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Abstract

Salmonella enterica serovar Typhimurium invades and proliferates within epithelial cells. Intracellular bacteria replicate
within a membrane bound vacuole known as the Salmonella containing vacuole. However, this bacterium can also replicate
efficiently in the cytosol of epithelial cells and net intracellular growth is a product of both vacuolar and cytosolic
replication. Here we have used semi-quantitative single-cell analyses to investigate the contribution of each of these
replicative niches to intracellular proliferation in cultured epithelial cells. We show that cytosolic replication can account for
the majority of net replication even though it occurs in less than 20% of infected cells. Consequently, assays for net growth
in a population of infected cells, for example by recovery of colony forming units, are not good indicators of vacuolar
proliferation. We also show that the Salmonella Type III Secretion System 2, which is required for SCV biogenesis, is not
required for cytosolic replication. Altogether this study illustrates the value of single cell analyses when studying
intracellular pathogens.
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Introduction

Salmonella enterica serovar Typhimurium (Salmonella Typhimur-

ium) is a facultative intracellular pathogen, which is a common

cause of gastroenteritis in humans. The ability of Salmonella to

establish its intracellular niche is dependent on two Type Three

Secretion Systems (T3SS). T3SS1, encoded by Salmonella Patho-

genicity Island (SPI) 1, is required for efficient invasion of

nonphagocytic cells. In contrast, the SPI2-encoded T3SS2 is

induced following internalization of Salmonella into host cells and is

required for post-invasion processes. Together T3SS1 and T3SS2

translocate over 30 effector proteins into the host cell where they

interact with a variety of targets [1].

In epithelial cells Salmonella Typhimurium has a bimodal

lifestyle, replicating in a membrane bound compartment known

as the Salmonella containing vacuole (SCV) [2] as well as in the

cytosol [3,4,5,6,7]. The SCV is a modified phagosome, charac-

terized by the presence of lysosomal membrane proteins, low pH

and sustained dynamic interactions with the endocytic and

biosynthetic pathways [8,9,10,11,12,13]. Early maturation of the

SCV involves acquisition of lysosomal membrane proteins, such as

lysosomal-associated membrane protein-1 (LAMP1) within 1–2 h

following invasion [14], and movement from the cell periphery to

a juxtanuclear location [15,16]. Bacterial replication is initiated

following LAMP1 acquisition [14,17,18,19] and is accompanied

by the appearance of dynamic membrane tubules that extend from

the surface of the SCV [20,21]. Effectors translocated by the SPI2-

encoded T3SS2, are essential for maturation of the replicative

SCV. Bacteria lacking a functional T3SS2, and therefore unable

to translocate any effectors, remain within an immature SCV,

which is LAMP1-positive but does not form membrane tubules

and is defective at juxtanuclear positioning [15]. These mutants

also have an intracellular replication defect, in both macrophages

and epithelial cells, although in epithelial cells the defect is not

apparent during the initial replication phase

[3,4,5,6,7,20,22,23,24,25].

While the SCV has been extensively studied, little is known

about how Salmonella adapt to and/or modify the cytosolic niche.

Using a polarized epithelial cell model Knodler et al showed that

cytosolic Salmonella Typhimurium replicate to higher numbers

than vacuolar bacteria, a phenotype dubbed ‘‘hyper-replication’’

[6]. This study also showed that these two intracellular populations

of bacteria are transcriptionally distinct: the intravacuolar bacteria

are SPI2-induced whereas the cytosolic bacteria are SPI1-induced

and flagellated. Epithelial cells containing hyper-replicating SPI1-

induced Salmonella undergo inflammatory cell death, marked by

loss of plasma membrane integrity and activation of caspase 1 and

caspase 3/7. Ultimately these cells are extruded from monolayers,

both in vivo and in vitro, and the invasion-primed Salmonella are

released into the extracellular milieu [6].

Here we have investigated whether cytosolic replication of

Salmonella contributes significantly to net growth in HeLa cells,
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which are commonly used to study Salmonella-host cell interactions

in vitro. In addition, we have compared the requirement for T3SS2

in cytosolic vs vacuolar replication. Since cytosolic Salmonella are

SP11-induced, and do not express detectable levels of SPI2 genes

[6], it seems probable that SPI2 is not required for hyper-

replication, although this has not been directly demonstrated. If

T3SS2 is not required for cytosolic replication this could explain

why bacteria lacking T3SS2 have a delayed replication defect in

epithelial cells [3,4,6,7,22,26], since cytosolic replication could

potentially obscure defects in vacuolar replication. We used

microscopy-based approaches, in both fixed and living cells, to

assess the replication over time of both the vacuolar and cytosolic

populations of Salmonella in individual epithelial cells. Our results

show that, although cytosolic Salmonella Typhimurium occur in a

minority of infected epithelial cells, the hyper-replication of these

bacteria accounts for a significant proportion of net bacterial

replication. Furthermore, cytosolic replication is SPI2-indepen-

dent and can obscure replication defects in vacuolar bacteria.

