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Abstract

Renal dopamine receptors participate in the regulation of blood pressure. Genetic factors, including polymorphisms of the
dopamine D2 receptor gene (DRD2) are associated with essential hypertension, but the mechanisms of their contribution
are incompletely understood. Mice lacking Drd2 (D22/2) have elevated blood pressure, increased renal expression of
inflammatory factors, and renal injury. We tested the hypothesis that decreased dopamine D2 receptor (D2R) function
increases vulnerability to renal inflammation independently of blood pressure, is an immediate cause of renal injury, and
contributes to the subsequent development of hypertension. In D22/2 mice, treatment with apocynin normalized blood
pressure and decreased oxidative stress, but did not affect the expression of inflammatory factors. In mouse RPTCs Drd2
silencing increased the expression of TNFa and MCP-1, while treatment with a D2R agonist abolished the angiotensin II-
induced increase in TNF-a and MCP-1. In uni-nephrectomized wild-type mice, selective Drd2 silencing by subcapsular
infusion of Drd2 siRNA into the remaining kidney produced the same increase in renal cytokines/chemokines that occurs
after Drd2 deletion, increased the expression of markers of renal injury, and increased blood pressure. Moreover, in mice
with two intact kidneys, short-term Drd2 silencing in one kidney, leaving the other kidney undisturbed, induced
inflammatory factors and markers of renal injury in the treated kidney without increasing blood pressure. Our results
demonstrate that the impact of decreased D2R function on renal inflammation is a primary effect, not necessarily associated
with enhanced oxidant activity, or blood pressure; renal damage is the cause, not the result, of hypertension. Deficient renal
D2R function may be of clinical relevance since common polymorphisms of the human DRD2 gene result in decreased D2R
expression and function.
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Introduction

Dopamine synthesized in the kidney is necessary for the

maintenance of normal blood pressure and renal function [1].

The disruption of any of the dopamine receptor subtype genes in

mice produces receptor subtype-specific hypertension [2]. In

particular, the hypertension in mice with disruption of the

dopamine D2 receptor (Drd2) gene (D22/2) is associated with

increased production of reactive oxygen species (ROS) [3,4].

Infiltration of inflammatory cells and oxidative stress in the

kidney are involved in the development of renal injury and the

induction and maintenance of hypertension [5]. Renal tubule cells

produce both pro- and anti-inflammatory cytokines and chemo-

kines [6], which are secreted across their apical and basolateral

membranes [7], and contribute to the development and pro-

gression of glomerular and tubular injury. However, the factors

that regulate cytokine production in these cells are incompletely

understood. Dopamine and dopaminergic drugs have been shown

to regulate the immune response and the inflammatory reaction

[8]. Dopamine inhibits the release of IFNc, IL-2, and IL-4 [9] and

the lipopolysaccharide-stimulated production of IL-12p40 [10] in

immune cells. Administration of dopamine or dopaminergic

agonists in vivo reduces the TNFa response to endotoxin [11]

and the activation of leukocytes in experimental sepsis [12].

Conversely, treatment with a dopaminergic antagonist stimulates

constitutive and inducible gene expression of IL-1b, IL-6, and

TNFa in macrophages [13]. In brain-dead rats, a condition that is

associated with profound inflammation in end-organs, dopamine

reduces renal monocyte infiltration [14], expression of IL-6, and

improves renal function after transplantation [15]. Furthermore,

mice with intrarenal dopamine deficiency have increased oxidative

stress and infiltration of inflammatory cells [16] and decreased

renal dopamine production is associated with increased detrimen-

tal effects of Ang II on renal injury [17].

The anti-inflammatory effects of dopamine and dopaminergic

agonists are mediated, at least in part, by the D2R. D2Rs are

expressed in lymphocytes, monocytes, neutrophils, macrophages,

and other immuno-competent cells [18]. The D2R/D3R agonist,
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bromocriptine, inhibits lymphocyte proliferation [19] and de-

creases antigen-induced macrophage activation and secretion of

IL-2, IL-4, and IFNc [11]. In normal human lymphocytes, D2R

agonists increase the secretion of anti-inflammatory cytokines by

de novo gene expression [20]. GLC756, a novel mixed dopamine

D1R antagonist and D2R agonist, inhibits the release of TNFa
from activated mast cells [21].

We hypothesized that the D2R decreases renal inflammation

and prevents renal injury by regulating the inflammatory response

in renal proximal tubule cells (RPTCs). To test this hypothesis, we

studied parameters of inflammation and injury in the renal cortex

of D22/2 mice and the effect of D2 R silencing on the expression

of inflammatory factors in mouse RPTCs. Because angiotensin

(Ang) II and dopamine receptors counter-regulate each other and

Ang II, via the AT1R, promotes inflammation and renal injury

[17,18,22], we also determined if stimulation of D2R opposes the

effects of Ang II in these cells. Because D2R deficiency increases

blood pressure and oxidative stress, we studied the effects of

normalizing blood pressure and decreasing oxidative stress on the

renal expression of cytokines/chemokines in D22/2 mice.

