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Abstract

l-Tetrahydropalmatine (l-THP) is an active ingredients of Corydalis yanhusuo W.T. Wang, which protects against acute global
cerebral ischaemia-reperfusion injury. In this study, we show that l-THP is cardioprotective in myocardial ischaemia-
reperfusion injury and examined the mechanism. Rats were treated with l-THP (0, 10, 20, 40 mg/kg b.w.) for 20 min before
occlusion of the left anterior descending coronary artery and subjected to myocardial ischaemia-reperfusion (30 min/6 h).
Compared with vehicle-treated animals, the infarct area/risk area (IA/RA) of l-THP (20, 40 mg/kg b.w.) treated rats was
reduced, whilst l-THP (10 mg/kg b.w.) had no significant effect. Cardiac function was improved in l-THP-treated rats whilst
plasma creatine kinase activity declined. Following treatment with l-THP (20 mg/kg b.w.), subunit of phosphatidylinositol 3-
kinase p85, serine473 phosphorylation of Akt and serine1177 phosphorylation of endothelial NO synthase (eNOS) increased in
myocardium, whilst expression of inducible NO synthase (iNOS) decreased. However, the expression of HIF-1a and VEGF
were increased in I30 minR6 h, but decreased to normal level in I30 minR24 h, while treatment with l-THP (20 mg/kg b.w.)
enhanced the levels of these two genes in I30 minR24 h. Production of NO in myocardium and plasma, activity of
myeloperoxidase (MPO) in plasma and the expression of tumour necrosis factor-a (TNF-a) in myocardium were decreased
by l-THP. TUNEL assay revealed that l-THP (20 mg/kg b.w.) reduced apoptosis in myocardium. Thus, we show that l-THP
activates the PI3K/Akt/eNOS/NO pathway and increases expression of HIF-1a and VEGF, whilst depressing iNOS-derived NO
production in myocardium. This effect may decrease the accumulation of inflammatory factors, including TNF-a and MPO,
and lessen the extent of apoptosis, therefore contributing to the cardioprotective effects of l-THP in myocardial ischaemia-
reperfusion injury.
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Introduction

Ischaemia/reperfusion (I/R) injury is an important complica-

tion of acute arterial occlusion and subsequent recanalisation; for

example, following acute myocardial infarction, coronary artery

recanalisation by thrombolytic therapy or percutaneous coronary

intervention is used therapeutically in an attempt to minimize the

infarct area. However the reoxygenation of the ischaemic heart

leads to an area of myocardial loss of function [1,2]. Many

signaling molecules have been postulated to contribute to

ischaemia-reperfusion injury including both reactive oxygen

species and nitric oxide (NO).

NO, acting as a signaling molecule, plays a major regulatory

role in several aspects of cellular function; for example, it causes

vasodilatation, inhibits platelet function and leukocyte-endothelial

interaction and modulates neurotransmission [3,4,5]. NO can also

exert a potent anti-inflammatory effect, by suppressing adhesion

molecule expression and cytokine release [6,7]. Hypoxia-inducible

factor-1 (HIF-1), is a transcription factor expressed in response to a

decrease in the partial pressure of cellular oxygen. It is a

heterodimer composed of a and b subunits. HIF-1a is stable in

physiological condition and exquisitely sensitive to the onset of

cellular hypoxic conditions, while HIF-1b is constitutive and not

sensitive to hypoxia [8,9,10]. HIF-dependent genes, such as

vascular endothelial growth factor (VEGF), are important in I/R

injury via regulating collateral vessel development [9,11].

Tetrahydroprotoberberines (THPBs) are a series of alkaloids,

isolated from a Chinese analgesic medicine, called Corydalis

yanhusuo W. T. Wang. l-Tetrahydropalmatine (l-THP), one of its

main active ingredients, has been demonstrated to have potent

analgesic effects and has been in use in Chinese clinical practice

for this purpose for many years [12,13]. Its chemical structure is

shown in Figure 1. Studies have shown that giving l-THP, 2 or
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30 min before ischaemia, can protect against acute global cerebral

ischaemia-reperfusion injury in rats [14,15]. Corydalis yanhusuo W.

T. Wang has also been used in China for the treatment of a variety

of cardiovascular diseases, and l-THP is once again believed to be

the main active principle. More recent studies have suggested that

another important mechanism of l-THP protection against global

cerebral ischaemia-reperfusion injury is through reducing apop-

tosis by modulating the expression of heat shock protein 70, bcl-2

and bax [16,17]. Additionally, ethanolic extracts of Corydalis

yanhusuo W. T. Wang administered orally have been reported to

protect against heart failure following induction of myocardial

infarction in rats [18].