Results

Analysis of Intracellular Replication of Salmonella
Following internalization into epithelial cells Salmonella Typhi-

murium replicates within the SCV but also in the cytosol

[3,4,5,6,7]. However, the relative contribution of the two distinct

intracellular populations to net replication remains undefined. To

address this question we analyzed intracellular replication in

cultured epithelial cells by both the standard gentamicin protec-

tion assay, which measures net replication, and a microscopy-

based technique to follow bacterial replication in single cells. Many

studies have shown robust replication of wild type (WT) Salmonella

Typhimurium in epithelial cells (,20–30 fold over 8 h of

infection, Fig. 1A) [3,5,15,20,23,25,27,28]. However, although

the SPI2-encoded T3SS2 is required for vacuole biogenesis, we

saw no defect in net replication for a SPI2 deletion mutant (DSPI2)

over this time period. In contrast, at 16 h post infection (p.i.), there

was a significant reduction in the amount of recoverable

intracellular bacteria for the SPI2 mutant. We next used standard

fluorescence microscopy to examine the numbers of bacteria in

individual cells at these times. For ease of detection, particularly in

the subsequent live cell experiments, we used bacteria constitu-

tively expressing the fluorescent protein mCherry (mCherry

Salmonella). HeLa cells infected with mCherry Salmonella were fixed

at 2, 8 and 16 h p.i. and intracellular bacteria then enumerated by

fluorescence microscopy (Fig. 1B and 1C). As expected, since the

SPI2-encoded T3SS2 is not required for invasion, no difference

was seen in the numbers of WT or SPI2 mutant intracellular

bacteria at the earliest time point (2 h p.i.). The mean number of

bacteria per infected cell was 564 and 563 (mean 6 SD) for the

WT and mutant respectively. In contrast, at 8 h p.i., following the

onset of replication, the numbers of bacteria per cell varied

dramatically. In some cells the bacteria occupied the entire

cytoplasm of the cell and could not be accurately enumerated

(TNTC, .100 bacteria), whereas at the other extreme many cells

contained less than 10 bacteria. To facilitate analysis, we separated

cells into three groups based on the numbers of intracellular

bacteria; low (1–20 bacteria), moderate (20–100 bacteria) and high

(.100 bacteria) (Fig. 1B). We then compared the frequency of

each phenotype in cells infected with either WT Salmonella or the

SPI2 mutant. At 8 h p.i. cells falling into the high (.100 bacteria)

group accounted for 1064 (mean 6 SD) % of WT infected cells

compared to 761% of the SPI2 mutant infected cells. In

comparison, the moderate (20–100 bacteria per cells) group was

more frequent in WT infected cells (29617%) compared to those

infected with the SPI2 mutant (666%). At 16 h this effect was

enhanced with 7565% of WT infected cells containing 20–100

bacteria per cell compared to 1465% of SPI2 mutant infected

cells. In contrast, cells containing .100 bacteria made up 865%

or 563% of the population for WT infected and SPI2 mutant

infected cells respectively. These results indicate that the SPI2-

encoded T3SS2 is required for development of the subpopulation

of cells that contain 20–100 bacteria but not the subpopulation

that contains .100 bacteria.

Live Cell Imaging Defines a Role for SPI2 Early in Infection
To further investigate the role of SPI2 in infected HeLa cells we

used a live cell imaging analysis method in which the increase in

area occupied by mCherry fluorescent Salmonella over time

approximates bacterial replication [29]. Infected HeLa cells were

imaged from ,2 to 8 h p.i. (Fig. 2A, Movies S1 and S2) with

images taken at 10 min intervals. Post acquisition analysis was

then carried out to estimate the net change in area occupied by

mCherry Salmonella, obtained by dividing the pixel area occupied

by intracellular bacteria at each time point by the area occupied at

,2 h p.i. (DArea; see Materials and Methods section for details).

The data are shown as a scatter plot in which data points have

been binned into three groups representing low (DArea ,2),

moderate (DArea .22,10) and high (DArea $10) replication

(Fig. 2B). After 8 hours of infection, the percentage of cells

containing large numbers of bacteria was slightly higher for WT

(1660%, mean 6 SD) compared to SPI2 mutant infected cells

(961%) although this difference was not seen in the previous

experiment using fixed cells (Fig. 1B and C). However, whereas the

majority of cells infected with WT bacteria fell into the moderate

replication group, 6062% the majority of cells infected with the

SPI2 mutant fell into the low replication group, 6665%. Thus,

with the noted exception at 8 h p.i., these live-cell data are

consistent with the data shown in Figure 1, and confirm a

requirement for SPI2 in replication of a subpopulation of bacteria

i.e. those falling in the moderate replication group.