Finally, we studied renal expression of inflammatory factors and

markers of renal injury in two mouse models of selective Drd2

silencing in the kidney.

Methods

D2 Receptor-deficient Mice
The original F2 hybrid strain (129/SvXC57BL/6J, Oregon

Health Sciences University) that contained the mutated Drd2 allele

(D22/2) was bred onto the C57BL/6J background for .20

generations [3]. All animal-related studies were approved by the

Institutional Animal Care and Use Committee. D22/2 mice and

wild-type littermates (D2+/+) were studied at 6 to 8 months of age.

Mice were housed in metabolic cages for 24 h urine collection and

then anesthetized for blood pressure measurement via the femoral

artery, as reported previously [4]. The organs were harvested and

flash-frozen. As we have reported previously [4], both systolic

(12163 (D22/2) vs. 89 (D2+/+) mm Hg; n = 9; P,0.01) and

diastolic blood pressures (8762 (D22/2) vs. 6365 (D2+/+) mm

Hg; n = 9; P,0.02), were increased in D22/2 mice, relative to

D2+/+ littermates. A group of mice was treated for 10 days with

apocynin (3 mg/kg/day, Sigma, St. Louis, MO), which inhibits

NADPH oxidase activity, or vehicle, via a subcutaneously

implanted osmotic mini-pump (AlzetH, Cupertino, CA). Urine

collection, blood pressure measurement and tissue harvesting were

performed as described above.

Acute Renal Specific Down-regulation of D2R
Renal cortical Drd2 was silenced by the subcapsular infusion of

Drd2-specific siRNA via an osmotic minipump. Adult male

C57BL/6J mice were uni-nephrectomized one week prior to the

implantation of the minipump. For the implantation, the mice

were anesthetized with pentobarbital (50 mg/kg body weight,

intraperitoneally). The osmotic minipumps (100 ml; flow rate:

0.5 ml/hr for 7 days) were filled with validated Drd2-specific

siRNA (delivery rate 3 mg/day) or non-silencing siRNA as control.

The siRNAs were dissolved in an in vivo transfection reagent

(TransITH In Vivo Gene Delivery System, Mirus) under sterile

conditions. The minipumps were fitted with a polyethylene

delivery tubing (Alzet #0007701) and the tip of the tubing was

inserted within the subcapsular space of the remaining kidney.

Surgical glue was applied at the puncture site to hold the tubing in

place and prevent extra-renal leakage. The osmotic pump was

Figure 1. Renal inflammation and injury in D22/2 mice. Masson
stained sections of D2+/+ mouse kidney (A and B) and D22/2 mouse
kidney (C and D). H-E stained sections of D2+/+ mouse kidney (E) and
D22/2 mouse kidney (F). G: glomerulus. PCT: proximal convoluted
tubule. Proteinaceous casts are marked with arrows (F). Sections from 3
mouse kidneys per group were studied. G and H: Inflammatory cell
infiltration. Kidney sections from D2+/+ (G) and D22/2 (H) mice were
immunostained for the presence of macrophages and monocytes
(arrows). The number of positive cells in 10 randomly selected fields was
greater in D22/2 (6863) than in D2+/+ (1561, P,0.01) mice. Sections
from 3 mouse kidneys per group were studied. I. Renal cortical
expression of Col 1a1 mRNA determined by qRT-PCR. Results were
corrected for expression of GAPDH mRNA and expressed as fold change
in comparison to their expression in D2+/+ mice. *P,0.05 vs D2+/+;
n = 5/group. J. Urinary microalbuminuria. Urine samples were collected
for 24 h from mice in metabolic cages. Albumin was measured by
ELISA. *P,0.04 vs. D2+/+; n = 5/group. Magnification: A and C: 100X; B,
D, G and H: 400X; E-F: 200X.
doi:10.1371/journal.pone.0038745.g001
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sutured to the abdominal wall to prevent excessive movement of

the pump for the duration of the study.

Silencing of Drd2 was also performed in mice that did not

undergo unilateral nephrectomy. Drd2-specific siRNA was infused,

as described above, under the capsule of the left kidney of C57BL/

6J mice while the right kidney was left undisturbed. In both

groups, blood pressure was measured, as above, before and after

the 7-day siRNA infusion. Tissues were harvested after the last

blood pressure determination.

Urine Measurements
Urinary levels of IL-6 and IL-10 (SABiosciences-Qiagen,

Frederick, MD) and albumin (Albuwell M, Exocell, Philadelphia,

PA) were determined by ELISA, the latter using an antibody

specific for murine albumin. Values were corrected for urinary

creatinine.

Table 1. Gene expression profiling of cytokines, chemokines
and receptors in the kidney of D2+/+ and D22/2 mice.