We hypothesized that l-THP protects the myocardium from

ischaemia-reperfusion injury following acute coronary artery

occlusion. The aim of the present study was therefore to

investigate this possibility and to delineate the possible mecha-

nisms by which l-THP is cardioprotective in this context.

Methods

Experimental animals and Ethics Statement
Male Sprague-Dawley rats (250–300 g) were purchased from

the Laboratory Animal Resources of Nanjing Medical University

(NJMU). The animals were fed a laboratory diet with water and

food and kept under constant environmental conditions, with 12-

hour light/dark cycles. Animal Resources at the NJMU were in

accordance with the guidelines for the Principles of Laboratory

Animal Care and the Guide for the Care and Use of Laboratory

Animals. All aspects of animal care and all experimental protocols

were approved by the NJMU Committee on Animal Care.

Experimental model of myocardial ischaemia-reperfusion
injury

Rats were anaesthetized with sodium pentobarbital (40 mg/kg

intraperitoneally), given atropine (0.1 mg/kg subcutaneous injec-

tion) to reduce airway secretions, and artificially ventilated.

Intraoperative monitoring of adequate anaesthesia is done by toe

pinch. Myocardial ischaemia was induced by making a slipknot

(6/0 silk) around the left anterior descending coronary artery

(LAD), through a left thoracic incision. After 30 min ischaemia,

the slipknot was loosened and the myocardium was reperfused for

6 h (I30 minR6 h) or 24 h (I30 minR24 h). 20 min prior to LAD

ligation, rats were treated with either vehicle (same volume of Tris-

HCl, pH 3.5) or l-THP (10, 20 or 40 mg/kg b.w.) by gavage,

which ensures that l-THP could reach effective plasma concen-

tration [15,19,20]. Sham-treated rats were given the same surgical

operation without the slipknot and ligation-unlocked.

Determination of myocardial infarct size
Myocardial infarct size was determined by Evans blue/

triphenyltetrazolium chloride (TTC) staining as described previ-

ously [21,22]. Briefly, for heart extraction, deep anaesthesia is

achieved by overdose of sodium pentobarbital (60 mg/kg intra-

peritoneally) given at 0.2 ml/100 g b.w., the hearts were removed

and perfused with saline using a Langendorff system, to wash

blood from the coronary vasculature, followed by staining with

1.5% w/v Evans blue to determine the area at risk. The heart was

then sliced horizontally into five slices, which were incubated in

1.2% TTC prepared with Tris Buffered Saline (TBS, pH 7.8) for

15 min at 37uC. Viable non-ischemic myocardium stains blue with

Evans blue; ischemic but viable myocardium stains red with TTC;

whilst necrotic myocardium does not stain with either and appears

pale white. The infarct area (white) and the area at risk (red and

white) from each section were determined using an AlphaEaseFC

image analyzer (Alpha Innotech Corporation. CA, USA). Ratios

of risk area to total left ventricle area (RA/LV) and infarct area to

risk area (IA/RA) were calculated and expressed as percentages.

Echocardiography
Rats were anaesthetized by inhalation with mild isoflurane (0.5–

1.5%, Isoflurane Vaporizer, Matrx VIP3000, USA) and anchored

to a positionable platform in a supine position. Cardiac function

was evaluated by echocardiography using GE Vivid 7 equipped

with a 14-MHz phase array linear transducer S12, allowing a 150

maximal sweep rate (General Electric Company, Connecticut,

USA). All measurements were made by one observer who was

blinded with respect to the identity of the treatments administered

and were averaged over five consecutive cardiac cycles.

Determination of creatine kinase activity
Plasma creatine kinase (CK) activity was determined spectro-

photometrically at 340 nm by a commercial kit (Nanjing

Jiancheng Bio-engineering Institute, China). In brief, CK catalyzes

the phosphorylation of ADP, in the presence of creatine

phosphate, to form ATP and creatine. The catalytic activity is

determined from the rate of NADPH formation, measured by

absorbance at 340 nm, by determining the hexokinase and

glucose-6-phosphate dehydrogenase coupled reactions.