Cytosolic Replication in HeLa Cells is SPI2-independent
We next carried out experiments to determine the intracellular

location of replicating Salmonella. To differentiate between vacuolar

and cytosolic bacteria HeLa cells were stained for the lysosomal

transmembrane protein LAMP1, which accumulates on the

membrane of SCVs. At 8 h p.i. most infected cells contained

mCherry Salmonella enclosed within LAMP1-positive vacuoles

(Fig. 3A) although in cells containing large numbers of Salmonella

(.100) the majority of bacteria were LAMP1-negative. To

confirm that the LAMP1-negative Salmonella were cytosolic we

used digitonin permeabilization to selectively permeabilize the

plasma membrane without affecting the integrity of intracellular

membranes including that of the SCV. This selective permeabi-

lization provides access for anti-LPS antibodies to label cytosolic

but not vacuolar Salmonella. At 6 h p.i. ,15% of infected cells

contained mCherry Salmonella that stained with anti-LPS antibody

(Fig. 3B). No difference could be detected in the frequency of

cytosolic WT and SPI2 mutant bacteria in HeLa cells (Fig. 3, and

data not shown), indicating that cytosolic replication is SPI2-

independent.

Replication in the SCV, but Not in the Cytosol, is SPI2
Dependent

To confirm that cytosolic replication is SPI2 independent we

adapted the live-cell imaging approach to compare the rates of

bacterial replication in the cytosol and the SCV. To differentiate

Replication of Vacuolar and Cytosolic Salmonella
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between vacuolar and cytosolic bacteria, we used fluorescent

dextran, a fluid phase marker that efficiently labels the endocytic

pathway and accumulates within the Salmonella containing vacuole

(SCV) [13]. Alexa488-Dextran was internalized into the Hela cells

overnight and the cells then infected with mCherry Salmonella. To

increase the number of infected cells, which could be simulta-

neously imaged in each experiment, nine overlapping fields were

imaged and later stitched together for image analysis. In this way

we imaged a total of 47 infected cells; 19 WT-infected and 28

SPI2 mutant-infected (Fig. 4). At the initiation of imaging (2–3 h

p.i.) the number of bacteria per infected cell was 361 (mean 6

SD) for WT and 561 for the mutant. Dextran-negative (cytosolic)

bacteria were observed in 4 out of 19 WT infected cells compared

to 3 out of 28 mutant infected cells. Cytosolic replication was first

Figure 1. Analysis of heterogeneity of intracellular Salmonella replication. (A) Gentamicin protection assay. HeLa cells infected with either
WT or mutant (DSPI2) bacteria were harvested at 1.5, 8 and 16 h p.i. The fold change in recoverable colony forming units was calculated versus 1.5 h
p.i. Shown are the means 6 SD. (B) Intracellular mCherry Salmonella. For each time point WT and mutant bacteria were counted in $50 HeLa cells in
each of 3 independent experiments. Shown are the combined data. (C) Representative images of infected HeLa cell monolayers used for analysis in
(B). DNA was stained with DAPI. Images are maximum z-projections of 0.32 mm sections. Insets are magnified regions with the red channel (mCherry)
gamma adjusted (0.6) to show both high and low fluorescent intensity Salmonella. Arrows indicate low or medium replication phenotypes and
asterisks indicate high replication phenotype. Scale bars are 10 mm (5 mm in insets).
doi:10.1371/journal.pone.0038732.g001

Replication of Vacuolar and Cytosolic Salmonella
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observed between 4 and 6 h p.i. for both WT and mutant bacteria

and resulted in 20–100 fold increases in bacterial numbers, beyond

which increases could not be accurately measured (Fig. 4A and

Movies S3, S4, S5, S6, compare vacuolar bacteria shown in Movie

S3 and S4 with cytosolic bacteria shown in Movie S5 and S6). One

WT-infected cell in this group detached from the dish during

imaging after an ,6 fold increase in intracellular bacteria.

Replication of dextran positive (vacuolar) bacteria, which was

also initiated by 4–5 h p.i., was only apparent when plotted on a

different scale (Fig. 4B). By 9 h p.i. WT vacuolar bacteria

increased by ,3 fold with the largest observed increase in a single

cell being 6 fold. In comparison, the vacuolar SPI2 mutant

bacteria increased by only ,1.4 fold and the largest observed

increase was 2.3 fold. These live cell experiments confirm that

SPI2 is required for Salmonella replication in the vacuole but not for

cytosolic replication.