Genes
Fold
change

Up-regulated

Ccl2 Chemokine (C-C motiv) ligand 2 (MCP-1) 1.87

Ccl8 Chemokine (C-C motiv) ligand 8 (MCP-2) 1.95

Ccl7 Chemokine (C-C motiv) ligand 7 (MCP-3) 2.19

Ccl12 Chemokine (C-C motiv) ligand 12 (MCP-4) 2.78

Tnfa Tumor necrosis factor alpha 1.65

Lta Lymphotoxin a (Lta/TNF b) 1.41

Ltb Lymphotoxin b (Ltb/TNF C) 2.02

Cxcr5 Chemokine (C-X-C motif) receptor 5 2.19

Ccl11 Chemokine (C-C motif) ligand 11 (eotaxin-1) 2.68

Ccl17 Chemokine (C-C motif) ligand 17 2.37

Ccl20 Chemokine (C-C motif) ligand 20 3.09

Ccl25 Chemokine (C-C motif) ligand 25 2.75

Ccr7 Chemokine (C-C motif) receptor 7 2.61

Cxcl9 Chemokine (C-X-C motif) ligand 9 (MIG) 2.16

Ccl5 Chemokine (C-C motif) ligand 5 (RANTES) 1.59

Ccl4 Chemokine (C-C motif) ligand 4 (MIP-a) 1.64

Cxcl10 Chemokine (C-X-C motif) ligand 10 1.72

Cxcl11 Chemokine (C-X-C motif) ligand 11 1.71

Il-10 Interleukin 10 1.78

Il-18 Interleukin 18 2.07

Il-5 ra Interleukin 5 receptor, a 3.13

Down-regulated

Ccl1 Chemokine (C-C motif) ligand 1 22.46

Ccl24 Chemokine (C-C motif) ligand 24 22.00

Ccr1 Chemokine (C-C motif) receptor 1 22.27

Crp C-reactive protein, pentraxin-related 22.49

Pf4 Platelet factor 4 22.03

Cxcl12 Chemokine (C-X-C motif) ligand 12 21.75

Il-11 Interleukin 11 22.02

Il-13 Interleukin 13 23.20

Il-17B Interleukin 17B 23.57

Il-20 Interleukin 20 25.70

Il-3 Interleukin 3 22.36

Il-4 Interleukin 4 21.71

Il-1f6 Interleukin 1 family, member 6 22.43

Il-8rb Interleukin 8 receptor, 23.72

Cd40lg CD40 ligand 22.90

Fold-change was calculated by the D Ct method. n = 3/group.
doi:10.1371/journal.pone.0038745.t001

Figure 2. Expression of chemokines/cytokines in renal cortex
and urine of D22/2 mice. A. Expression of Lta, MCP-2, and NFkB1
mRNA was quantified by qRT-PCR; results were corrected for expression
of GAPDH mRNA and expressed as fold change in comparison to their
expression in D2+/+mice. *P,0.03 vs. D2+/+mice. B. Protein expression
of MCP-1 (17 kDa) and TNFa protein (25 kDa) was semi-quantified by
immunoblotting. Inset shows one set of immunoblots. Results were
corrected for expression of actin and expressed as percentage of the
expression in D2+/+ mice, *P,0.02 vs. D2+/+ mice, n = 5/group. C.
Protein expression of IL-6 (25 kDa) and IL-10 (20 kDa) protein semi-
quantified by immunoblotting. Results were corrected for expression of
actin and expressed as percentage of the expression in D2+/+, * P,0.05
vs. D2+/+ mice, n = 5/group Urinary excretion of IL-6 and IL-10 was
quantified by ELISA. *P,0.02 vs. D2+/+ mice, n = 5/group.
doi:10.1371/journal.pone.0038745.g002
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Cell Culture
Undifferentiated mouse cells were cultured from progenitor

kidney cells, kindly supplied by Dr. Ulrich Hopfer (Case

Western Reserve University, School of Medicine), isolated from

mouse embryo kidneys following the procedure described by

Woost et al. [23]. Differentiated mouse RPTCs were cultured to

60–70% confluence and transfected (Hyperfect, Qiagen, Valen-

cia, CA) with vehicle, non-silencing siRNA (30 nmol/l; All stars,

Qiagen) or Drd2 siRNA (30 nmol/l, Qiagen). Cells were studied

after 72 h. For other experiments cells were cultured to 90–95%

confluence, serum starved for 2 h and treated for 24 h in

serum-free medium with vehicle (PBS) or 100 nmol/l Ang II in

the presence or absence of 1 mmol/l quinpirole (D2R/D3R

agonist), or 1 mmol/l quinpirole plus 1 mmol/l L-741,262 (D2R

antagonist) [24].

RNA Extraction and cDNA Preparation
Kidney samples were homogenized, and total RNA was

extracted with Trizol (Invitrogen, Carlsbad, CA) and further

purified using the RNeasy RNA Extraction Mini kit (Qiagen).

RNA samples were converted into first strand cDNA using an RT2

First Strand kit, following the manufacturer’s protocol (SABios-

ciences-Qiagen).