Determination of myocardial and plasma
myeloperoxidase activity

At the end of reperfusion, the ischaemic/reperfused cardiac

tissues and serum were frozen and stored at 280uC. Myeloper-

oxidase (MPO) activity, an enzyme occurring almost exclusively in

neutrophils, was determined by a commercial assay kit (Nanjing

Jiancheng Bio-engineering Institute, China). In brief, cardiac tissue

was homogenized in 50 mmol/l potassium phosphate buffer,

pH 6, containing 0.5% hexadecyltrimethyl ammonium bromide.

The homogenates were centrifuged for 10 min at 12,5006g at

4uC. The supernatants were collected and reacted with 0.167 g/L

o-dianisodine dihydrochloride and 0.0005% H2O2 in 50 mmol/L

phosphate buffer, and absorbance determined spectrophotomet-

rically at 460 nm.

Determination of NO Production
Total NO production in left ventricle of cardiac tissue was

determined by measuring the concentration of nitrite, a stable

metabolite of NO, with a modified Griess reaction as described

[23]. The levels of NO in plasma was determined using a NO-

specific microelectrode (World Precise Instrument, USA ).
Figure 1. The chemical structure of l-THP.
doi:10.1371/journal.pone.0038627.g001
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Real-time quantitative PCR
Total RNA was extracted from cardiac tissues using Trizol

(Invitrogen, Carlsbad, CA) and reverse transcribed into cDNA

using the Prime Script RT reagent kit (Takara Biotechnology,

China) according to the manufacturer’s instructions. mRNA levels

of target genes were quantified using SYBR Green Master Mix

(Takara Biotechnology, China) with ABI PRISM 7500 Sequence

Detector system (Applied Biosystems, CA). The primer sequences

were as follows: HIF-1a (forward, 59-ACTGATTGCATCTC-

CACCTTCT-39; reverse, 59-TCGCTTCCTCTGAGCATTCT-

39); iNOS (forward, 59-GCTACACTTCCAACGCAACA-39;

reverse, 59-ACAATCCACAACTCGCTCCA39); VEGF (forward,

59-TGCACCCACGACAGAAGGG-39; reverse, 59-

TCACCGCCTTGGCTTGTCA–CAT-39). Samples were nor-

malized against 18 s (forward, 59-GTAACCCGTTGAACCC-

CATT-39; reverse, 59-CCATCCAATCGGTAGTAGCG-39) ex-

pression to ensure equal loading.

Western blotting
At the end of reperfusion, the hearts were removed and the

ischaemic area of cardiac tissue was homogenized in lysis buffer

(final composition in mmol/l: NaCl 150; TRIS 25; Na fluoride 50;

Na orthovanadate 1.0; phenylmethylsulfonyl fluoride 1.0; aproti-

nin 1 mg/l; leupeptin 10 mg/l; pH 7.6). The homogenates were

placed on ice for 40 min, then centrifuged for 10 min at 12,5006
g at 4uC. The supernatants, comprising cardiac lysates, were

subjected to SDS-PAGE using a 7.5% or 10% acrylamide gel,

followed by Western blotting. Proteins on the gel were transferred

to a polyvinylidene fluoride membrane for 2 h at 15 V. The

membranes were blocked for 2 h at room temperature in TBS-

Tween 20 (0.02%) containing 3% bovine serum albumin, followed

by probing with anti-p85a subunit of PI3K (rabbit polyclonal,

Santa Cruz Biotechnology Inc, USA), anti-phospho-eNOS

(Ser1177) (rabbit polyclonal, Cell Signaling Technology Inc. MA,

USA), anti-eNOS (mouse monoclonal, Sigma, MO, USA), anti-

phospho-Akt (Ser473) (rabbit polyclonal, Sigma, USA), anti-Akt

(rabbit polyclonal, Cell Signaling Technology Inc. MA, USA),

anti-iNOS (rabbit polyclonal, Bioworld Technology Inc. MD,

USA), anti-HIF-1a (rabbit polyclonal, Santa Cruz Biotechnology

Inc, USA) or anti-HIF-1b (rabbit monoclonal, Cell Signaling

Technology Inc. MA, USA), dilution 1:1000 in blocking buffer at

4uC overnight. After 3 washes with TBS-Tween 20 (0.02%), the

appropriate secondary antibody was added at room temperature

for 2 h. Excess antibody was removed by washing 3 times with

TBS-Tween 20 (0.02%). The membranes were covered with

Enhanced Chemiluminescence (ECL) Western blotting detection

reagents (Amersham Biosciences, NJ, USA) for 1 min, and then

exposed to Hyperfilm for up to 15 min. The films were scanned

into Microsoft Windows XP Paint software using a ScanJet 3400C

scanner (Hewlett Packard, CA, USA). The area-density product of

each band was measured using Image J 1.25 s software (National

Institutes of Health, MD, USA). p-Akt or p-eNOS immunoblots

were then stripped with stripping buffer (100 mM 2-mercaptoeth-

anol; 2% (w/v) SDS; 62.5 mM Tris-HCl; pH 6.7) at 50uC for

30 min, and re-probed for total Akt or eNOS.