Low Magnification Live Cell Imaging of Salmonella-
infected HeLa Cells Provides Novel Insight into
Intracellular Populations

A major limitation of live cell imaging experiments, such as

those described above is that only a few cells can be imaged at one

time. To overcome this limitation we refined the multiple-field live

cell imaging approach, using low magnification (20X objective)

and imaging 20 overlapping fields, to allow simultaneous imaging

of ,500 cells. For these experiments we used Salmonella

constitutively expressing GFP (GFP Salmonella) and propidium

iodide was added to the tissue culture media following infection, to

allow identification of cells with compromised plasma membrane.

Imaging was initiated 2.5–3 h p.i. and images were then acquired

at 20 min intervals until 18 h p.i. Representative time-lapse

movies (Movies S7 and S8) from one of three independent

experiments reveal ongoing cell division as well as cells rounding

up and detaching, with the later being particularly apparent at the

later time points. GFP Salmonella can be observed in many HeLa

cells, although at early time points the infected cells are not always

easy to identify since there are few bacteria per cell. In contrast,

cells containing hyper-replicating bacteria are readily identified

from 4 h p.i. and by 8 h p.i. 1163% (mean 6 SD, n = 3) of WT-

infected and 1763% of SPI2 mutant-infected cells fell into this

category (Movies S7 and S8 respectively, and still images from the

movies shown in Fig. 5C and 5D with selected regions in Fig. 5A

and 5B). Although some of these cells were observed detaching

from the monolayer, the percentage of infected cells containing

hyper-replicating bacteria did not change significantly between 8

and 16 h for either WT-infected or SPI2 mutant-infected cells.

As previously reported epithelial cells containing hyper-repli-

cating bacteria undergo inflammatory death, characterized by

activation of caspases 1 and 3/7 as well as loss of plasma

membrane integrity [6]. Here we also observed that from 8 h p.i.

cells containing hyper-replicating bacteria also stained with PI,

indicating loss of membrane integrity (Fig. 5 and Movies S7 and

Figure 2. SPI2-independent replication in HeLa cells. (A) Time
lapse microscopy of HeLa cells infected with mCherry Salmonella.
Numbers on the left indicate the time p.i. Individual host cells are
outlined (a–e, WT infected cells; f-i, DSPI2 infected cells). For each cell
the net change in area versus 2 h 20 min p.i. (DArea) occupied by
mCherry Salmonella is indicated in parentheses. (B) Graphical repre-
sentation of data shown in (A) for showing fold increase at 8 h 20 min.
Data represents at least five fields from two wells in each of 3
independent experiments. Shown are the combined data. In lower
panel the same data is shown in a histogram. Cells were divided into
three categories depending on the DArea. Shown are the means 6 SD
of a total of 140 HeLa cells each for WT and DSPI2 (n = 3).
doi:10.1371/journal.pone.0038732.g002
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S8). Although the cells containing hyper-replicating bacteria are

very conspicuous in these live cell experiments, the majority of

infected cells (80–90%) contain bacteria undergoing limited

replication. Very few of these cells stained with PI during the

course of the experiment indicating that the plasma membrane is

intact and the infected cells remain viable. Intriguingly, some of

these cells do round up and detach from the monolayer although

the significance of this is unclear. Comparison of movies S7 and

S8, which show WT- and SPI2-mutant-infected cells respectively,

reveals that intermediate replication occurs frequently in WT-

infected cells but not in cells infected with the mutant (See also

Fig. 5). Since this reproduces the data shown in Fig. 1 and Fig. 2

we have not quantified these populations in these experiments.

These low-magnification live cell experiments demonstrate con-

clusively that the SPI2 encoded T3SS is not required for cytosolic

replication of Salmonella. In addition, they reveal the potential for

Figure 3. SPI2-independent replication occurs in the cytosol.
(A) Replicating SPI2 mutant Salmonella are LAMP1 negative. HeLa cells
infected with mCherry Salmonella (red) were fixed at 8 h p.i. and stained
for the SCV marker LAMP1 (green) and DNA (gray). (B) Replicating SPI2
mutant Salmonella are in the cytosol of HeLa cells. HeLa cells were
infected with mCherry Salmonella, either WT or DSPI2, fixed at 6 h p.i.
and processed for digitonin-selective permeabilization. Insets a and c
include cytosolic hyper-replicating bacteria and insets b and d include
putative vacuolar bacteria. Images are maximum z-projections of
0.32 mm sections. Insets are magnified regions with the red channel
(mCherry) gamma adjusted (0.6) to show both high and low fluorescent
intensity Salmonella. Scale bars are 10 mm (2 mm in insets).
doi:10.1371/journal.pone.0038732.g003

Figure 4. Quantification of intracellular replication. To differen-
tiate between vacuolar and cytosolic Salmonella, internalized fluores-
cent dextran was used as a marker of intact SCVs. 488-dextran was
internalized into HeLa cells overnight before infection with mCherry
Salmonella. Live cell imaging was initiated at 2–3 h p.i. At 10 min
intervals nine overlapping fields were collected, centered on a total of
5–10 infected cells for each experiment. Subsequently the fields were
stitched together and the dextran-negative (cytosolic) and dextran-
positive (vacuolar) bacteria enumerated. In total 47 bacterial microcol-
onies were assayed, 7 dextran-negative and 40 dextran-positive, from 8
independent experiments. (A) Replication of both cytosolic (solid lines)
and vacuolar bacteria (dashed lines). * cell lifted off dish, { TNTC. (B)
Enlarged graph to show replication of vacuolar bacteria.
doi:10.1371/journal.pone.0038732.g004
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hyper-replicating bacteria to equal or even outnumber the

vacuolar population in infected HeLa cells.