Gene Expression Profiling of Inflammatory Cytokines and
Receptors

Gene expression analysis was carried out in groups of four mice

using an RT2 Profiler PCR array system (SABiosciences-Qiagen)

that contained a panel of 84 genes. Real-time PCR was performed

following the manufacturer’s protocol. Quality controls were all

within the recommended range. Data were analyzed by the D Ct

method [25].

Quantitative Real-time PCR
Quantitative gene expression was analyzed by real-time PCR,

performed on an ABI Prism 7900 HT (Applied Biosystems,

Foster City, CA). The assay used gene specific primers

(SABiosciences-Qiagen) and SYBR Green real-time PCR de-

tection method and was performed as described in the

manufacturer’s manual. Primers used were as follows: MCP-1:

PPM03151F; MCP-2: PPM03165A; TNFa: PPM03113F; Lta:

PPM03114A; IL-4: PPM03013E; IL-5ar: PPM03026E; IL-11:

PPM03018E; IL-13: PPM03021A; collagen, type 1, a1 (Col 1a1):

PPM-3845F; NFkB1: PPM02930E; osteopontin: PPM03648C;

Actin: PPM0294A; GAPDH: PPM02946E. Data were analyzed

using the D D Ct method [25].

Immunoblotting
Mouse kidney homogenates and cell lysates were subjected to

immunoblotting, as reported previously [3,4]. The primary

antibodies used were rat anti-mouse TNFa (BioLegend, San

Diego, CA), rabbit polyclonal MCP-1 (Millipore, Billerica, CA),

rabbit polyclonal IL-6 (Abcam, Cambridge, MA); rabbit poly-

clonal D2R (Millipore), and polyclonal anti-actin (Sigma). The

densitometry values were corrected by the expression of GAPDH

and are shown as percentage of the mean density of the control

group.

Reporter Assay
NFkB activation was analyzed via the transient expression of an

NFkB luciferase reporter system by reverse transfection (Cignal

Reporter Assay, SABiosciences-Qiagen). Cells were treated with

Drd2-specific siRNA or non-silencing siRNA, as described above.

After 48 h, the cells were trypsinized and seeded for reverse

transfection. The assay was performed following the manufac-

turer’s procedures.

Histochemistry and Immunohistochemistry
Formalin-fixed, paraffin-embedded tissues of D2+/+ and D22/

2 mice were stained with Masson trichrome to evaluate glomerular

fibrosis and with hematoxylin eosin (H–E) to evaluate tubular

damage. The pathological abnormalities were graded in a blinded

manner. Sclerosis was defined as collapse or obliteration of the

glomerular capillary tuft associated with increased hyaline matrix

[26]. Glomerular sclerosis was expressed as the percentage of

glomeruli showing more than 25% sclerosis.

Tissue sections were immunostained for the presence of

macrophages and monocytes using a specific rat anti-mouse

macrophage/monocyte monoclonal antibody (Millipore) and an

avidin–biotin immunoperoxidase kit (Vectastain Elite, Vector

Laboratories, Burlingame, CA). The kidneys were lightly counter-

stained with hematoxylin. The total number of positive cells in 10

randomly selected fields was counted.

Statistical Analysis
Data are mean 6 SEM. Comparisons between 2 groups used

the Student’s t test. One-way ANOVA followed by post-hoc

analysis using the Newman–Keuls multiple comparison test was

used to assess significant differences among three or more groups.

P,0.05 was considered statistically significant.

Results

Renal Injury and Inflammation Occurs in D22/2 Mice
Masson staining of D22/2 mouse kidney sections showed

glomerulosclerosis and dilation of renal tubules (Fig 1C–D). H-E

staining showed the presence of tubular proteinaceous casts

(Figure 1F). These lesions were not observed in D2+/+ mice

(Figure 1A, B,E). The percentage of glomeruli showing more

than 25% sclerosis was greater in D22/2 than D2+/+ mice

(3569% vs. 566%, P,0.01). There were more infiltrating

macrophages/monocytes in kidney sections from D22/2 mice

(Figure 1H) than D2+/+ mice (Figure 1G (6863 vs.1561

positive cells/10 fields, P,0.01). The level of mRNA expression of

Col 1a1 was about 60% higher in renal cortex of D22/2 than

D2+/+ mice (Figure 1I). Microalbuminuria, a functional param-

eter of renal damage, was 9-fold higher in D22/2 mice than in

D2+/+ littermates (Figure 1J).

Table 2. Expression of cytokines and chemokines in the heart
left ventricle of D2+/+ and D22/2 mice determined by qRT-
PCR.