Measurement of superoxide anion generation
Cardiac tissue samples were homogenized and centrifuged as

described above for western blotting. The supernatant was used

for measurement of superoxide anion production by lucigenin-

enhanced chemiluminescence. The light reaction between super-

oxide and lucigenin (5 mmol/L) was detected in a 96-well

microplate luminometer (GloMax, Promega, USA) during incu-

bation in a HEPES-modified Krebs buffer (pH 7.4). Additionally,

hearts removed from rats were immediately frozen in Tissue-Tek

OCT embedding medium (Sakura Finetek, Tokyo, Japan), then

cut into 5 mm-thick sections and placed on glass slides.

Dihydroethidium (DHE, 2 mmol/L) was applied to each tissue

section and the slides incubated in a light-protected humidified

chamber at 37uC for 15 min. The slides were then examined by

fluorescence microscopy (Olympus, Japan).

Determination of myocardial peroxynitrite (ONOO2)
production

Cardiac tissue samples were homogenized on ice in 20 mM

HEPES buffer containing 1 mM EDTA, protease inhibitors

(Roche, Germany), and PMSF 1 mM (Sigma, USA). After

centrifugation (10 min, 800 g, 4uC) the supernatant was used for

measurement of peroxynitrite production by luminol-enhanced

chemiluminescence [24]. The light reaction between ONOO2

and luminol(250 mmol/L) was detected in a 96-well microplate

luminometer (Biotek, USA) during incubation in a HEPES-

modified Krebs buffer (pH 7.4).

Determination of myocardial TNF-a production
Myocardial expression of TNF-a was determined using

commercially available enzyme-linked immunosorbent assay kits

(Bender, BMS622, Minneapolis, USA). Protein concentration in

the samples was measured by BCA Protein Assay (PIERCE, USA),

with bovine serum albumin used as the standard.

Myocardial apoptosis
For terminal deoxynucleotidyl-transferase mediated dUTP nick-

end labeling (TUNEL) staining, hearts were fixed in 4% v/v

paraformaldehyde, embedded in paraffin, cut into 5-mm thickness

sections and treated as indicated in the In Situ Cell Death

Detection kit, POD (Roche, Germany). Following this, sections

were co-stained with hematoxylin (Beyotime, China) to identify

cardiomyocytes.

Statistical analysis
All data are expressed as mean 6 SEM. Comparisons between

treatment groups were by Student’s t test (paired or unpaired) or

ANOVA, with or without repeated measures, as appropriate.

Differences were considered significant at P,0.05 (two-tailed).

Results

l-THP dose-dependently decreases myocardial infarct size
in rats following myocardial I/R

30 min ischaemia followed by 6 h reperfusion resulted in

myocardial injury, as expected (Figure 2). After I/R injury,

myocardial IA/RA ratio was 36.363.9% in the vehicle group but

was reduced to 20.562.2% and 18.662.2% after treated with l-

THP at either a moderate dose (20 mg/kg.) or a high dose

(40 mg/kg b.w.) respectively. No effect of l-THP on infarct size

was detected at a low dose (10 mg/kg ).

l-THP dose-dependently improves left ventricular
function in rats following myocardial I/R

Compared to the sham-operated group, 30 min ischaemia

followed by 6 h reperfusion, ejection fraction (EF) and fractional

shortening (FS) in the vehicle-treated group were significantly

decreased. Treatment with l-THP (10, 20 and 40 mg/kg b.w.),

both EF and FS following ischaemia-reperfusion were significantly

increased (Figure 3).

l-Tetrahydropalmatine and Myocardial I/R Injury
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l-THP dose-dependently decreases plasma creatine
kinase activity

30 min ischaemia followed by 6 h reperfusion resulted in

increased plasma CK activity (Figure 4a). Treatment with l-THP

(10–40 mg/kg) progressively decreased CK activity following

ischaemia-reperfusion.

l-THP decreased myocardial and plasma
myeloperoxidase activity

It is well established that myocardial I/R injury involves an

inflammatory response where neutrophils play a critical role.

