.
these assays (data not shown). We thus performed M'TT-based cell Interestingly, our data indicate that PI3SK/Akt inhibition is only

viability assays using low, sub-optimal, concentrations of both apparent after several hours following EGFR inhibition, whilst
erlotinib and TMZ. In these conditions, concomitant treatment ERK inhibition is an early event. This suggests that ERK
exerted a cooperative effect in both U251 and U87MG cells. inhibition is a direct consequence of EGFR receptor inhibition,
Interestingly, concomitant treatment with sub-optimal concentra- probably through the inhibition of Ras/Raf signaling, whereas

tions of erlotinib and TMZ was able to synergistically suppress PI3K/Akt inhibition requires the suppression of further cellular
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mediators, probably inhibiting their expression. For instance, long
term EGFR inhibition could be required to inhibit the production
of growth factors responsible for sustaining PISK/Akt activity in
the presence of EGFR inhibitors. Accordingly, it has been
reported that combinatorial treatment with several receptor
tyrosine kinase (RTK) inhibitors might be required to fully inhibit
PI3K signaling in glioma cells [27]. The rapid and sustained
inhibition of ERK phosphorylation observed in response to
erlotinib could be used as a biomarker of appropriate drug
delivery un vivo (i.e. to test whether the drug has reached the target),
as opposed to a biomarker of drug efficacy, which fits clearly better
with the monitoring of Akt phosphorylation, in agreement with the
reported correlation between EGFR inhibitor sensitivity and Akt
inhibition found in glioma cell lines [25] and glioma tumour-
initiating cells (TICs) [28].

The sensitivity to erlotinib in different cell lines also correlated
with changes in the expression of essential cell cycle modulators. A
similar pattern of molecular changes has been reported in response
to the EGFR inhibitor AG1478 [7]. EGFR inhibition induced
cyclin D1 downregulation, which has been shown to be regulated
at different levels downstream of both the Ras/Raf/MEK/ERK
and the PI3K/Akt pathways [29-31]. In parallel, EGIFR inhibitors
increased 1327kipl levels, which can also be regulated downstream
of the PI3K/Akt pathway, for instance by FOXO-dependent
transcription [32]. These changes in cyclin D1 and p27"P! levels
are likely to be responsible for the inhibition of G; cyclin-
dependent kinases regulating pocket protein phosphorylation and
E2F release. Consequently, EGFR inhibition induced pRb
hypophosphorylation in glioma cells, in correlation with the
observed cell cycle arrest in Gj.

We also observed that EGFR inhibition in glioma cells induced
dramatic morphological changes suggestive of actin cytoskeleton
rearrangements. EGFR inhibition promoted the formation of
robust actin stress fibres resulting in an increase in cellular
spreading and attachment. Interestingly, such dramatic effects on
cell morphology might be responsible, at least partially, of the
strong inhibition of spheroid formation from U87MG monolayers
elicited by erlotinib. Since these cytoskeletal alterations are under
the control of Rho family GTPases [15,33], we mvestigated
whether EGFR inhibitors could regulate Rho and Rac activity in
glioma cells. Interestingly, erlotinib treatment inhibited Rac and
concomitantly increased Rho activity levels. These results are in
agreement with several studies reporting such an inverse functional
crosstalk between Rho and Rac GTPases [34]. For example, Ras
inhibition with S-trans, trans-farnesyl thiosalicylic acid (FT'S) in
glioma cells also reduces Rac activity whilst increasing Rho
activation [35]. Indeed, EGFR inhibition might lead to Rho
activation as a consequence of Rac inhibition, which is probably
due to the inhibition in PISK/Akt signaling. Interestingly, Rac
expression has been associated with resistance to erlotinib in
glioma cells [36], and the combination of EGFR inhibitors with
statins, which perturb Rho GTPase membrane localization and
function [37], synergize to inhibit glioma cell growth irrespective
of EGFRVIII and PTEN status [38].

Crucially, the increase in Rho-dependent actomyosin contrac-
tility resulted in a significant inhibition in glioma cell motility. This
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is probably associated with an increased rigidness of erlotinib-
treated cells, as a consequence of the Rho-mediated assembly of
actin stress fibres, which also leads to focal adhesion formation and
an increase in cell attachment [16]. Noteworthy, these effects are
likely to be cell-type dependent, since the balance of active Rho
and Rac dictates different outcomes in different cell types.
Importantly, these effects on glioma cell morphology and motility
were causally related to the increase in Rho/ROCK activity, since
inhibition of either Rho or ROCK alone was sufficient to restore
the organization of the actin cytoskeleton and the rate of cell
motility to control conditions. Moreover, invasion of glioma cells
within a three-dimensional matrix was also compromised in the
presence of EGFR  inhibitors. This reduction in glioma cell
motility and invasion was also observed in cell lines with amplified
or mutant EGFR. These results are relevant considering that
tumour cell dinvasion is a biological feature of particular
importance for the clinical outcome of gliomas [39]. Our data
thus support the use of EGFR inhibitors to reduce the infiltration
of glioma cells. For example, EGFR inhibitors could be useful to
minimize local invasion prior to surgery. Alternatively, EGFR
inhibition could be used in combination with radiotherapy, since
irradiation has been shown to increase glioma invasiveness under
some circumstances [40], and this increase has been associated
with Rho GTPase activity [41]. It would also be interesting to
assess the combinatorial effects of different RTK inhibitors on
glioma cell morphology, motility and invasion, since such
combinations have already shown more effectiveness reducing
glioma cell proliferation [27].

In summary, we have shown that EGFR inhibition in glioma
cells perturbs intracellular signaling networks including Rho family
GTPases and the ERK and Akt pathways, reducing glioma cell
proliferation, motility and invasion. Our data also indicate that
EGFR inhibition can cooperate with the alkylating agent TMZ in
a schedule-dependent manner to reduce glioma cell growth. The
implications of these findings could help to improve the design and
interpretation of future clinical trials with EGFR inhibitors in
glioma patients.
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