DCt D2+/+ DCt D22/2 Fold change P

MCP-1 5.660.3 6.660.7 0.49 NS

MCP-2 8.661.3 8.860.3 0.83 NS

Tnfa 10.560.5 10.761.8 0.86 NS

Lta 11.761.2 12.060.3 0.79 NS

Il-5 ra 13.660.4 13.961.8 0.83 NS

IL-11 13.460.8 13.361.9 1.05 NS

IL-13 14.060.4 14.261.4 0.90 NS

Fold-change was calculated by the DDCt method. Abbreviations as in Table 1.
NS = not significant; n = 5/group.
doi:10.1371/journal.pone.0038745.t002
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The Expression of Chemokines and Cytokines Involved in
Macrophage Recruitment and Inflammation is Increased
in the Renal Cortex but not in the Left Ventricle of the
Heart of D22/2 Mice

Expression of 84 cytokines and chemokines was analyzed in the

renal cortex of D22/2 and D2+/+ mice using a quantitative RT-

PCR (qRT-PCR) array. Twenty one genes were up-regulated and

15 were down-regulated in D22/2 mice (Table 1). Of the genes

that were up-regulated, 10 belong to the C-C subfamily of

chemokines, including four of the macrophage chemoattractant

group and three of the TNF superfamily. IL-10 and IL-18 genes

were also up-regulated. Seven of the 15 down-regulated genes

were interleukins (Table 1). Most of the up-regulated chemokines

are inflammatory and belong to the CCL subfamily, involved in

macrophage (MCP-1, MIP-1a, RANTES, MCP-2, MCP-5) and/

or T cell (Eotaxin-1, TARC, MIP-3a, CCL-25) recruitment, as

opposed to homeostatic [27]. Some of the chemokines, belonging

to the CXCL superfamily that attract neutrophils, were also up-

regulated (MIG, IP-10, I-TAC) [28]. Three of the four members of

the TNF superfamily of inflammatory cytokines were up-

regulated, namely TNFa, lymphotoxin-a (Lta), and lympho-

toxin-b (TNFb). CD40L, the other member of the superfamily

included in the array, was decreased. In contrast to the increased

expression of pro-inflammatory chemokines, several anti-inflam-

matory interleukins (IL-4, IL-11, IL13, and IL-17B which

stimulates IL-11) were decreased, except for IL-10 which was

increased (Table 1).

Figure 3. Effect of apocynin on renal cortical expression of TNFa, MCP-1, and IL-6, and urinary excretion of IL-6. Expression of TNFa
(25 kDa) and MCP-1 (17 kDa) protein in renal cortex was semi-quantified by immunoblotting. Inset shows one set of immunoblots. Results were
corrected for expression of GAPDH and expressed as percentage of D2+/+ mice treated with vehicle, *P,0.05 vs. vehicle or apocynin treated D2+/+;
n = 5/group. Renal expression, semi-quantified by immunoblotting (25 kDa), and urinary excretion of IL-6 quantified by ELISA in 24 h urine samples.
Results are expressed as percentage of D2+/+ mice treated with vehicle. *P,0.05 vs. vehicle or apocynin treated D2+/+; n = 5/group.
doi:10.1371/journal.pone.0038745.g003
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Further experiments were focused on the TNF and MCP

families and on IL-6 and IL-10, both of which are downstream

TNFa, and on NFkB, which is activated and increased by

TNFa transcription [29,30]. IL-6 is involved in the development

of renal inflammation and injury [31], and IL-10 has potent

anti-inflammatory properties, repressing the expression of

TNFa, IL-6, and IL-1 [32]. We also quantified the expression

of p50, the DNA binding subunit of NFkB protein complex,

a parameter of NFkB activation [33]. Increased renal cortex

expression of Lta, MCP-2, and NFkB1 (p50) in D22/2 mice

was confirmed by qRT-PCR and found to be four-, five-, and

two -fold higher, respectively, than in D2+/+ (Figure 2A).

Increased protein expression of MCP-1 (270630 vs 100615%)

and TNFa (16367 vs 10063%) was confirmed by western blot

(Figure 2B). Protein expressions of IL-6 and IL-10 in renal

cortex were also increased by about 30% and 60% respectively,

and urinary excretion of IL-6 was about three-fold higher while

that of IL-10 was about five-fold higher in D22/2 than in

D2+/+ mice (Figure 2C). Decreased renal cortical mRNA

expression of IL-4, IL-11, and IL-13 was also confirmed by

qRT-PCR (data not shown).

The gene expression of chemokines/cytokines in the heart left

ventricle was also determined by qRT-PCR. The expressions of

MCP-1, MCP-2, TNFa, and Lta, as well as IL-11, IL-13, and IL-5

receptor a, were similar in D22/2 and D2+/+ mice (Table 2).