30 min of ischaemia followed by 6 h reperfusion increased MPO

activity in both plasma and myocardium. l-THP (20 mg/kg b.w.)

treatment significantly attenuated the elevation in both plasma and

myocardial MPO activity, consistent with an inhibitory effect on

neutrophil function (Figure 4b–c).

l-THP dose-dependently decreases myocardial and
plasma NO biosynthesis

NO production in myocardium and plasma of rats subjected to

I/R was higher than the sham group (Figure 5a–b). Treatment

with l-THP (10–40 mg/kg b.w.) significantly decreased myocar-

dial NO generation following ischaemia-reperfusion.

l-THP increases p85, serine1177 phosphorylation of eNOS
and serine473 phosphorylation of Akt in myocardium

The PI3K-Akt-eNOS pathway has been reported to play a

protective role in myocardial I/R [21]. As shown in Figure 5c, l-

THP (20 mg/kg b.w.) significantly increased the expression of p85

in myocardium. Serine1177 phosphorylation of eNOS is an

important post translational modification by which eNOS activity

is increased in response to a variety of physiological stimuli [25].

To determine whether the decrease in myocardial NO production

in response to l-THP might be due to inhibition of eNOS, through

a decrease in its serine1177 phosphorylation, we examined this as

well as total expression of eNOS by Western blotting of

myocardial lysates. As shown in Figure 5d, l-THP (20 mg/kg

b.w.) significantly increased eNOS serine1177 phosphorylation,

with no corresponding alteration in total eNOS expression in

myocardium. One of the most important enzymes mediating

serine1177 phosphorylation-dependent activation of eNOS is

protein kinase Akt [26]. The active form of Akt is phosphorylated

at serine473 and threonine308. We therefore measured serine473-

phosphorylated Akt as an index of Akt activation, in response to l-

THP (20 mg/kg b.w.), by Western blotting. As shown in Figure 5e,

serine473-phosphorylated Akt in l-THP group was increased

significantly compared with vehicle group, but there was no

corresponding change in total Akt expression in the myocardium.

Figure 2. l-THP decreased myocardial infarct size in myocardial I/R (MI/R) rats. (a) RA (risk area)/LV (left ventricle area) ratio. RA/LV ratio was
not changed. (b) IA (infarct area)/RA ratio. Compared with the vehicle group (V), IA/RA ratio was significantly lower in rats that treat with l-THP(M) and
l-THP(H), *P,0.05, **P,0.01 vs. vehicle group, n = 6, but l-THP(L) shows no effect. (c) Representative heart sections, compared with vehicle, infarct
area was reduced in the heart by l-THP (M) and l-THP (H).
doi:10.1371/journal.pone.0038627.g002
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l-THP decrease iNOS expression and ONOO2 production
in myocardium

Various studies have demonstrated that pathological concen-

trations of NO produced by iNOS may result in nitrative stress

and tissue injury, largely by generating the powerful nitrative

molecule peroxynitrite (ONOO2) [27,28]. Accordingly, we

measured ONOO2 levels in each group by luminol-enhenced

chemiluminescence. As shown in Figure 5f, increased ONOO2

production was detected after cardiac I/R, which was attenuated

by treatment with l-THP (20–40 mg/kg b.w.). To investigate

whether the decrease in myocardial NO production in response to

l-THP might be explained by a decrease in iNOS expression, we

examined iNOS expression in both protein and mRNA levels. As

shown in Figure 5g, l-THP (20 mg/kg b.w.) decreased total

expression of iNOS in myocardium by western blotting. l-THP

(20 mg/kg b.w.) also reduced the iNOS mRNA level in the

myocardium after I/R (Figure 5h).

l-THP affects the expression of HIF-1 and VEGF
Compared with sham group, the expression of HIF-1a mRNA

increased in the ischaemic region of myocardium in I30 minR6 h,

but there wasn’t apparent alteration in I30 minR24 h (Figure 6a–b).