Discussion

Historically the SCV has been considered the primary site of

replication for intracellular Salmonella. However, it is now clear that

this facultative intracellular pathogen has a distinct bimodal

lifestyle in epithelial cells [6]. Here we have analyzed the

contributions of vacuolar and cytosolic replication to net

intracellular growth. Our data shows that, although the majority

of infected HeLa cells contain vacuolar Salmonella these bacteria

replicate rather inefficiently, ,3 fold over 8 h, and can not

account for the net levels of intracellular replication in these cells.

In contrast, while less than 20% of infected cells contained

cytosolic bacteria this population replicated 40 fold or more so that

the epithelial cells were rapidly filled with bacteria. Thus, in

epithelial cells, net replication of intracellular Salmonella is a

reflection of both cytosolic and vacuolar replication.

Although the requirement for the SPI2-encoded T3SS2 in

macrophages has been unequivocally demonstrated [30,31,32,33],

the role of this important virulence determinant in epithelial cells

has been less well established [3,5,22,28]. While many studies have

shown that SCV biogenesis is dependent on the T3SS2, mutants

lacking the ability to translocate any T3SS2 effectors often show

little or no defect in replication during the first 8 h following

invasion when compared to 16 h p.i. where they are significantly

defective in replication [3,5]. But those experiments primarily used

gentamicin protection to quantify intracellular bacteria. Our

results show that a defect in vacuolar replication is likely obscured

by T3SS2-independent cytosolic replication when net replication

is assayed at earlier time points during infection (i.e. 8 h). Then

why is the growth defect apparent at later time points? One

possibility is that cells containing hyper-replicating bacteria more

easily detach from the monolayer. In this case a standard

gentamicin-assay, in which monolayers of infected cells are

solubilized in detergent, so that recoverable cfus can be estimated

by plating, would underestimate hyper-replicating bacteria. This

may well be an issue for the gentamicin assay, or other protocols

that involve rinsing of monolayers. However, our live cell

experiments involve no rinsing steps after the change to low

gentamincin at 1.5 h and under these conditions very few cells

containing hyper-replicating bacteria were seen detaching from

the surface. Instead, we believe that loss of plasma membrane

integrity in cells containing hyper-replicating bacteria, as shown

here and previously [6], allows entry of gentamicin resulting in

killing of hyper-replicating bacteria. Since PI staining in these cells

is not apparent until after 8 h p.i., by which time cytosolic

replication has already exceeded vacuolar replication, we propose

that gentamicin killing of this population will not occur until later

time-points. Selective removal of hyper-replicating bacteria, by

loss of cells from the monolayer and/or by gentamicin killing,

would explain why the SPI2-mutant, which is defective only in

vacuolar replication, does not show a replication defect until later

time points in gentamicin-protection assays. Both vacuolar and

cytosolic populations will contribute to the net replication

observed at 8 h p.i. whereas at later time points, such as16 h

p.i., the cytosolic population will underestimated because of killing

by gentamicin and loss of cells (see Fig. 1). This has very significant

ramifications when gentamicin assays are used to assess growth of

Salmonella in epithelial cells, but not in macrophages where

cytosolic Salmonella are unable to survive or grow

[3,4,5,6,7,20,22,23,24,25].

Transcriptome analysis of Salmonella Typhimurium in epithelial

cells suggested that the SPI1 and SPI2 regulons together with

flagellar genes are simultaneously expressed in vacuolar bacteria

[34]. Instead we propose that this can be explained by the

presence of two transcriptionally distinct populations of intracel-

lular Salmonella, the vacuolar SPI2-induced population and the

cytosolic SPI1-induced and flagellated population [6], that we

have shown are both present in significant numbers. Further work

is required to determine other differences in the expression profiles

of these distinct populations of bacteria and to identify the

bacterial factors involved in determining intracellular localization.

In conclusion, we report here that cytosolic SPI2-independent

replication of Salmonella Typhimurium contributes significantly to

net replication in epithelial cells. This has important implications

for studies involving epithelial cells, however, further investigations

are required to dissect the roles of cytosolic versus vacuolar

replication in pathogenesis of this important bacterial pathogen.