This indicated that renal alterations in pro- and anti-inflammatory

Figure 4. D2R function in moue renal proximal tubule cells A. Effect of silencing of D2R on the expression of pro-inflammatory cytokines/
chemokines in mouse RPTCs. Cells were cultured to 60–70% confluence and transfected with non-silencing (NS siRNA) or Drd2 siRNA. After 48 h the
cells were washed and lysed. Protein expression of D2R (55 kDa), TNFa (25 kDa), and MCP-1(17 kDa) was semi-quantified by immunoblotting. Inset
shows one set of immunoblots. NFkB activation was analyzed via the transient expression of a NFkB-luciferase reporter system by reverse transfection
Results are expressed as percentage of NS siRNA or fold activation compared to NS siRNA. *P,0.05 vs. NS (non-silencing) siRNA, n= 4/group. B.
Effects of Ang II and D2R stimulation on TNFa and MCP-1 in mouse RPTCs. Cells were serum starved for 2 h before treatment for 24 h in serum-free
medium with vehicle (PBS) or 100 nM Ang II, in the presence or absence of 1 mM quinpirole (D2R/D3R agonist) or 1 mM quinpirole plus 1 mM L-
741,262 (D2R antagonist). Expression of TNFa (25 kDa) and MCP-1 (17 kDa) protein was semi-quantified by immunoblotting. Inset shows one set of
immunoblots. Results were corrected for actin and expressed as % of vehicle. * P,0.05 vs. vehicle; n = 6/group.
doi:10.1371/journal.pone.0038745.g004

Dopamine and Inflammation

PLoS ONE | www.plosone.org 6 June 2012 | Volume 7 | Issue 6 | e38745



Figure 5. Effect of selective renal silencing of D2R in the remaining kidney of uni-nephrectomized mice on blood pressure and
expression on inflammatory factors in the kidney and liver. Renal cortical Drd2 was silenced by the renal subcapsular infusion for seven days
of Drd2 siRNA, via an osmotic minipump in uni-nephrectomized adult male C57BL/6J mice (see Methods). A. Expression of D2R protein (55 kDa band)
in renal cortex and liver was semi-quantified by immunoblotting. Results were corrected for GAPDH and expressed as % of non-silencing siRNA
treated kidneys. * P,0.05 vs non-silencing (NS) siRNA; n = 5/group. B. Systolic blood pressure measured under anesthesia in mice before and seven
days after Drd2 siRNA infusion. * P,0.05 vs, NS siRNA; n = 5/group. C. Renal cortical expression of TNFa, Lta, NFkB1, MCP-1, MCP-2, IL-10, IL-11
osteopontin, and Col 1a1 mRNA was quantified by qRT-PCR, results corrected for expression of GAPDH mRNA, and expressed as fold change in
comparison to their expression in mice treated with NS siRNA. *P,0.05 vs. NS; n = 5/group.
doi:10.1371/journal.pone.0038745.g005
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Figure 6. Effect of selective renal silencing of D2R in one kidney of mice without uni-nephrectomy on blood pressure and
expression of inflammatory factors in the kidney and liver. Renal cortical D2R was silenced by the renal subcapsular infusion in the left kidney
for seven days of Drd2 siRNA, via an osmotic minipump in adult male C57BL/6J mice (see Methods). A. Expression of D2R protein (55 kDa band) in
renal cortex and liver was semi-quantified by immunoblotting. Results were corrected for GAPDH and expressed as % of NS siRNA treated kidneys. *
P,0.05 vs non-silencing NS siRNA; n = 4/group. B. Systolic blood pressure measured under anesthesia in mice before and seven days after Drd2 siRNA
infusion; n = 5/group. C. Renal cortical expression of TNFa, Lta, NFkB1, MCP-1, MCP-2, IL-10, IL-11, osteopontin and collagen 1a1 mRNA was quantified
by qRT-PCR, results corrected for expression of GAPDH mRNA, and expressed as fold change in comparison to their expression in mice treated with
NS siRNA. *P,0.05 vs. NS; n = 5/group.
doi:10.1371/journal.pone.0038745.g006
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factors in D22/2 mice were organ specific and not caused by

systemic perturbations.

Decreasing Blood Pressure and ROS does not Normalize
the Expression of Inflammatory Factors in Renal Cortex of
D22/2 Mice

Treatment with apocynin decreased systolic blood pressure in

D22/2 mice (vehicle: 12165; apocynin: 9662 mm Hg; n = 5;

P,0.05) but not in D2+/+ mice (vehicle: 9863; apocynin

9565 mmHg; n = 5). Apocynin also decreased the urinary

excretion of the oxidative stress marker 8-isoprostane in D22/2

mice (vehicle: 31666456; apocynin: 18746553 pg/mg creatinine;

n = 5, P,0.04) to levels similar to those in wild-type mice (vehicle:

13446365; apocynin: 15426280 pg/mg creatinine; n = 5). Treat-

ment with apocynin, however, did not normalize the expression of

TNFa, MCP-1, or IL-6 in D22/2 mice. TNFa expression in

renal cortex was higher in vehicle-treated D22/2 than vehicle-

treated D2+/+ mice; apocynin had no effect on TNFa expression

in D2+/+ or D22/2 mice. MCP-1 protein expression was also

higher in vehicle-treated D22/2 than in vehicle-treated D2+/+
mice; apocynin had no effect on MCP-1 expression in D2+/+ mice

but decreased it in D22/2 mice although not to the level

observed in D2+/+ mice (Figure 3). Renal cortical IL-6 protein

expression and urinary excretion of IL-6 were also higher in

vehicle-treated D22/2 than in vehicle-treated D2+/+ mice;

apocynin had no effect on IL-6 in D2+/+ mice but modestly

decreased its levels in D22/2 mice although they remained

higher than D2+/+ mice (Figure 3).