Interestingly, after treatment with l-THP, the expression of HIF-

1a mRNA increased significantly in I30 minR24 h, while it closed to

the level of sham group in I30 minR6 h. The changes of VEGF

mRNA in both reperfusion at 6 h and at 24 h were similar to

those of HIF-1a (Figure 6c–d). This indicated that at temporary

ischaemia, expression of HIF-1a and VEGF were increased, but

that after a longer time of reperfusion, HIF-1a and VEGF were

reduced to basal levels. l-THP increased the expression of HIF-1a
and VEGF mRNA levels in I30 minR24 h.

l-THP decreases myocardial superoxide anion
Reactive oxygen species are believed to play a critical role in I/

R injury. Fluorescence microscopy of DHE-stained cardiac

sections, as well as lucigenin chemiluminescence of cardiac

homogenates, revealed increased superoxide anion production

after cardiac I/R, which was abolished by treatment with l-THP

(20–40 mg/kg b.w.) (Figure 7a–b).

l-THP decreases TNF-a production by myocardium
TNF-a is a multifunctional pro-inflammatory cytokine that

regulates neutrophil infiltration [29]. We found that TNF-a
concentration was increased in myocardium of rats subjected to

myocardial I/R (Figure 7c). Treatment with l-THP (20 mg/kg

b.w.) significantly reduced cardiac TNF-a concentration.

l-THP reduced myocardial apoptosis
Because apoptosis is a major event of I/R injury, we

additionally evaluated the effect of l-THP on apoptosis in this

study. As demonstrated in Figure 7d–e, the number of TUNEL-

positive cells in the ischaemic border zone was smaller in l-THP

treated animals than vehicle-treated animals, which decreasing

from 26.262.8% to 15.461.6%.

Figure 3. l-THP improves the left ventricular function of myocardial I/R rats. (a) Typical M-mode echocardiograms (b, c) I/R induced a
pronounced reduction in left ventricular ejection fraction (EF) and fractional shortening (FS), both effects being prevented by l-THP. ###P,0.001 vs.
sham group (S),*P,0.05,** P,0.01, ***P,0.001vs. vehicle group, n = 6.
doi:10.1371/journal.pone.0038627.g003
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Discussion

Myocardial infarction, and consequent loss of functional

myocardium, is a major cause of heart failure. Despite interven-

tional treatment or thrombolysis, prognosis remains poor in

patients with large infarct area and/or severe left ventricular

dysfunction. As well as the damage caused by ischaemia, a further

volume of functional myocardium is lost immediately after

reperfusion (within several hours), and this reperfusion damage is

a major determinant of post-myocardial infarction. Cardioprotec-

tion before reperfusion may confer some benefit in reducing

myocardial I/R injury [30], and certain drugs such as statins [31]

and angiotensin receptor blockers [32], have been shown to

decrease cardiovascular morbidity and mortality when adminis-

tered before elective cardiac surgery or percutaneous coronary

intervention.

The results of the present study indicate that the infarct size of l-

THP-treated rats was significantly reduced compared with

untreated rats whilst cardiac function was significantly improved,

following myocardial ischaemia and subsequent reperfusion.

Moreover, this effect was explained, in large part, by a decrease

in myocardial NO production. NO plays a crucial role in many

aspects of the pathophysiology of heart failure. NO has often been

described as a ‘double-edged’ sword; NO inhibits I/R injury,

represses inflammation, and prevents left ventricular (LV) remod-

eling, whereas excess NO and coexistence of reactive oxygen

species (ROS) with NO are injurious [33]. NO donors have also

been reported to increase cardiomyocyte death and to switch the

nature of cell death from apoptosis to necrosis, in a concentration-

dependent manner [34]. The detrimental effect of excessive NO is

attributable to its action on mitochondria. NO inhibits the

mitochondrial respiratory chain, resulting in inhibition of ATP

production, as well as increase in production of reactive oxygen

species and an increase in susceptibility to cell death [35,36].

During reperfusion, due to disturbance in the redox state of the

cells, excess NO can combine with superoxide anion, resulting in

formation of the reactive radical peroxynitrite (ONOO2), which

inhibits mitochondrial respiration at multiple sites, and also causes

mitochondrial permeability transition pore (MPTP) opening

[37,38]. This in turn leads to membrane lipid peroxidation and

in the interruption of normal signalling pathways.

The PI3K/Akt/eNOS/NO pathway has been reported to play

a protective role in myocardial I/R [21]. After agonist stimulation

of PI3K, cytoslic Akt translacates to the plasma menbrance where

it is activated by serine and threonine phosphorylation. This

membrane-activated form of Akt has been shown to phosphorylate

human eNOS specifically at serine 1177, resulting in enhanced

eNOS activity and increased NO release [26,39]. Upregulation of

eNOS has been reported to protect against myocardial I/R injury

through suppression of vascular cell adhesion molecule expression

thereby preventing excessive leukocytic tissue infiltration [40].

However, activation of iNOS, induced by pro-inflammatory

cytokines, has been associated with myocardial depression [41].