Materials and Methods

Cell Culture and Bacterial Strains
The Salmonella enterica serovar Typhimurium strains used in this

study, SL1344 wild type (WT) and DSPI2::Kan have been

described previously [8]. SL1344 WT harboring pFPVmcherry

or pFPV-25.1 for constitutive production of mCherry (mCherry

Salmonella) or GFP (GFP Salmonella) have also been described [35].

The SPI2 mutant GFP Salmonella was generated by transforming

SL1344 DSPI2::Kan with pFPV-25.1. For routine propagation,

bacteria were grown on Luria-Bertani (LB) agar plates and stored

at 4uC for up to one week. HeLa (human cervical adenocarcino-

ma, ATCC CCL-2) cells were used prior to passage number 14

following receipt from ATCC. Cells were grown in Growth Media

(GM), consisting of Eagle’s minimal essential medium (Media-

Tech) supplemented with 10% (vol/vol) fetal bovine serum

(Invitrogen), at 37uC in 5% CO2.

Infection of Cultured Epithelial Cells with Salmonella
HeLa cells were seeded on plastic (Costar) or glass-bottom

(Sensoplate; Grenier Bio-One) 24 well tissue culture plates or glass

coverslips, 18–24 h before infections. Cells were infected with

SPI1-induced bacteria as described previously [27]. Briefly,

cultures grown overnight in LB-Miller broth with shaking (250

rpm) at 37uC were subcultured (1:33) in 10 ml of fresh LB-Miller

and grown shaking at 37uC to late log phase (3.5 h). Salmonella

were then collected by centrifugation and resuspended in Hank’s

buffered saline solution. HeLa cells were immediately infected at

an MOI of ,50:1 for 10 minutes at 37uC, followed by three brief

Figure 5. Contribution of hyper-replicating Salmonella to net replication. HeLa cell monolayers were infected with GFP Salmonella.
Propidium iodide was added at 1.5 h p.i. to identify cells with compromised plasma membranes. Live cell imaging was initiated at 2–3 h p.i. At
20 min intervals 20 overlapping fields were collected, for ,200 infected cells for each experiment. Subsequently the fields with stitched together. (A,
B) Magnified regions from stitched fields as indicated in C and D for WT and SPI2 mutant infections respectively. Panels on the left show an overlay of
GFP-Salmonella artificially colored to reveal both the lowest (blue/purple) and highest (yellow/white) intensity bacteria and phase-contrast (gray).
Panels on the right show an overlay of propidium iodide staining (red) and phase-contrast (gray). Arrowheads indicate hyper-replicating bacteria and
open arrowheads indicate bacteria not hyper-replicating. Scale bars are 25 mm. (C, D) Stitched fields for WT and SPI2 mutant infection with regions for
A and B marked with white squares. Scale bars are 250 mm.
doi:10.1371/journal.pone.0038732.g005
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rinses in PBS and incubated in GM for 20 min at 37uC. Cells were

then incubated in GM containing 50 mg/ml gentamicin for 1 h, to

kill extracellular bacteria, followed by GM containing 10 mg/ml

gentamicin for the remainder of the infection. To determine the

number of viable intracellular bacteria, HeLa cells were lysed in

0.2% sodium deoxycholate in PBS at 1.5 and 8 h post infection

and 10 fold serial dilutions plated on LB agar. Serial plating was

also used to estimate the number of bacteria in the innoculum.

Immunofluorescence Staining
HeLa cells were fixed in 2.5% paraformaldehyde for 10 min at

37uC. All subsequent steps were carried out at room temperature.

Cells were blocked and permeabilized in PBS containing 10% (v/

v) normal goat serum (NGS) and 0.1% (w/v) saponin (SS-PBS) for

10 min. They were then incubated with mouse monoclonal anti-

LAMP-1 antibody (1:1,000, clone H4A3, Developmental Studies

Hybridoma Bank) for 45–60 min in SS-PBS, washed 3 times in

PBS, 0.1% (w/v) saponin, incubated with Alexa Fluor 488-

conjugated goat anti-mouse IgG (1:800, Life Technologies) in SS-

PBS for 45 min. Finally the cells were washed and mounted on

glass slides using ProLong Gold antifade reagent containing the

nuclear counterstain DAPI (Life Technologies).