Drd2 Silencing in Mouse RPTCs Results in Increased NFkB
Transcriptional Activity and TNFa and MCP-1 Expression

Mouse RPTCs in culture endogenously express D2R, TNFa,

and MCP-1. Forty-eight hour-treatment with Drd2 siRNA de-

creased D2R protein expression by about 85%. The treatment

increased NFkB transcriptional activity (3.5-fold) and about two-

fold the expression of both TNFa, and MCP-1 which are

downstream of NFkB (Figure 4A).

Stimulation of D2R Counteracts the Effects of Ang II in
Mouse RPTCs

Treatment with Ang II (100 nmol/l) increased the expression of

TNFa by about 50% and that of MCP-1 about 60% in mouse

RPTCs. Treatment with quinpirole (1 mmol/l), a D2R/D3R

agonist, prevented the stimulatory effect of Ang II on the

expression of TNFa and MCP-1. The effect of quinpirole was

blocked by the addition of L-741,262, a selective D2R antagonist

(Figure 4B).

Renal Specific Drd2 Down-regulation Recapitulates the
Effects of Germline Drd2 Knockout on Inflammatory
Factors Independently of Changes in Blood Pressure

To determine further the role of D2R in the renal inflammatory

reaction, we acutely and selectively silenced renal Drd2s in mice in

order to avoid the confounding effects of systemic D2R deletion.

Infusion of Drd2 siRNA for seven days in uni-nephrectomized

mice decreased renal cortical expression of D2R by 50% but did

not affect the expression of the receptor in the liver, indicating

renal selectivity of the down-regulation (Figure 5A). As with

systemic Drd2 deletion, treatment with Drd2 siRNA increased

systolic blood pressure by about 20 mmHg (Figure 5B), an

increase of the same magnitude of that observed in mice with

systemic Drd2 deletion [3,4]. This highlights the role of D2R in the

regulation of blood pressure via the kidney. Subcapsular renal

Drd2 silencing in uni-nephrectomized mice increased renal cortical

mRNA expression of TNFa, Lta, NFkB1, MCP-2 and IL-10, and

simultaneously decreased the expression of IL-11. These results

are similar to those found in mice with systemic Drd2 deletion,

confirming the role of renal D2R in the regulation of the

expression of inflammatory factors. Furthermore, the expression of

osteopontin and Col 1a1, markers of tissue damage [34], was also

increased in the kidneys with silenced D2Rs (Figure 5C).

In order to eliminate the confounding effect of uni-nephrectomy

and the increase in blood pressure in the above experiments, we

also studied the effect of chronic unilateral renal subcapsular

infusion of Drd2 siRNA in mice with two intact kidneys. Selective

down-regulation of Drd2 in one kidney (Figure 6A) had no effect

on systolic blood pressure (Figure 6B), suggesting that the intact

kidney, in the short-term, is able to compensate for the effects of

decreased Drd2 expression in the treated kidney. The mRNA

expression of TNFa, Lta, NFkB1, MCP-1 and MCP-2 was

increased in the treated kidney to the same extent as in treated uni-

nephrectomized mice; NFkB1 and IL-10 were increased but to

a lesser extent than in uni-nephrectomized mice. The mRNA

expression of IL-11 was similarly decreased. In contrast the

expression of the injury markers osteopontin and Col 1a1 was

increased to a greater extent than in infused remnant kidney of

uni-nephrectomized mice (Figure 6C).

Discussion

Our results show increased renal expression of pro-inflamma-

tory and decreased expression of anti-inflammatory cytokines/

chemokines, as well as histological and functional evidence of renal

inflammation and injury in mice lacking D2Rs. These alterations

are renal-specific and are mimicked in mouse RPTCs in which the

Drd2 is silenced. Moreover, selective unilateral renal D2R down-

regulation in mice with two kidneys, in the absence of elevated

blood pressure, reproduced the alterations in inflammatory factors

and renal injury observed in D22/2 mice. Thus, our findings

indicate that D2Rs in the kidney have a direct and significant role

in regulating the mechanisms involved in the development of renal

inflammation and injury, as well as in blood pressure control.

Chemokines that play an essential role in the direct migration of

various types of immune cells were up-regulated in kidneys of

D22/2 mice, Drd2-silenced kidneys and RPTCs. In several

models of renal injury, MCP-1 and RANTES are expressed in

damaged renal tissues and precede the recruitment of inflamma-

tory cells that is a characteristic of many kidney diseases [7]. The

infiltrating cells mediate the initiation and progression of injury by

direct cytotoxicity, secretion of pro-inflammatory cytokines, and

the induction of other pro-inflammatory mediators in renal tubule

cells.