Excessive generation of NO by iNOS is detrimental to cardiovas-

cular function, as exemplified in septic shock where burst

generation of iNOS-derived NO causes hypotension, cardiode-

pression and vascular hyporeactivity [42]. Supplementation with

L-arginine under conditions where iNOS is expressed during

myocardial I/R has been shown to result in a significant surge in

the production of NO and ONOO2, which aggravate post-

ischemic myocardial apoptosis [43]. A recent study has demon-

strated that myocardial I/R stimulates polymorphonuclear leuko-

cyte accumulation, resulting in myocardial injury through an

iNOS-mediated mechanism involving generation of NO and

Figure 4. l-THP decreased the activity of creatine kinase and myeloperoxidase. (a) Plasma CK activity of myocardial I/R rats treated with
vehicle and l-THP. Plasma CK activity was significantly decreased in rats that treat with l-THP, ###P,0.001 vs. sham group, ***P,0.001 vs. vehicle
group, n = 6. (b) Cardiac MPO activity of myocardial I/R rats treated with vehicle and l-THP (M). (c) Plasma MPO activity of myocardial I/R rats treated
with vehicle and l-THP (M). Compared with the vehicle group, both cardiac and plasma MPO activity was significantly decreased, ##P,0.01,
###P,0.001 vs. sham group, **P,0.01, ***P,0.001 vs. vehicle group, n = 6.
doi:10.1371/journal.pone.0038627.g004
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ONOO2, and that treatment with FeTMPyP, a peroxynitrite

decomposition catalyst, reduces I/R-induced, L-arginine-en-

hanced nitrative stress and cardiomyocyte apoptosis [44]. These

studies indicate that inhibition of iNOS activity or scavenging of

peroxynitrite reduces nitrative stress and thereby attenuates tissue

injury during myocardial I/R In the present study, l-THP

treatment resulted in eNOS ser1177 phosphorylation, via augmen-

tation of Akt ser473 phosphorylation, during myocardial I/R.

However, this effect is outweighed by inhibition of iNOS

expression by l-THP during myocardial I/R, resulting in a net

decrease in NO production and hence cardioprotection. Growing

evidence has indicated that HIF plays a major role in myocardial

I/R injury [9]. HIF-1 is a transcription factor that is expressed

following a decrease in cellular oxygen pressure [8]. VEGF is a key

modulator of vasculogenesis and angiogenesis in physiological and

pathological conditions. VEGF is a HIF-dependent gene, which is

important in I/R because of regulating collateral vessel develop-

ment [9,11]. In this study, we found that temporary ischaemia

increased expression of HIF-1a and VEGF, and after a longer

time of reperfusion, HIF-1a and VEGF mRNA decreased to basal

level, but l-THP increased the expression of HIF-1a and VEGF

mRNA levels.

In murine macrophages, in the absence of activation, the

production of the pro-inflammatory cytokine TNF-a is repressed

both at the transcriptional and translational levels [45]. However,

during myocardial I/R, TNF-a and iNOS-derived NO are

produced in large quantities by macrophages [46]. Inhibition of

the excessive production of TNF-a and/or iNOS-derived NO can

give rise to cardioprotection in such circumstances [23,25]. Our

data supported one concept that suppression of iNOS-derived NO

production may contribute, at least partially, to the suppression of

TNF-a production during myocardial I/R [47].