Differential Digitonin Permeabilization Assay
To determine whether intracellular bacteria were vacuolar or

cytosolic we used a differential digitonin permeabilization assay

[6]. Briefly, HeLa cells were infected with mCherry Salmonella (WT

or DSPI2 mutant). At 6 h p.i. cells were washed three times in

KHM buffer [110 mM potassium acetate, 20 mM Hepes, 2 mM

MgCl2 (pH 7.3)], incubated with 150 mg/mL digitonin (Sigma) in

KHM buffer for 1 minute, then immediately washed twice with

KHM buffer. This and all subsequent steps were carried out at

room temperature unless noted. To label cytosolic bacteria and

the cytosolic face of the Golgi cells were then incubated in rabbit

polyclonal anti-Salmonella lipopolysaccharide (LPS) antibody

(1:200; Difco) and mouse anti-human GM130 monoclonal

antibody (1:200; BD Transduction Laboratories) for 12 min at

37uC. Cells were washed twice with PBS and then fixed in 2.5%

paraformaldehyde for 10 min at 37uC. Fixed cells were permea-

bilized in SS-PBS for 15 min followed by incubation with Alexa

Fluor 488-conjugated goat anti-rabbit IgG and Alexa Fluor 647-

conjugated goat anti-mouse IgG at 1:400 for 45 mins. For each

experiment, two coverslips were used as a permeabilization control

to ensure that the plasma membrane, but not endomembranes,

was permeabilized. For this, digitonin-treated cells were incubated

with rabbit polyclonal antibody directed against the cytoplasmic

tail of calnexin (1:200; Stressgen, Enzo Life Sciences) and a mouse

monoclonal antibody directed against rat luminal protein disul-

phide isomerase (1:200; Thermo Scientific). Finally, coverslips

were washed in PBS and mounted on glass slides as above.

Fixed Cell Imaging
Cells were visualized and enumerated using inverted Nikon

microscopes, Eclipse TE2000 or Ti-E, fitted with a Plan Apo 60X

1.4 NA oil immersion lens and B-2E/C or Y-2E/C filter blocks

(Nikon Instruments). To determine the number of bacteria per

cell, 150 infected cells were enumerated at each time point.

Confocal images were acquired on an LSM 710 controlled by

the software package ZEN (Zeiss) fitted with a Plan-Apochromat

63X 1.40 NA oil immersion lens. Pixel sizes were 0.75–0.77 mm

and z-steps for optical sections were 32 mm. Excitation and band-

pass cut offs were as follows: DAPI, excitation 405 nm, emission

410–495 nm; Alexa Fluor 488, excitation 488 nm, emission 493–

581 nm; mCherry, excitation 561 nm, emission 578–696 nm.

Live Cell Imaging
HeLa cells grown on glass-bottom 24 well plates were infected

with mCherry Salmonella or GFP Salmonella. When Dextran Alexa

Fluor 488 (10,000 MW, Molecular Probes/Invitrogen) was used to

identify vacuolar bacteria it was internalized overnight (0.2 mg/

ml) prior to infection [13]. To stain HeLa cells with compromised

plasma membranes, propidium iodide (1 mg/ml) was added 1.5 h

p.i and maintained for the remainder of the infection. Live cell

imaging experiments were performed using a spinning disc

confocal system [6] consisting of a CSU10 spinning disk confocal

(Yokogawa) with a custom AOTF-shuttered diode laser launch for

excitation (Praire Technologies), fitted to a Ti-E inverted

microscope with Perfect Focus System (Nikon Instruments)

controlled by Metamorph v 7.7.0 (Molecular Devices) or by

widefield with the same instrument fitted with an HQ2 interline

CCD camera (Photometrics) and excitation with an EXFO metal

halide light source (Lumen Dynamics). Cells were maintained at

37uC with 5% CO2 throughout imaging using a stage top

incubation system (Pathology Devices). Excitation and filters were

as follows: Alexa Fluor 488, excitation 488 nm, emission 525/

50 nm; mCherry, excitation 561 nm, emission 600/45 nm. Filter

blocks and lightpath for widefield imaging were as follows: GFP,

B-2E/C; propidium iodide (PI), Y-2E/C; and phase contrast with

phase plate Ph1 with a centered NCB filtered halogen light source

focused with an ELWD condenser configured for Köhler

illumination (Nikon Instruments).

For low magnification imaging of Salmonella replication, using a

Plan Fluor 20X 0.5 NA ELWD non-immersion phase contrast

objective lens (Nikon Instruments), nine fields, selected systemat-

ically in a non-overlapping 363 grid, were imaged sequentially

(single optical sections) for Alexa Fluor 488 and mCherry at

10 min intervals. Alternatively, twenty overlapping fields selected

systematically were imaged sequentially (widefield) for GFP, PI

and phase contrast at 20 min intervals.

All post-acquisition analysis was carried out using ImageJ

software (W.S. Rasbans, National Institutes of Health, Bethesda,

MD). To measure the area occupied by Salmonella within

individual HeLa cells, a region-of-interest was selected by thresh-

olding on the red channel so as to include all fluorescent mCherry

Salmonella. To determine the fold-change in area (DArea) for each

infected HeLa cell, the area occupied by Salmonella at 8 h 20 min

p.i. was normalized to the area occupied by Salmonella at 2 h

20 min h p.i. Overlapping fields were stitched together using the

Stitch Grid of Images plugin from the ImageJ derivative, Fiji

v1.43-1.46a [36].