The increased gene transcription/protein expression of in-

flammatory factors with Drd2 silencing may be caused by

decreased D2R-dependent inhibition leading to increased pro-

duction of TNFa, a major regulator of cytokine/chemokine

expression. Experimental and clinical studies have demonstrated

the role of TNFa as a mediator of inflammatory tissue damage in

the pathogenesis of acute and chronic renal disease. TNFa is

released from renal cells in response to injury and induces

glomerular fibrin deposition, cellular infiltration, and vasocon-

striction [35] but causes marked natriuresis [36]. TNFa stimula-

tion increases the expression of IL-6, IL-10, and MCP-1 [22]. In

immune cells, TNFa production is decreased by dopamine and

D2R agonists [21] and in adrenal cortical cells, dopamine, through

the D2R, inhibits basal and secretagogue-stimulated TNFa. Our

results in mouse RPTCs showing increased basal TNFa expression
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in response to Drd2 silencing and inhibition of Ang II-induced

TNFa stimulation by D2R activation, indicate that in RPTCs the

D2R negatively regulates both basal and Ang II-stimulated TNFa
production.

TNFa and other members of the TNF superfamily regulate the

expression of a large number of cytokines and chemokines by

several mechanisms [37], one of which is the activation and

nuclear translocation of NFkB [38]. NFkB, which is activated by

TNFa, mediates the inflammatory response to TNFa, IL-1b, and

other inflammatory factors in renal cells [33]. In turn, the

transcription of TNFa and TNF superfamily members is increased

by NFkB activation, generating a positive-feedback loop of

activation [39]. Our data show that deficient D2R expression

results in NFkB activation, as indicated by the increased renal

expression of NFkB1 (p50) and NFkB transcriptional activity in

mouse RPTCs. NFkB has been implicated as a factor in diabetic

nephropathy [40]. Because the D2R has been shown to positively

regulate NFkB activation in neural-derived cell lines [41,42] it is

likely that the negative regulation observed in the current studies is

mediated by its direct effects on TNFa expression and function.

Most of the down-regulated cytokines in the renal cortex of D22/

2 mice are Th2-type cytokines (e.g., IL-4 and IL-13); the

transcription of these cytokines is mainly dependent on factors

other than TNFa or NFkB [43] and is negatively regulated by

Th1-type cytokines [44].

The hypertension noted in D22/2 mice is at least partially

related to increased renal production of ROS [4]. To evaluate the

potentially confounding effect of high blood pressure and ROS on

renal inflammation, we treated D22/2 mice with apocynin,

which normalized both blood pressure and ROS production [4] as

it does in several experimental models of hypertension [45].

Apocynin had no significant effect on the expression of TNFa, and

IL-6, although it decreased MCP-1 expression. These results

suggest that, in D22/2 mice, high blood pressure or increased

ROS may contribute but neither is the major cause of the

increased expression of pro-inflammatory factors. However, an

effect of persistent inflammation due to preexisting hypertension

cannot be ruled out.

The selective unilateral renal silencing of D2R for seven days, in

mice with two kidneys, did not increase blood pressure but

nonetheless increased renal expression of pro-inflammatory

chemokines/cytokines and decreased expression of the anti-

inflammatory, IL-11. This indicates that hypertension, per se, is

not necessary for the development of renal inflammation but may

be a contributing factor. Moreover, the expression of the anti-

inflammatory, IL-10, was increased, indicating some compensa-

tory feed-back mechanism. Nevertheless, our results show that

impaired D2R function (due to decreased D2R expression) results

in a defective balance of pro-inflammatory and anti-inflammatory

factors that contribute to renal inflammation and injury.

As mentioned above, intrarenal dopamine buffers the deleteri-

ous effects of Ang II on renal inflammation and injury [16,17].

Our results suggest that these effects are mediated by the D2R.

Infusion of Ang II in rats increases TNFa production in renal

glomerular endothelial cells, tubules, and vessels, and enhances

expression of MCP-1 [22]. Stimulation of the D2R reversed the

increased expression of TNFa and MCP-1 elicited by Ang II in

mouse RPTCs, indicating that D2R may counterbalance the

damaging effect of Ang II in the kidney.

The current studies contribute to the understanding of the

mechanisms that cause the development of renal inflammation, as

well as the development and maintenance of hypertension [5] and

suggest that decreased D2R function may play a significant role in

these processes. Deficient renal D2R function may be of clinical

relevance since polymorphisms of the Drd2 gene, that are

commonly observed in humans, result in decreased D2R

expression and function as a consequence of decreased D2R

mRNA stability and decreased synthesis of the receptor or

decreased receptor affinity [46–50]. Some of the D2R polymorph-

isms are associated with elevated blood pressure and essential

hypertension [51–53]. Moreover, a recent study in an Asian

Indian population with type 2 diabetes found that a D2R

polymorphism, resulting in decreased expression of the receptor,

confers susceptibility to chronic diabetic nephropathy [54].

Further studies are needed to establish the role of D2R

polymorphisms in conferring susceptibility to chronic renal disease

and to determine whether or not modulation of renal D2R

function may be an option in the treatment of hypertension and

renal injury.
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