Figure 5. l-THP decreased level of NO, ONOO2 and iNOS, regulated expression of p85, eNOS and Akt. (a) Cardiac NO production
concentration of myocardial I/R rats treated with vehicle, and three doses of l-THP. Compared with the vehicle group, NO production concentration
was significantly decreased, ###P,0.001 vs. sham group, ***P,0.001 vs. vehicle group, n = 6. (b) The production of NO in plasma in myocardial I/R
rats treated with vehicle, and three doses of l-THP. NO concentration was significantly decreased, which compared with the vehicle group, ##P,0.01
vs. sham group, *P,0.05 vs. vehicle group, n = 6. (c) p85 of myocardial I/R rats treated with vehicle and l-THP (M). p85 was significantly increased in l-
THP (M)-treated group, #P,0.05 vs. sham group, *P,0.05 vs. vehicle group, n = 5. (d) Serine1177 phosphorylation of eNOS of myocardial I/R rats
treated with vehicle and l-THP (M). Serine1177 phosphorylation of eNOS was significantly increased in l-THP (M)-treated group, but total eNOS
expression was not increased, ##P,0.05 vs. sham group, **P,0.01 vs. vehicle group, n = 5. (e) Serine473 phosphorylation of Akt of myocardial I/R rats
treated with vehicle and l-THP (M). Serine473 phosphorylation of Akt was significantly increased in l-THP (M)-treated group, but total Akt expression
was not increased, #P,0.05 vs. sham group, *P,0.05 vs. vehicle group, n = 5. (f) Cardiac ONOO2 generation, as measured by luminol-enhanced
chemiluminescence, in each of the five groups, #P,0.05 vs. sham group, *P,0.05, **P,0.01 vs. vehicle group, n = 6. (g) iNOS expression of
myocardial I/R rats treated with vehicle and l-THP (M). iNOS expression was significantly decreased in l-THP (M)-treated group, ###P,0.001 vs. sham
group, *P,0.05 vs. vehicle group, n = 5. (h) The mRNA levels of iNOS in myocardial I/R rats treated with vehicle and l-THP (M). iNOS expression was
significantly decreased in l-THP (M)-treated group, ###P,0.001 vs. sham group, *P,0.05 vs. vehicle group, n = 6.
doi:10.1371/journal.pone.0038627.g005

Figure 6. l-THP affected the expression of HIF-1 and VEGF. (a) The mRNA level of HIF-1a in I30 minR6 h. Compared with the sham group, HIF-1a
expression significantly increased in vehicle group, ##P,0.01 vs. sham group, *P,0.05 vs. vehicle group, n = 6. (b) The mRNA level of HIF-1a in
I30 minR24 h. Compared with the vehicle group, n = 6. (c) The mRNA level of VEGF in I30 minR6 h. Compared with the sham group, VEGF expression
significantly increased in vehicle group, #P,0.05 vs. sham group, *P,0.05 vs. vehicle group, n = 6. (d) The mRNA level of VEGF in I30 minR24 h.
Compared with the vehicle group, VEGF expression significantly increased in l-THP (M)-treated group, ##P,0.01 vs. sham group, **P,0.01 vs. vehicle
group, n = 6.
doi:10.1371/journal.pone.0038627.g006
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MPO is a protein present in macrophages, which can be

activated by peroxynitrite which is itself a substrate for the

enzyme. In addition, nitrite formed from peroxynitrite decompo-

sition is entrapped within the phagolysosome and can serve as an

additional substrate for MPO [48]. Many studies have indicated

that MPO is specific for leukocytes, especially polymorphonuclear

neutrophils, and MPO activity has therefore been used in many

studies as an index of neutrophil accumulation in the heart

[44,49]. In the present study, we determined the activity of MPO

in both plasma and myocardium, and found that l-THP can

reduce the activity of MPO both in plasma and in myocardium,

Figure 7. l-THP decreased cardiac oxidative stress, TNF-a production and myocardial apoptosis. (a) Representative photomicrographs of
DHE-stained cardiac sections in each of the five groups. (b) Cardiac superoxide anion generation measured by lucigenin-enhanced
chemiluminescence. Compared with the sham group, superoxide anion production significantly increased in vehicle group, while decreased in l-
THP -treated group. #P,0.05 vs. sham group, *P,0.05 vs. vehicle group, n = 6. (c) Cardiac TNF-a concentration of myocardial I/R rats treated with
vehicle and l-THP (M). Compared with the vehicle group, cardiac TNF-a concentration was significantly decreased, #P,0.05 vs. sham group, *P,0.05
vs. vehicle group, n = 6. (d) The apoptosis positive cells in myocardial of myocardial I/R rats, as determined by TUNEL assay. (e) Compared with the
vehicle group, apoptosis positive cells was significantly increased, ###P,0.001 vs. sham group, **P,0.01 vs. vehicle group, n = 5.
doi:10.1371/journal.pone.0038627.g007
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indicative of an anti-inflammatory effect, following myocardial I/

R.

Studies have showed that l-THP can protect global cerebral

ischaemia-reperfusion injury by reducing apoptosis [16,17]. In this

study, we found that l-THP decreased apoptosis in myocardium,

indicating that l-THP has an anti-apoptotic effect during

myocardial I/R.

In conclusion, the results of the present study indicate that l-

THP is cardioprotective in the context of myocardial I/R, through

a decrease in iNOS-mediated NO biosynthesis and consequent

decreases in TNF-a synthesis and neutrophil infiltration, and

lessening the extent of apoptosis. This has important potential

therapeutic consequences in the context of myocardial I/R injury.
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