For high magnification imaging of Salmonella replication, using a

Plan Apo 60X 1.4 NA oil immersion lens (Nikon Instruments)

fitted with a temperature regulated heating collar (Bioptechs), nine

overlapping fields (total of 5–10 infected cells) were imaged

sequentially (single optical sections) for Alexa Fluor 488 and

mCherry at 10 min intervals. Overlapping fields were stitched

together as given above. Individual Salmonella were enumerated for

each infected cell at each time point time and normalized to the

number at the initial time-point.

Statistics
Statistical tests, including unpaired Student’s t-test for

Gaussian distributions, Mann-Whitney for non-parametric

distributions and ANOVA and 2-way ANOVA for multiple

category Gaussian distributions, were performed using Prism

(Graphpad).
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Supporting Information

Movie S1 Live-cell imaging of Salmonella Typhimurium
WT replication in HeLa cells at 20X magnification.
Internalized 488-dextran was used to identify vacuolar
Salmonella. Left panel shows mCherry Salmonella artificially

colored to reveal both low (blue/purple) and high (yellow/white)

intensity bacteria. Right panels show an overlay of mCherry

Salmonella (red) and Dextran-488 (green). Compare dextran

positive vacuolar bacteria to dextran negative cytosolic bacteria.

Times post infection are indicated.

(MOV)

Movie S2 Live-cell imaging of Salmonella Typhimurium
SPI2 mutant replication in HeLa cells at 20X magnifi-
cation. Internalized 488-dextran was used to identify
vacuolar Salmonella. Left panel shows mCherry Salmonella

artificially colored to reveal both low (blue/purple) and high

(yellow/white) intensity bacteria. Right panels show an overlay of

mCherry Salmonella (red) and Dextran-488 (green). Compare

dextran positive vacuolar bacteria to dextran negative cytosolic

bacteria. Times post infection are indicated.

(MOV)

Movie S3 Live-cell imaging of Salmonella Typhimurium
WT replication in HeLa cells at 60X magnification,
showing vacuolar replication. Internalized 488-dextran was

used to identify vacuolar Salmonella. Left panel shows mCherry

Salmonella artificially colored to reveal both low (blue/purple) and

high (yellow/white) intensity bacteria. Right panels show an

overlay of mCherry Salmonella (red) and Dextran-488 (green).

Compare dextran positive vacuolar bacteria to dextran negative

cytosolic bacteria. Times post infection are indicated.

(MOV)

Movie S4 Live-cell imaging of Salmonella Typhimurium
SPI2 mutant replication in HeLa cells at 60X magnifi-
cation, showing vacuolar replication. Internalized 488-
dextran was used to identify vacuolar Salmonella. Left

panel shows mCherry Salmonella artificially colored to reveal both

low (blue/purple) and high (yellow/white) intensity bacteria. Right

panels show an overlay of mCherry Salmonella (red) and Dextran-

488 (green). Compare dextran positive vacuolar bacteria to

dextran negative cytosolic bacteria. Times post infection are

indicated.

(MOV)

Movie S5 Live-cell imaging of Salmonella Typhimurium
WT replication in HeLa cells at 60X magnification,

showing cytosolic replication. Internalized 488-dextran was

used to identify vacuolar Salmonella. Left panel shows mCherry

Salmonella artificially colored to reveal both low (blue/purple) and

high (yellow/white) intensity bacteria. Right panels show an

overlay of mCherry Salmonella (red) and Dextran-488 (green).

Compare dextran positive vacuolar bacteria to dextran negative

cytosolic bacteria. Times post infection are indicated.

(MOV)

Movie S6 Live-cell imaging of Salmonella Typhimurium
SPI2 mutant replication in HeLa cells at 60X magnifi-
cation, showing cytosolic replication. Internalized 488-

dextran was used to identify vacuolar Salmonella. Left panel shows

mCherry Salmonella artificially colored to reveal both low (blue/

purple) and high (yellow/white) intensity bacteria. Right panels

show an overlay of mCherry Salmonella (red) and Dextran-488

(green). Compare dextran positive vacuolar bacteria to dextran

negative cytosolic bacteria. Times post infection are indicated.

(MOV)

Movie S7 WT replication at 20X magnification over
multiple fields of view. Propidium iodide was used to identify

HeLa cells with compromised plasma membranes. Each frame

contains an overlay of GFP Salmonella (green), propidium iodide

(red) and phase contrast (gray). Times post infection are indicated.

(MOV)

Movie S8 SPI2 mutant replication at 20X magnification
over multiple fields of view. Propidium iodide was used to

identify HeLa cells with compromised plasma membranes. Each

frame contains an overlay of GFP Salmonella (green), propidium

iodide (red) and phase contrast (gray). Times post infection are

indicated.

(MOV)
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